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Abstract. Material behaviour is often affected by the heterogeneities existing at the microscopic level.
Especially the presence of cracks, voids, etc collectively known as defects, can play a major role in their overall
response. Homogenization can be used to study the influence of these heterogeneities and also to estimate
the effective properties of a given material. Several research works have been dedicated to determining the
elastic behaviour of microcracked media. Yet, thermal properties are not investigated as much. Moreover, the
question of unilateral effect (opening/closing of cracks) still remains an important issue. So, this paper aims to
provide the effective thermal conductivity of 2D microcracked media with arbitrarily orientated cracks, either
open or closed. With the help of Eshelby-like approach, homogenization schemes (dilute and Mori-Tanaka)
and bounds (Ponte Castañeda-Willis) are developed to provide the closed-form expressions. In addition, these
results are compared to numerical simulations performed based on finite element modelling.
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1 Introduction

Defects have an influence on the macroscopic behaviour of
a material, each on a different scale. The overall behaviour
of the material can be characterized by its microstruc-
ture. This transition from micro-to-macro can be modelled
using averaging techniques (homogenization) in order to
derive the effective properties of a material.
Homogenization studies often concentrate on the elas-

tic behaviour of a microcracked material. In so-called
direct methodology, cracks are represented as material dis-
continuities with parallel faces. The displacement jumps
induced by the cracks allow deriving their contribu-
tion to the overall response. For instance, Kachanov [1]
and Nemat-Nasser and Hori [2] have provided effective
stiffness expressions for arbitrarily oriented microcracks.
Eshelby’s equivalent inclusion method [3] also offers rele-
vant solutions when considering cracks as flat ellipses (in
2D) or ellipsoids (in 3D). For instance, Mura [4] has stud-
ied various ellipsoidal limit cases and Mori and Tanaka
[5] have enhanced the representation to the case of mul-
tiple interacting inhomogeneities. Note that energy-based
bounds developed by Ponte Castañeda and Willis [6] allow
accounting for different spatial cracks distribution.
Based on the physical analogy with elasticity (as in pio-

neering works of Bristow [7], see also [8]), some authors
have extended these modelling approaches to thermal,
electrical and permeability properties of cracked media

∗ e-mail: helene.welemane@enit.fr

[9–11]. For steady-state heat conduction, Sevostianov [12]
and others [13,14] apply the direct methodology based
on temperature jump across insulating crack lips. For
Hoenig [15], Hatta and Taya [16], Benveniste and Miloh
[17] and more recently Shafiro and Kachanov [18], the
equivalent inclusion method appears again as a key issue.
While several studies account for the arbitrary value of
matrix/inclusion conductivity and arbitrary crack’s ori-
entation or shape, most of the existing papers generally
provide thermal conductivity of microcracked media in
the non-interacting case. Nguyen et al. [19] give closed-
form expression for different schemes but consider only
one orientation of the crack. Nevertheless, that is not
the only challenge. Opening or closing of microcrack (also
known as unilateral effect) can have a different influence
on the material, in turn on the overall properties. Conse-
quences of both induced anisotropy and unilateral effect
on the elastic problem have been studied by few authors
[1,20], but the same cannot be said for the heat conduction
problem.
The modelling of the steady-state behaviour within

microcracked media can also be achieved through numer-
ical simulation. Carson et al. [21] apply Finite Element
Method (FEM) to find the conductivity of non-insulated
porous of various shapes and sizes, while Tang et al.
[22] propose a similar modelling for concrete with con-
ductive heterogeneities. Shen et al. [23] use a plastic
damage model to create cracks under tensile load and
then consider steady-state conduction to find the conduc-
tivity of the microcracked concrete with high aggregate
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volume. One can cite also works of Tran et al. [14]
based on an adaptive scheme Boundary Element Method
(BEM) to find conductivity of a domain containing sev-
eral cracks. Once again, we note that the crack orientation
and unilateral effect are not given enough attention.
The present work intends to propose an Eshelby-like

modelling approach for the steady-state heat transfer in
a 2D microcracked medium. The effective thermal con-
ductivity is derived based on the geometry of cracks
considered as thin aspect ratio inclusions, and on the rel-
evant choice of cracks properties according to their status
(open or closed). The theoretical basis of the 2D linear
thermal problem is stated in Section 2. As a demonstra-
tion, for different estimations (dilute and Mori-Tanaka
schemes and Ponte Castañeda-Willis bound), closed-form
expressions for a single-family of parallel cracks are pre-
sented in Section 3. In addition to the analytical solution,
we also propose a numerical analysis of the thermal prob-
lem by means of finite element simulations. Modelling and
description of the simulated area are given in Section 4.
The results obtained from micromechanics and numer-
ical simulation are finally compared and discussed in
Section 5.

