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ABSTRACT
In the context of future human spaceflight exploration missions, Rendezvous and Docking
(RVD) activities are critical for the assembly and maintenance of cislunar structures. The
scope of this research is to investigate the specifics of orbits of interest for RVD in the cislunar
realm and to propose novel strategies to safely perform these kinds of operations. This paper
focuses on far rendezvous approaches and passively safe drift trajectories in the Ephemeris
model. The goal is to exhibit phasing orbit requirements to ensure a safe far approach.
Ephemeris representations of Near Rectilinear Halo Orbits (NRHOs) were derived using
multiple-shooting and adaptive receding-horizon targeting algorithms. Simulations showed
significant drift and overlapping properties for phasing and target orbits of interest, motivating
the search for safe natural drift trajectories and using impact prediction strategies.
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NOMENCLATURE

Abbreviation
ATV Automated Transfer Vehicle
CR3BP Circular Restricted Three-Body Problem
EML-2 Second Earth-Moon Lagrangian point
GNC Guidance, Navigation and Control
ISS International Space Station
NRHO Near Rectilinear Halo Orbit
RVD Rendezvous and Docking
TT Terrestrial Time

Symbols
AR Aspect ratio
Ad Amplitude of the drift (for Ephemeris-NRHO orbits)
Az Out-of-plane elongation (for CR3BP orbits)
d Distance between chaser and target
mi Mass of the i-th primary
NLH Receding-horizon parameter
O Barycenter of the primaries
Pc Probability of collision
Pc,max Maximum probability of collision
rp Perilune radius
rp,chaser Perilune radius of the chaser’s CR3BP initial reference orbit
rp,target Perilune radius of the target’s CR3BP reference orbit
ri Distance from the chaser to the i-th primary
Rc Radius of the chaser
Rt Radius of the target
T Period
U Gravitational potential
Uk Partial derivative of the gravitational potential with respect to the variable k

Greek Symbols
�V Impulsive velocity increment
ε Numerical tolerance
θ Mean anomaly
μ Mass parameter of the CR3BP system
μi Gravitational parameter of the i-th primary
σ Standard deviation

1.0 INTRODUCTION
A Lunar Orbital Platform Gateway(1) concept has been recently proposed by the North
American Space Agency (NASA) as a pillar for future missions to the Moon’s surface.
Such an infrastructure is also expected to take advantage of the complex non-linear dynam-
ics about the Lagrangian points of the Earth-Moon system to facilitate human exploration



beyond the cislunar space. The assembly of this structure is expected to happen on orbit
within the next decade, with the launch of the Gateway’s first module scheduled for 2022.
The platform will need to accomodate modular assembly, cargo delivery and crew exchange
operational activities, all of which rely critically on Rendezvous and Docking (RVD) opera-
tions with modules such as Orion(2). There is extensive experience with RVD in the two-body
problem in Low Earth and Lunar Orbits to various space stations, based on the Apollo mis-
sions or the ATV (Automated Transfer Vehicle) deliveries to the International Space Station
(ISS). Despite that, the problem of RVD in non-Keplerian dynamics is quite a recent topic,
and no operational rendezvous has yet been performed in the vicinity of the Lagrangian
points.

Missions involving the Gateway and the Orion spacecraft have kick-started a new trend of
publications and research on proximity operations in the cislunar realm. Near Rectilinear
Halo Orbits (NRHOs) have been identified as suitable orbits to host the Gateway and to
accommodate multiple mission staging(3). NRHOs exhibit nearly stable behaviour, offer
interesting low-cost accessibility conditions from the Moon and the Earth and present
favorable communication opportunities from both the Earth and the Moon. Recently,
new low-cost orbit maintenance and navigation strategies have been proposed for such
orbits(4). The exploitation of multi-body dynamics for far and close proximity operations
is a very active field of research in the astrodynamics community with recent publica-
tions advocating for the use of invariant manifold structures to reduce the costs of RVD
operations(5,6).

The scope of this research is to propose novel methodologies and trajectory designs to
accommodate the constraints of rendezvous operations between a ‘chaser’ spacecraft and a
‘target’ orbiting platform in a non-Keplerian environment. Previous contributions from the
authors have investigated traditional multi-body far-approach strategies, as well as close ren-
dezvous dynamics using linear and non-linear targeting algorithms(7). This paper proposes a
new strategy for far rendezvous operations in non-Keplerian environments, focusing on nat-
ural far approach, and the investigation of passively safe drift trajectories in the Ephemeris
model. The goal is to exhibit phasing orbit requirements, given a prescribed target orbit, which
will ensure safe free motion and natural approach of a spacecraft near the target. Such trajec-
tories result in significantly low �V budgets to safely reach the vicinity of the target from
where to engage in close proximity operations.

2.0 NEAR RECTILINEAR HALO ORBITS IN HIGH-
FIDELITY MODELS

2.1 The circular restricted three-body problem (CR3BP)
The CR3BP describes the motion of a massless body P under the gravitational influence of
two massive primaries orbiting circularly around their common center of mass, with masses
m1 and m2, respectively, and m1 > m2. The mass parameter μ = m2

m1+m2
is introduced. The

motion is studied in a barycentric, non-dimensional, rotating reference frame (O, x, y, z) called
the synodic frame (depicted in Fig. 1) so that the primaries rotate counterclockwise about their
barycentre O and are fixed on the x axis at (−μ, 0, 0) and (1 − μ, 0, 0), respectively. Libration
points, also called Lagrangian points, are the five equilibrium points of the CR3BP depicted
in Fig. 2.



Figure 1. The CR3BP in the synodic frame.

Figure 2. Equilibrium points of the CR3BP.

The differential equations describing the motion of the massless particle P are(8):

ẍ − 2ẏ = Ux

ÿ + 2ẋ = Uy

z̈ = Uz,

. . . (1)

where the gravitational potential U can be written as:

U(x, y, z) = x2 + y2

2
+ 1 − μ

r1
+ μ

r2
+ μ(1 − μ)

2
. . . (2)

Ux, Uy and Uz are the partial derivatives of U with respect to x, y and z, respectively, and
r1 = √

(x + μ)2 + y2 + z2, r2 = √
(x − 1 + μ)2 + y2 + z2.

2.2 The Ephemeris model
The Ephemeris model describes the motion of a massless body P under the gravitational field
generated by N − 1 massive primaries. The absolute state of the primaries is given by the
ephemeris of the precise positions and velocities of the bodies over time in the Earth-centered
inertial frame J2000. This frame is defined with respect to the Earth’s mean equator and
equinox at 12:00 TT on 1 January 2000. Each primary is described by its standard gravita-



Table 1
Gravitational parameters(10)

Primary µ (km3/s2)

Earth 3.9860043623 × 105

Moon 4.902800076 × 103

Sun 1.32712440040944 × 1011

tional parameter μi and its absolute position vector Xi with respect to the Earth. The first
primary, described by μ1, is the Earth. This model is often referred to as the Restricted
Geocentric Solar System N-Body Problem.

The second-order differential equation describing the evolution of the position vector X(t)
of the massless particle P relative to the position of the first primary, the Earth, in the J2000
frame is(9):

Ẍ = −μ1
X

||X||3 −
N−1∑
i=2

μi

(
X − Xi

||X − Xi||3 + Xi

||Xi||3
)

, . . . (3)

where μi is the standard gravitational parameter of the i-th primary and Xi is the position
vector of the i-th primary.

The formulation can be modified to take into account additional perturbations, such as the
solar radiation pressure or non-uniformities in gravity fields of the primaries. This work will
consider a purely Newtonian force model that includes the influence of the Moon, Earth and
Sun modelled as point masses using the gravitational parameters shown in Table 1. The states
of the primaries are extracted from the DE421(10) Ephemeris of the Jet Propulsion Laboratory
(JPL), embedded in the SPICE Toolkit.

2.3 NRHOs in the Ephemeris
NRHOs are three-dimensional, periodic orbits of the CR3BP that are a subset of Halo
orbits(11,12). They are characterised by a close perilune passage above one of the Lunar poles
and owe their name to their elongated shape (an example is depicted in Fig. 3). They can be
identified by their out-of-plane elongation Az, similarly to other Halo orbits, or more conve-
niently by their perilune radius rp with respect to the center of the Moon. It is useful at this
stage to define a parametrisation for the location of an object on its reference NRHO orbit.
A common choice for a CR3BP NRHO is the θ parameter defined as a fraction of the orbit’s
period and converted to [0, 2π[. Such parametrisation can be interpreted as a ‘mean anomaly’
in the (O, y, z) plane, as shown in Fig. 4. For an Ephemeris NRHO, a similar anomaly can
be defined for each revolution of the NRHO as a fraction of the time between the two per-
ilune crossings defining that revolution. Not all locations along the NRHO are suited for close
proximity manoeuvers. The perilune region is extremely sensitive to perturbations; impacts
of errors and dispersion will therefore be greater(6,7).