2 Theoretical framework

Current works on the effective thermal properties are
influenced by the similarities between elasticity and
steady-state heat conduction variables [8]:

Elasticity Heat conduction

stress σ heat flux q
strain ε temperature gradient g
stiffness C thermal conductivity λ

Hooke’s law Fourier’s law

Let denote Ω the area of the 2D Representative Volume
Element (RVE) of the microcracked media, ∂Ω its outer
boundary and u the outward unit normal to ∂Ω (Fig. 1a).
The macroscopic temperature gradient G (respectively
heat flux Q) can be defined as the mean temperature
(resp. external heat flux) on the boundary ∂Ω. Under sta-
tionary thermal conditions, the macroscopic temperature
gradient G (resp. heat flux Q) corresponds to the average
of the corresponding microscopic quantity g (resp. q):

G =
1

|Ω|

∫

∂Ω

T (x) u(x) dL =
1

|Ω|

∫

Ω

g(x) dΩ = 〈g〉 (1)

Q =
1

|Ω|

∫

∂Ω

q(x) ·u(x) x dL =
1

|Ω|

∫

Ω

q(x) dΩ = 〈q〉 (2)

where T (x), g(x) and q(x) respectively represent the local
temperature, local temperature gradient and local heat
flux at any point x of Ω.
The RVE studied here includes two phases (matrix

and microcracks), where each phase is homogeneous and

(a)

(b)

Fig. 1. (a) RVE with single family of parallel microcracks, (b)
crack geometry.

locally follow the Fourier’s linear thermal law:

q(x) = −λ(x) · g(x), ∀ x ∈ Ω (3)

where λ is the local symmetric second-order thermal
conductivity tensor.
The matrix is considered to be isotropic, continuous and

has the thermal conductivity tensor λm = λm I (λm is
the scalar thermal conductivity and I is the second-order
identity tensor). This matrix is weakened by randomly
distributed single-family of parallel microcracks (Fig. 1a).
These cracks are modelled as a flat oblate ellipse (mean
semi-axes a and c with c ≪ a; Fig. 1b) with unit normal
n and 2D volume fraction fc = π d ω. Here d = Na2 is
the scalar crack density (N is the number of cracks per
unit area) as defined by Budiansky and O’Connell [24]
and ω = c/a ≪ 1 is their mean aspect ratio.
A uniform macroscopic temperature gradient G is

imposed at the outer boundary δΩ of the RVE. Assuming
an initial natural state, the microscopic and macroscopic
quantities can be linked linearly as [25]:

g(x) = A(x) ·G, ∀ x ∈ Ω (4)

where A is the second-order gradient localization tensor.
Similar to (3), the overall behaviour of the RVE can be
given by:

Q = −λhom ·G (5)

where λhom is the overall thermal conductivity of the
microcracked media. Assuming the condition 〈A〉 = I and
(4), the effective thermal conductivity of the microcracked
media comes to:

λhom = λm + fc (λc − λm) · 〈A〉c (6)

where 〈·〉r=
1

Ωr

∫

Ωr

· dΩ denotes the mean value over the

area Ωr of the phase r for r = {m, c}.
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The single-inhomogeneity problem studied by Eshelby
[3] considers a single ellipsoidal inclusion embedded inside
an infinite matrix subjected to macroscopic stress or strain
tensors at infinity. This elasticity problem can be extended
to thermoelasticity [8,26]. Here, matrix and cracks exhibit
matrix-inclusion topology. In such case, the local tem-
perature gradient in the crack can be approximated by
the uniform local field obtained for an ellipsoid embed-
ded in an infinite matrix subjected to uniform boundary
conditions G∞.
Taking all this into account, the estimated solutions

for localization tensor over the crack’s phase 〈A〉c can be
determined. And they depend on the depolarization tensor
SE (similar to the Eshelby tensor of the elastic problem)
whose factors are given in [8]. In our case, the said tensor
for a flat oblate ellipse can be given as:

SE (ω) =
1

1 + ω
n⊗n +

ω

1 + ω
(I−n⊗n), ∀ ω ≪ 1

(7)
Note that the configuration of flat cracks corresponds

to the limit case where ω → 0, which has to be introduced
only at the very end of the mathematical developments.
As mentioned before, the unilateral effect is one of the
main focus of this work. So, two different results can
be obtained at the end, based on the state of the crack
(open or closed). In either case, cracks are assumed to be
isotropic λc = λc I (λc is the crack’s scalar thermal con-
ductivity) with a different value of λc depending on the
state of the crack:

– when the cracks are open, λc = 0, which supports the
adiabatic conditions on the crack lips,

– when the cracks are closed, λc = λ∗, which accounts for
some level of heat transfer continuity; this assumption is
inspired by the works of Deudé et al. [20], where closed
cracks are represented by a fictitious isotropic material
with scalar conductivity λ∗ 6= 0.