This paper will consider exclusively Southern NRHOs about the second Earth-Moon
Lagrangian point EML-2 (low-perilune crossing at the North Pole, apolune at the South Pole).
Perfectly periodic in the CR3BP, NRHOs loose their periodicity in higher fidelity models.
It is possible, however, with regular stationkeeping, to maintain quasi-stable, quasi-periodic
motion.



Figure 3. EML2 Southern NRHO with rp = 5,930km

Figure 4. Projection in the (z,y) plane and zoom in the perilune region.

Several steps of corrections are required to efficiently generate long-term NRHO-like orbits
in the Ephemeris model:

1. Generation of the reference NRHO in the CR3BP
Usual methods, such as the one chosen in this work, require differentially correcting
semi-analytical expansions of solutions obtained via the Lindstedt-Poincaré method(13)

to close the orbit by manipulating its perilune state properties. This is further simplified
by symmetry properties of Halo orbits that impose perilune and apoapsis states with
ẋ = ż = 0 at the (O, x, z) plane crossing. The CR3BP reference orbit provides a good
initial guess for a correction procedure in the Ephemeris(14,15).

2. First-level correction of the CR3BP: initial guess in the Ephemeris
Firstly, the reference CR3BP NRHO is sampled and directly transitioned to the
Ephemeris model. The sampling is performed regularly (at fractions of the orbital
period) along the orbit using six patch points. This transition is performed by dimen-
sioning the positions of the state vector by the instantaneous value of the Earth-Moon
distance, obtained from the Ephemeris, and dimensioning the velocity components of
the state vector by the mean norm of the angular velocity vector over one synodic cycle.



Figure 5. EML2 Southern NRHO with rp = 5,930km, from multiple-shooting correction, after ∼100 days.

A forward-propagation multiple-shooting correction scheme is then applied to the first
guess generated by the sampling and transition of the CR3BP reference. The state
components and epochs of the patch points, other than the initial perilune crossing,
are control variables of the correction process. In order to ensure time continuity of
the converged solution, stringent epoch continuity constraints must be enforced(9). The
correction is performed in the J2000 frame with a threshold of ε = 10−6 for non-
dimensional state discontinuties at the patch points (∼ 400m in position and 1mm/s
in velocity).
Orbits obtained after this first-level correction are stable for ∼ 100 days, after which
the cumulative patch discontinuities inherent to the multiple-shooting process cause the
solution to diverge as showcased in Fig. 5. A second layer of correction is required to
improve the stability of the solution and consequently enable long-term propagation.

3. Second-level correction: adaptive receding-horizon
The result from the multiple-shooting correction is used as a first guess for a receding-
horizon procedure. The method relies on enforcing the symmetry properties of NRHOs:
ẋ = 0 in the (O, x, y, z) synodic frame at each perilune and apolune crossing. The cor-
rection is performed in a pulsating (O, x′, y′, z′) reference frame that can locally be
compared to the synodic frame (it is locally defined as the synodic frame at that
epoch; the rotation is such that the primaries will always be aligned with the x-axis
of such frame). By enforcing ẋ′ = 0 at selected perilune crossings, one ensures that its
out-of-plane velocity component remains under control.
The initial guess is propagated forward in time from its initial x′

p,0 perilune crossing to
a further perilune crossing x′

p,k, a number NLH of revolutions downstream. The velocity

states (ẋ′
p,0, ẏ′

p,0, ż′
p,0) are control variables of a single-shooting correction procedure

targeting ẋ′
p,k = 0. The orbit obtained is quasi-stable for NLH revolutions. The state is

propagated for a single revolution from x′
p,0 to x′

p,1, and the procedure is repeated until
stability is guaranteed for the desired amount of revolutions. This process is illustrated
in Fig. 6.

This work proposes a novel implementation of an adaptive NLH parameter within the
receding-horizon procedure. Empiric data from multiple runs of fixed-parameter receding-
horizon procedures applied to Halo orbits showed that values in the 6 < NLH < 10 range



Figure 6. Receding-horizon correction procedure for an NRHO with an NLH-revolutions horizon.

Figure 7. EML2 Southern NRHO with rp = 5,930km, with receding-horizon correction, 500 revolutions.

offered satisfying results but were highly dependent on the orbit considered and the Sun-
Earth-Moon configuration. The NLH parameter can be dynamically selected at each correction
iteration by looking at the error projection after the long-horizon propagation and increased
or decreased accordingly. One must note, however, that increasing the parameter can lead
to higher difficulty to converge because the orbit propagated from the last perilune step is
guaranteed quasi-stable only for a number of revolutions inferior to the newly tuned NLH .
This phenomena is observed in a specific instance: when NLH approaches the critical value
corresponding to NLH · T ∼ 100 days, usually for ‘worst case scenarii’ of the Earth-Sun-
Moon configuration. In this case, backtracking to previous iteration steps with softening of
the increase of the receding-horizon parameters restores proper convergence.

This choice of an adaptive receding horizon-parameter leads to both lower computa-
tional strain and station-keeping budgets for orbit maintenance. With this procedure, the
maintenance budget for a 500-revolution NRHO orbit with rp = 5, 930km (depicted in
Fig. 7) is equal to 61.729mm/s with maximum manoeuver amplitude of 0.518mm/s, which
represents a slight improvement with respect to previous implementations found in the
literature(3).



3.0 NATURAL DRIFT FAR RENDEZVOUS
As an extension of successful rendezvous operations performed in Low Earth Orbit, it is
possible to identify three successive phases in rendezvous operations: the transfer phase, the
far rendezvous and the close rendezvous. This work focuses on the far rendezvous operations
taking place after the spacecraft has been injected into a proper phasing orbit. The term chaser
refers to the spacecraft performing the manoeuvers to reach the target orbiting infrastructure,
which was placed on a Southern NRHO about EML2. This section details how to use the
natural drift of Ephemeris NRHOs with respect to their reference in the CR3BP to achieve
natural far RVD.

3.1 Framework
NRHOs are no longer periodic when translated into the Ephemeris model: both chaser and
orbit NRHOs present a significant displacement, or drift, with respect to their CR3BP ref-
erence in the pulsating frame. The overlapping of chaser and target drifts can be exploited
to achieve quasi-free natural far RVD. The scope of this research is to investigate, given a
prescribed target NRHO, the perilune radius of nearby chaser NRHOs that allow for natural
far RVD. The aim is for the chaser to reach a region of interest in the vicinity of the target
from where to initiate relative navigation and close-proximity operations. Such a region will
be referred to as the approach region, contained within a distance 75km < d < 100km around
the target. In the meanwhile, the chaser should avoid entering the safety region, defined within
a radius of 50km around the target.

In order to classify and select chaser and target orbits according to their natural RVD capa-
bilities, this work defines an opportunity window as a portion of the trajectory during which
the chaser is within the approach region about the target, outside of the safety region, and sat-
isfies the anomaly constraint π

2 < θ < 3π
2 in order to initiate close-approach in near-apolune

regions. Within an opportunity window, the chaser is therefore at a distance d with respect to
the target satisfying 75km < d < 100km.

The drift of an orbit can be quantified by introducing an amplitude Ad of the drift, in
adimensional units:

Ad = max
θ∈[0, 2π [

‖ X̃(θ ) − x(θ ) ‖, . . . (4)

where x(θ ) is the adimensional positional vector of the reference CR3BP NRHO orbit in the
synodic frame, at anomaly θ , and X̃(θ ) is the adimensional positional vector of the Ephemeris
NRHO orbit in the pulsating frame at anomaly θ .

3.2 Candidate search and selection criteria
Different methodologies were used to search for chaser orbit candidates with drifts satisfying
the constraints stated in Section 3.1 depending on the precision required and the integra-
tion time. As a starting point, an initial set of different candidate orbits are corrected in the
Ephemeris model and propagated with rp,chaser within a narrow interval [rp,min, rp,max] contain-
ing rp,target. For each propagated chaser orbit, one looks for its number of potential opportunity
windows.

From the definition of the amplitude of the drift introduced in Equation 4, a necessary (but
not sufficient) condition for a a chaser orbit to offer opportunity windows with respect to the
target orbit is:

Ad,chaser + Ad,target ≥ max
θ∈[0, 2π [

‖ xchaser(θ ) − xtarget(θ ) ‖, . . . (5)



Figure 8. Example of a local plane search procedure for quick feasability assessment.

where Ad,chaser and Ad,target are the amplitudes of the drifts of chaser and target orbit, respec-
tively; xchaser(θ ) and xtarget(θ ) are the adimensional positional vectors of the reference CR3BP
NRHO chaser and target orbits in the synodic frame at anomaly θ . This necessary condition
helps when defining a first search interval for rp,chaser.