3 Calculation of the effective thermal
conductivity

We impose a uniform macroscopic thermal gradient G at
the outer boundary δΩ of the RVE. This is similar to
the classical strain-based formulation in elasticity. As a
first, we will estimate the effective conductivity through
different schemes and bounds.
When there is a dilute concentration of cracks (small

d), it is considered that there is no interaction between
them. The remote condition in this case can be given by
G∞ = G. Hence, the localization tensor can be given by:

〈A〉dilc =
[

I− SE

(

1− ξ
)

]

−1

with ξ =
λc

λm

(8)

Substituting (8) in (6), we get the general expression:

λ
dil

hom = λm ·
[

I− π d R

]

(9)

where tensor R is defined as:

R (ω, ξ) = ω
(

1− ξ
)

[

I− SE

(

1− ξ
)

]

−1

, ∀ ω ≪ 1, ∀ ξ

(10)
The above equation is valid for all the mean aspect ratio
ω ≪ 1 and all the ratio ξ of scalar conductivity between
defects and matrix. The present study focuses on the case
of flat ellipse-shaped microcracks (c ≪ a) for which aspect
ratio tends to zero. Besides, we intend to account for
different crack status:

– open cracks: one has λc = 0, so ξ = 0 and
R (ω → 0, ξ = 0) = n⊗ n,

– closed crack: one has λc = λ∗ 6= 0, so ξ 6= 0 and
R (ω → 0, ξ 6= 0) = 0.

Accordingly (9) can be simplified into:

λ
dil

hom =

{

λm ·
[

I− π d n⊗ n

]

, if cracks are open

λm , if cracks are closed
(11)

When we are to consider some interactions between
cracks, the Mori-Tanaka scheme may provide an inter-
esting solution [5]. The boundary condition here is given
by G∞ = 〈g〉m and the localization tensor reads:

〈A〉MT

c = 〈A〉dilc ·
[

(1− fc) I+ fc 〈A〉dilc

]

−1

(12)

This leads to:

λ
MT

hom = λm ·
[

I+ π dR
]

−1

(13)

As before, the specific behaviour of flat cracks according
to their status gives the following:

λ
MT

hom =







λm ·

[

I− π d
1

1 + π d
n⊗ n

]

, if cracks are open

λm , if cracks are closed

(14)

Ponte Castañeda-Willis developed an energy-based
upper bound to find effective stiffness [6]. This bound
takes into account the shape of the inclusion (through
SE) and also the spatial distribution of cracks through
an additional tensor Sd. The simplified localization tensor
can be given by:

〈A〉PCW

c = 〈A〉dilc ·

(

I+ fc
(

1− ξ
)

Sd · 〈A〉dilc

)

−1

(15)
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For simplicity, a circular spatial distribution is adopted,

for which Sd =
1

2
I. Now (6) can be written as:

λ
PCW

hom = λm ·

[

I− π dR ·

(

I+
π d

2
R

)

−1
]

(16)

Based on the state of the flat defects, one gets:

λ
PCW

hom =











λm ·

[

I− π d
1

1 + π d

2

n⊗ n

]

, if cracks are open

λm , if cracks are closed

(17)
Note that PCW bound will provide the same result as
dilute and MT schemes when no spatial distribution is
considered for the former and elliptical distribution for
the latter [27].
Some main comments can be made regarding these

theoretical developments. First, the three modelling
approaches show crack induced anisotropy for open
cracks. Yet, equations (11), (14) and (17) provide dif-
ferent expressions of the effective conductivity tensor
through the tensorial term n ⊗ n. We also observe
that as d → 0, all estimations lead to the same
result which corresponds to the matrix conductivity
(

λ
dil

hom,λMT

hom,λPCW

hom → λm

)

. On the other hand, we

observe a complete deactivation of microcracking when

the defects are closed
(

λ
dil

hom = λ
MT

hom = λ
PCW

hom = λm

)

.

Note that detailed developments and extension to 3D case
can be found in [27].

4 Numerical simulations

In the following, numerical simulations are performed
using finite element software Abaqus®. (t,v) denotes an
orthonormal coordinate system. The simulated area A is
a square (size L = 1 m) that follows steady-state heat
conduction. The matrix is designed as an unit 2D shell
with its own scalar conductivity λm. Assuming there are
N = 10 cracks in the area, the radius of the crack can be

given by a = 2

√

d

N
. In what follows, the range of consid-

ered density is less than 0.1, related crack’s radius has,
therefore, a maximum value of 0.1 m.
Cracks are usually represented as seams for the open

state (duplicated nodes). Yet, this cannot account for the
heat transfer during crack closure. So, the crack is mod-
elled here as an elliptical inclusion (created as a partition
on the 2D shell) with normal n and scalar conductivity
λc. Since creating a crack with zero aspect ratio is not
possible (Ωc = 0), the cracks are designed with an aspect
ratio 0 6= ω ≪ 1 (so fc ≪ 1). For a given fc, the value
of the scalar conductivity λc determines if the cracks are
open (λc = 0) or closed (λc = λ∗ 6= 0). Such a description
of the crack geometry and the unilateral effect is in line
with the theoretical framework used in Section 2.

The cracks are positioned inside the simulated area
using circular spatial distribution (in agreement with spa-
tial distribution assumed for PCW bound). Since we want
to study the influence of the crack’s orientation on con-
ductivity, further simulations are done by rotating the
whole group of cracks which maintains a constant dis-
tance between them for all orientations. To be precise,
the so-called Reference Configuration (RC) corresponds
to the distribution of cracks rather grouped near the cen-
tre of A to reduce edge effects (Fig. 2). While keeping the
circular spatial distribution, other configurations are also
studied in the following to show the influence of cracks’
location.
The generalized scalar conductivity of a material λ(v)

related to the direction of unit vector v is defined by:

λ(v) =
v ·Q

v ·G
(18)

when the material is subjected to uniform temperature
gradient G = Gv v. For the numerical model, zero flux
condition is imposed on the left and right edges (with
outer normals ± t) of area A. At the same time, tem-
peratures T1 and T2 (∆Tv = T1 − T2 > 0) are applied
respectively on the top and bottom edges (with outer
normals ± v) of the cell; the temperature on each side
is uniform. Such latter boundary condition, namely tem-

perature gradient G = Gv v =
∆Tv

L
v, creates an overall

heat flux Q (= Qt t+Qv v) inside the simulated area.
On a global point of view, the two edges with zero flux
act as adiabatic walls, allowing the heat flux Q to be
mainly oriented along the v direction. From definition
(18), the numerical effective conductivity in direction v is
then provided by:

λnum(v) =
Qv

Gv

(19)

where Qv is the average heat flux along the v direction.

It can be calculated as Qv =
1

L

∫ L

0

HFL2 dt with HFL2

being the heat flux density in v direction along the path
on the top/bottom edge. Alternatively, Qv can be found
using Reaction flux RFLi calculated on each node i on
the top/bottom edge when considering unit dimension in

the transverse direction, i.e. Qv =
1

L

n
∑

i=1

RFLi.

The finite element type used for both the matrix and
crack is quadratic triangular DC2D6 (see Fig. 3 for RC;
(n,v) = 45◦). Fixing 100 elements inside each crack, the
influence of the size of the matrix elements on the heat
flux has been studied (Tab. 1). We have used a very fine
mesh to prevent improper scattering of the flux around
the crack tips. In that case, the model has approximately
73500 elements and 148000 nodes including 201 nodes on
the outer edges. Note that the computation time remains
acceptable (less than a minute). Moreover, estimations of
λnum(v) obtained for different cracks distributions have
been compared for the most critical case, i.e. (n,v) = 0◦

(see Fig. 4). From Table 2, it is observed that cracks
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Fig. 2. Simulated area showing spatial distribution of cracks for the Reference Configuration (RC).

Fig. 3. Simulated area mesh (RC; (n,v) = 45◦).

Table 1. Influence of matrix element size on the average heat flux Qv (RC; (n,v) = 0◦).