After this initial selection, the first way to find most of the opportunity windows with little
computational effort is to apply a local-plane crossing search procedure. For each point of the
propagated target orbit, a local plane is defined using its two nearest neighbours. If at some
point in the chaser orbit two consecutive states are found on different sides of the nearest local
plane of the target orbit, then a single distance check gives information on the dangerosity
or interest of the location. Figure 8 showcases such a search performed for a chaser orbit
with rp,chaser = 5, 530km, a target orbit with rp,target = 5, 930km and neighbours closer than
50km. This method should, however, only serve as a first level feasibility assessment. The
search method used to obtain the results presented in this paper uses near-neighbour search
implementations coupled with Delauney surface triangulation to refine the search.

In order to further differentiate and select chaser orbit candidates based on their ability to
perform natural far RVD with a target orbiting on a prescribed NRHO, a second selection
then occurs. Two supplemental criteria are proposed at this stage of the analysis. The first is
the duration of the opportunity windows offered by the candidate orbit. Opportunity windows
should be long enough to allow for proper assessment of relative dynamics, thruster and
sensor orientation and engagement in close proximity operations. The second criterion is the
recurrence of the opportunity windows, defined as the time the chaser has to wait in free
drift before another opportunity window is reached. Valuable candidates offer opportunity
windows with reasonable recurrence times so that in case of a no-go to engage in proximity
manoeuvers, the chaser safely drifts away from the target before reaching the next opportunity
window within a reasonable time span.

3.3 Safety analysis
The orbits selected for natural far RVD should also be analysed from a safety point of view.
Outside of opportunity windows, the presence of the chaser within the safety region defined



Figure 9. Modelling of an encounter in the approach region.

previously is unavoidable at certain occurrences, notably near the perilune. One must ensure
that such events do not present any major risk of collision. The analysis should also be con-
ducted within the approach region to ensure that the trajectory is passively safe. This work
uses estimation techniques commonly used for debris-avoidance analyses(16,17).

Chaser and target are both modelled as spherical objects of radii Rc and Rt, respectively.
Relative motion is fast enough to be considered linear, and positional noises are zero-mean,
Gaussian, uncorrelated. Positional errors of chaser and target are represented by error ellip-
soids. Because the uncertainties that define such ellipsoids are assumed to be uncorrelated,
co-variances can be summed to build a single combined co-variance ellipsoid centered on
the chaser(16). Collision occurs if the difference in position between chaser and target is
less than Rc + Rt. The modelling of an encounter within the approach region is shown
in Fig. 9.

Instead of using the full integral expression of the probability of collision Pc, this work
relies on an expression of a maximum probability of collision Pc,max

(16,17). For a given aspect
ratio AR ≥ 1 of the projected co-variance ellipsoid in the encounter plane and a given chaser-
target distance d, the maximum probability of collision is given by:

Pc,max =
(

α

1 + α

) (
1

1 + α

)α

, . . . (6)

where

α = (Rc + Rt)2AR

d2
. . . . (7)

This expression obviously represents an over estimation of the probability of collision
(roughly by two orders of magnitudes). It has both the drawback and benefit of being explic-
itly independent from the co-variance (the dependency is present implicitly in the definition
of the projected ellipsoid), and it gives us a useful representation of where the ‘wells’ for the
full probability of collision might be located with damped computational load.



Figure 10. Distribution of encounters in the approach region for different values of perilune radii of the
chaser orbit, after ten revolutions of a chaser orbit with rp,target = 5, 300km.

4.0 SIMULATIONS AND RESULTS

4.1 Study case
A target NRHO with rp,target = 5, 300km is considered. Such orbit has convenient accessibil-
ity constraints(3), low-instability properties and few eclipses due to its 4:1 resonance with the
synodic cycle. The chaser is located on an NRHO with varying perilune radius 4, 250km <

rp,chaser < 5, 900km. The reference epoch for orbit generation is set to 8 November 2025
23:22:07. Candidates are analysed for ten target orbit revolutions starting from the refer-
ence epoch. For all safety analyses purposes, two different types of error are considered for
position dispersion during the encounter: 3σ = 1km (small error) and 3σ = 10km (moder-
ate error). The chaser is modelled as a 10m radius sphere, and the target as a 110m sphere
(characteristic dimensions of ATV and ISS, respectively).