Size of the matrix elements 0.1 0.05 0.025 0.01
Total no of elements 13804 42950 52976 73466
Heat flux Qv, W.m

−2 10484.4 10468.1 10468.0 10468.4

distribution has no major influence on the resulting con-
ductivity. Accordingly, the RC will be considered for all
further simulations done in the study.
As first illustration, Figure 5 shows the heat flux vec-

tor at integration points for density d = 0.1 (RC; (n,v) =
45◦). Figure 5a corresponds to the open case (λc = 0) and
shows that the cracks acts as a thermal barrier accord-
ing to the adiabatic behaviour on their lips. Figure 5b

corresponds to the closed case (λc = 50% λm) and shows
continuity in heat transfer.

5 Results and discussion

This section intends to compare theoretical developments
and FE numerical simulations. From (18) and (5), the
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Fig. 4. Influence of cracks position for (n,v) = 0◦.

Table 2. Influence of cracks distributions ((n,v) = 0◦).

Configuration λnum/λm Deviation w.r. RC

Reference configuration (RC) 0.727 -
Configuration 1 0.730 0.47%
Configuration 2 0.732 0.66%

theoretical scalar conductivity λ(v) comes to:

λth(v) = v · λhom · v (20)

This can be estimated for different schemes
(th = {dil,MT, PCW}) and compared to λnum(v).
Recalling previous results from Section 3, open cracks

contribute to the degradation of the thermal conduc-
tivity, mainly along the direction n normal to the
crack surface. This case is true for the simulations as
well (see Fig. 6). Both the theoretical and simulated
results show us damage-induced anisotropy irrespective

of the scheme or crack density. As pointed out ear-
lier, for the theoretical models, we see that as d →
0, λ

dil

hom ≈ λ
MT

hom ≈ λ
PCW

hom (d = 0.1 in Fig. 6a, d =
0.05 in Fig. 6b). This can be attributed to the fact
that as d decreases, the size of the crack decreases
(respectively from a = 0.1 m to a = 0.07 m), making the
interaction between the cracks less influential and at one
point there is no interaction between the cracks essen-
tially leading to a dilute configuration. We also see that
as the crack becomes smaller, so does its influence on
the conductivity (λ(n) ≈ 0.73 λm for a = 0.1 m whereas
λ(n) ≈ 0.86 λm for a = 0.07 m). Figure 6 also illustrates
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Fig. 5. Heat flux vectors at integration points inside the simulated area (RC; (n,v) = 45◦; d = 0.1; a = 0.1 m;ω = 0.001).

Fig. 6. Generalized thermal conductivity λ(v) normalized by its initial value for a material weakened by a single array of parallel
open microcracks of unit normal n.

the consistency between the theoretical and simulated
results. It is interesting to observe that for lesser angles
(n,v) < 45◦, simulated results tend towards PCW and for
higher angles, they approach the dilute case. Indeed, inter-
actions are greater when the cracks are mostly orthogonal
to the heat flux. But, if cracks tend to be aligned with the
direction of the temperature gradient then the influence
of cracks decreases and heat flux is less disturbed, tending
to the dilute case (see Fig. 7).
On the other hand, dilute, Mori-Tanaka and PCW

approaches show that closed cracks do not contribute

to the degradation of conductivity (see (11), (14) and
(17)), i.e. the effective conductivity in any direction is
recovered to its initial value at the cracks’ closure. So
the generalized scalar conductivity in unit direction v

for closed cracks can be given as: λ(v) = λm, ∀ v. Just
like the open crack, simulated and theoretical results are
consistent for the closed crack (see Fig. 8). We also see
that the former has only a negligible amount of degra-
dation of thermal conductivity (less than 0.035% for
d = 0.1 and less than 0.02% for d = 0.05 when considering
λ∗ = 50% λm).
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Fig. 7. Heat flux vectors at integration points for various orientations of open cracks (RC; d = 0.1; a = 0.1 m;ω = 0.001).

From (11), (14) and (17) we know that the theoretical
results are not a function of the aspect ratio ω since they

all correspond to the limit case ω → 0
(

λ
dil

hom,λMT

hom and

λ
PCW

hom only depend on λm, d and n
)

. But as discussed
earlier, it is not possible to simulate an ellipse with zero
aspect ratio. So it seems natural to study the influence
of the aspect ratio on the simulated results. Since the
maximum degradation is along the direction n normal to
the crack, we intend to focus only on λ(n). Figure 9a

corresponds to open crack and Figure 9b corresponds to
closed crack with fixed values of dilute, MT and PCW
denoted as reference. In both cases, the simulated results
are really sensitive to the aspect ratio ω and get closer
to the PCW bound when ω → 0. Especially in the closed
case, the simulations tend to the full recovery of λ(n),
same as the theoretical models. Note that all the sim-
ulations linked to varying aspect ratio are performed by
varying the crack thickness c and keeping the crack density
d and radius a as constants.
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Fig. 8. Generalized thermal conductivity λ(v) normalized by its initial value for a material weakened by a single array of parallel
closed microcracks of unit normal n (RC;λ∗ = 50% λm).