4.2 Natural far rendezvous
Figure 10 showcases the distribution of potential near-apolune and near-perilune encounters
within the approach region around the target, for varying values of the perilune radius of the
chaser reference NRHO, after ten revolutions of the target orbit. Near-apolune encounters
will be referred to as Rendezvous candidates and are the result of a first selection based on
the mean anomaly constraint defined in Section 3.1 and their presence within the approach
region.

No encounters happen within the approach region for orbits with rp,chaser < 4, 330km,
and these orbits can therefore be discarded. As rp,chaser tends towards rp,target, the number
of encounters exponentially grows. This exponential trend is more pronounced for near-
perilune encounters. The reasoning at this point is twofold: ensure that the selected chaser
orbit reference offers enough encounter opportunities near the apolune and avoid as much as
possible perilune encounters that may represent hazardous situations and cannot be selected
as RVD locations. For the study case presented in this work, the exponential growth of



perilune encounters skyrockets at rp,chaser � 5, 300km, and this value should therefore be
considered as an upper boundary for the rest of the analysis. No near-apolune encounters
occur for phasing orbits with rp < 4, 550km: this value represents a lower boundary for
chaser orbit perilune radius. The domain under consideration for the chaser orbit is therefore
4, 550km ≤ rp,chaser ≤ 5, 300km.

Within this new range, candidate orbits are further analysed and classified according to
the properties of their opportunity windows (duration and recurrence), as introduced in
Section 3.2. Results for the test case of interest are showcased in Fig. 11, and four different
categories are observed based on the value of rp,chaser:

1. rp,chaser ≤ 4, 750km: No interesting windows: short durations (maximum of 30 minutes)
and a very long wait in between two windows.

2. 4, 750km < rp,chaser < 5, 000km: Within this range, with proper perilune phasing, one
can find opportunity windows lasting an average of one hour. However, recurrence is
low, and waiting times are long: 100 hours on average. Only one opportunity can be
reasonably exploited without considering re-phasing at the next perilune passage.

3. 5, 000km < rp,chaser < 5, 100km: Range best suited for cargo missions: windows last
between 1 and 2 hours with typical recurrence times of 23 to 72 hours.
Example: rp,chaser = 5, 080km provides 2 opportunity windows lasting 1.08 and
3.45 hours, respectively. The waiting time between both windows is 48 hours.

4. 5, 100km < rp,chaser < 5, 300km: Range best suited for manned missions: windows
between 1 and 6 hours, with possibility of recurrence times being less than a day.
Example: rp,chaser = 5, 230km provides two opportunity windows lasting 1.03 and
2.13 hours, respectively. The waiting time between both windows is about an hour.

Minimum time between RVD windows within the 5, 000 km < rp,chaser < 5, 230 km range
is presented in Fig. 11(b). It is important to note, especially for scenarios involving cargo
missions, that a re-phasing manoeuver can be performed at the next perilune encounter to
accommodate the drift of the orbit and prepare for another window. Because the receding-
horizon approach presented in this paper considers perilune maintenance manoeuvers,
different passages at the perilune tend to be very close to one another and consequently such
phasing manoeuvers have very low orders of magnitude – a few mm/s for the majority of
them.

The results presented in this section are sensitive to the choice of initial epoch for the gen-
eration of the Ephemeris NRHOs. Variations of the Earth-Moon distance in the Ephemeris
model have a predominant impact on the drift observed with respect to the CR3BP reference
orbits. By analysing opportunity windows during time spans superior to the Earth-Moon syn-
odic period, one can account for the variation of the Earth-Moon distance and ensure that
qualitatively the results will remain similar within one synodic month time frames. However,
in order to properly determine the values of rp,chaser corresponding to natural RVD oppor-
tunities with a new initial epoch, and in particular to account for the effect of the different
Sun phasing, one would need to perform the search again. The general behaviour observed
is that durations of opportunity windows tend to shrink when the Earth-Moon system orbits
further away from the Sun. This behaviour shall be further investigated and assessed in future
research. NRHO injection errors may also result in drift trajectories different from the nom-
inal ones presented in this test case. NRHO injection near the perilune is not recommended
in order to avoid large dispersion. If the injection happens in near-apolune regions, in case
of dispersion, trajectory correction manoeuvers can be performed at low-cost to re-inject into
the nominal trajectory(6,7).
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4.3 Safety analysis
Small state dispersion causes the target to not intersect with the chaser’s combined co-variance
ellipsoid in the encounter domain, resulting in a quasi-null probability of collision. Moderate
dispersion results in the Pc,max distribution are presented in Fig. 12. The value Pc,max = 6 · 10−4