Fig. 9. Normal thermal conductivity λ(n) normalized by its initial value for various aspect ratios (d = 0.1; a = 0.1 m); points
represent simulation results (RC); log

10
scale is used for abscissa.

Also, the theoretical results for the closed case do not
depend on the fictitious scalar conductivity λ∗. This may
not be true for the simulations. So, a series of simula-
tions were performed with varying λ∗ and for different
aspect ratios (d and a are still constants). The values for
λ∗ are given as a proportion of λm such that λ∗ = α λm

with α = {1, 5, 10, 25, 50, 80, 100}[%]. Figure 10 shows
that there is a clear influence of the scalar conductiv-
ity λ∗ on the numerical thermal conductivity. For α ≤
10%, we see a drastic decrease in the conductivity, this is
due to the fact that we are slowly approaching the open
case (α = 0). We also observe that as ω → 0 the influ-
ence of λ∗ diminishes and representation of closed cracks
by means of an ellipse with fictitious scalar conductiv-
ity λ∗ becomes independent of the λ∗ value, just like the
theoretical results.

6 Conclusion and perspectives

In this work, we have presented the closed-form expres-
sions for the effective thermal conductivity of 2D microc-
racked media under the steady-state heat condition. The
theoretical background is based on the equivalent inclu-
sion method where cracks are represented as the limit case
of thin elliptic inclusions. Special attention has been paid
to the unilateral effect by considering specific properties of
the cracks according to their state. Different estimations
of the overall thermal behaviour that take into account
(Mori-Tanaka scheme and PCW bound) or not (dilute)
cracks interactions have been provided, both for open
and closed cracks. The determination of effective ther-
mal conductivity was also performed by means of finite
element simulations. For this numerical part, geometry
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Fig. 10. Influence of scalar conductivity λ∗ on the nor-
mal thermal conductivity λ(n) normalized by its initial value
(RC; d = 0.1; a = 0.1 m); log

10
scale is used for abscissa.

and properties of cracks were taken into account in the
same way as for theory. The consistency of theoretical
and numerical results have been demonstrated through
following points. For open cracks, we observe that the
microcracked medium exhibits an induced anisotropy with
main degradation of conductivity in the direction normal
to the cracks. Also, as crack density tends to zero, all
models recover the matrix property. On the other hand,
cracks closure leads to a complete deactivation of dam-
aging effects. Finally the sensitivity of numerical results
based on the aspect ratio of defects has been shown.
Further studies could now be conducted to extend such

analytic procedure (homogenization and numerical sim-
ulations) for flux-based boundary condition from which
effective thermal resistivity can be derived. Considering
earlier work of the authors [27], it would also be relevant
to compare theoretical and numerical results in the 3D
case.

Nomenclature

A Second-order temperature gradient
localization tensor

I Second-order identity tensor
λc, λm Thermal conductivity tensor of the

crack and the matrix respectively
λhom Effective thermal conductivity tensor of

the microcracked media
λc, λm Scalar thermal conductivity of the

crack and the matrix respectively,
W.m−1.K−1

n Unit vector normal to the crack’s plane
SE Depolarization tensor
A Simulated area with dimension L × L,

m2

N Number of cracks per unit area
ω Crack’s mean aspect ratio
Ω,Ωr Area of the RVE (with boundary ∂Ω)

and the phase r respectively

(t,v) Orthonormal coordinate system of the
simulated area

a, c Crack’s mean semi-axes, m
d Scalar crack density
fc Crack’s volume fraction in 2D
g, G Microscopic and macroscopic tempera-

ture gradient respectively
q, Q Microscopic and macroscopic heat flux

respectively
∆Tv = T1 − T2 Difference between temperatures T1 and

T2 along the direction v, K
u Outward unit normal to ∂Ω
ξ Ratio of scalar conductivities between

crack and matrix
Gt, Gv Temperature gradient along the direc-

tion t and v respectively, K.m−1

Qt, Qv Average heat flux along the direction t

and v respectively, W.m−2

T (x), g(x), q(x) Temperature, temperature gradient and
heat flux respectively at point x

HFL Heat flux in a structure
RC Reference Configuration
RFL Reaction flux
RVE Representative Volume Element
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