is an absolute threshold that seems reasonable considering the over-estimation of the real
probability of collision: it represents a collision event occurring roughly every 450 years.
Moreover, some regions of interest to minimise Pc,max can be observed around 4, 750km <

rp,chaser < 4, 950km, rp,chaser � 5, 150km, and rp,chaser � 5, 250km. In such cases, the value of
Pc,max could therefore be considered as a preliminary safety criteria and contribute to the
chaser orbit selection.
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4.4 Transition to close-proximity operations
After entering the approach sphere, and in case of a ‘go’ decision, the chaser could engage
in relative navigation and start proximity manoeuvers (or ‘close rendezvous’(7)). This subject
has been the scope of previous work by the authors and is currently investigated. However, one
could also complement the natural drift approach with a more traditional trajectory design:
a series of impulsive manoeuvers within the approach region to further approach the target
and make the transition to close-rendezvous at a closer relative distance. Two scenarios were
considered for this transition:

� Direct transfer: Lambert’s arc in the CR3BP(18), at the end of the drift, targeting the target
in its reference NRHO. The CR3BP trajectory is then transitioned to the Ephemeris model
using a multiple-shooting procedure similar to the one described in Section 2.3.

� 3-burn low-energy trajectory: Exploiting the invariant manifolds of chaser and target
orbits with a Lambert’s arc to connect the manifold branches. The chaser travels along
the unstable manifold of its reference NRHO until it reaches the vicinity of a stable man-
ifold branch of the target orbit. The branches are patched using a Lambert’s arc in the
CR3BP. The trajectory is computed using a Genetic Algorithm for global optimum search,
later refined by a gradient-based search. The trajectory in the CR3BP is then transitioned
to the Ephemeris model and corrected using a multiple-shooting procedure similar to the
one described in Section 2.3.

The Lambert’s arc strategy requires a velocity budget between 1 and 20m/s for transfer
durations between two and four hours, depending on the location of the natural drift approach
zone (regions near the apolune require more �V , an order of magnitude more roughly).
The manifold-to-manifold methodology has more stringent constraints because the approach
region is quite close to the target. The optimal solution of such transfer tends towards the pure
Lambert’s arc solution with very marginal savings in terms of �V and slightly higher time
of flights (one to two hours, increases for near-apolune locations). One possible solution to
reduce the �V budget, at the expense of higher time of flight, is to change the definition of
the approach region for the drift and engage the manifold-to-manifold transfer earlier.

It is worth noting that most of the �V budget appears when transitioning the trajecto-
ries from the CR3BP to the Ephemeris. The optimisation method combining evolutionary
global search and gradient-based local search provides very energy-efficient results, which



are severely downgraded by the multiple-shooting procedure. This phenomenon is interpreted
to be a consequence of the drift of the trajectory with respect to its CR3BP counterpart that
is used for the trajectory computations. The choice of a new reference CR3BP NRHO at the
end of the drift could improve the first guess necessary for the transition procedure and there-
fore reduce the �V budget. How to select the new reference NRHO is an open question and
should be explored in future research.

5.0 CONCLUSION
This work has presented a novel strategy to design natural drift trajectories in service of far
rendezvous operations. The successive steps presented in this paper form a robust method-
ology to construct quasi-free transfers between NRHO-like orbits in the Ephemeris model
with different possibilities to engage the transition to close-proximity operations. Frequent
encounter opportunities are feasible, provided careful selection of the chaser orbit’s properties
with waiting times that can be suitable for both manned and cargo flights. A preliminary safety
analysis demonstrated that the risk of collision for such operations is very low and can be fur-
ther damped. Future research will be oriented towards direct transition to relative navigation
within the approach region, at the end of the drift, and the design of a Guidance, Navigation
and Control (GNC) system suited to these kinds of operations. The evolution of natural drift
trajectories in more perturbed models (Moon’s spherical harmonics, solar radiation pressure,
etc.) shall also be investigated.
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