HAL
open science

A global view of isotopic effects on ro-vibrational spectra of six-atomic molecules: a case study of eleven ethylene species

Dominika Viglaska-Aflalo, Michael M. Rey, Andrei Nikitin, Thibault Delahaye

- To cite this version:

Dominika Viglaska-Aflalo, Michael M. Rey, Andrei Nikitin, Thibault Delahaye. A global view of isotopic effects on ro-vibrational spectra of six-atomic molecules: a case study of eleven ethylene species. Physical Chemistry Chemical Physics, 2020, 22 (6), pp.3204-3216. 10.1039/c9cp06383h . hal-03034167

HAL Id: hal-03034167

https://hal.science/hal-03034167

Submitted on 8 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Global view on isotopic effects in ro-vibrational spectra of six-atomic molecules: case study of eleven ethylene species

Dominika Viglaska-Aflalo, ${ }^{* a}$ Michaël Rey, ${ }^{a}$ Andrei Nikitin, ${ }^{b, c}$ and Thibault Delahaye ${ }^{d}$

In this work, we present a global view of the impact of isotopic substitutions on eleven ethylene isotopologues spectra obtained from variational calculations using accurate $a b$ initio potential energy and dipole moment surfaces. That may lead to some important changes in molecular spectra due to symmetry breaking effects lowering the initial $D_{2 h}$ symmetry of ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$ (\equiv $\left.{ }^{12} \mathrm{CH}_{2}{ }^{12} \mathrm{CH}_{2}\right)$ to $C_{2 v}, C_{2 h}$ or C_{s}. For the very first time, we report ab initio predictions for ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}\left(\equiv{ }^{12} \mathrm{CD}_{2}{ }^{12} \mathrm{CD}_{2}\right)$ and three C_{s} species : ${ }^{12} \mathrm{CHD}^{13} \mathrm{CH}_{2},{ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2}$ and ${ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}\left(\equiv{ }^{12} \mathrm{CD}_{2}{ }^{12} \mathrm{CHD}\right)$. To this end, we have considered the normal-mode approach based on our reduced Eckart-Watson Hamiltonian combined with ethylene ab initio surfaces. This work will contribute to the complete theoretical studies of the deuterated and ${ }^{13} \mathrm{C}$-enriched ethylene isotopologues. A total of 1252 vibrational levels is computed and all the corresponding transitions in the energy range $\leq 3100 \mathrm{~cm}^{-1}$ are predicted and compared to 151 bands assigned from experimental spectra analyses.

[^0]
1 Introduction

Isotopic substitution may considerably affect the molecular properties related to absorption or emission of radiation. In the BornOppenheimer approximation, an isotopic substitution does not alter the nuclear potential energy surface obtained by solving the electronic Schrödinger equation on a grid of nuclear geometries. Only the nuclear kinetic energy operator is changed. Because of symmetry breaking effects and different selection rules, some rovibrational structures in molecular spectra may also substantially change.
Hydrocarbon molecules are of particular importance due to their atmospheric, industrial, environmental and astrophysical applications ${ }^{1-3}$. Isotopically substituted molecules belonging to the family of small hydrocarbons were detected in several planetary atmospheres ${ }^{4-13}$. Note that the isotopologues considered for compounds in the terrestrial atmosphere ${ }^{14}$ include D, T, ${ }^{13} \mathrm{C}$ and ${ }^{14} \mathrm{C}$. Highly accurate and precise measurements of the isotopic composition of these molecules are now possible thanks to advances in mass and infrared spectrometry provided either by experiments on spatial missions or by laboratory measurements. These latters allow to determine accurately all isotopic ratios and are thus crucial for understanding the composition of different atmospheres (e.g. Earth, Venus, Mars, Jupiter, Saturn, Uranus, and Titan). Moreover, they provide precious information about the evolution of planets, their origin and the formation of our solar system ${ }^{15,16}$. For astrophysical applications, deuterated and ${ }^{13} \mathrm{C}$ enriched isotopologues are of particular importance because they allow to measure the D / H or ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ ratio in the interstellar environment ${ }^{17}$. Consequently, its determination permits to explain the origin of several atmospheric compounds which themselves may play an important role in determining the overall thermal and chemical balance of the atmosphere ${ }^{18,19}$. The measurements of the observed fractionation issues from the chemical, physical and biological processes should be accomplished by theoretical, fundamental studies which will contribute to a better interpretation, analysis and understanding in a variety of environmental effects. Theoretical spectroscopy aims to provide accurate, reliable and complete theoretical line lists including a large amount of molecules studied over wide temperature and/or wavenumber ranges.
Ethylene possesses a rich variety of isotopologues (see Tab. 1 for different nomenclatures used in the literature). By

Table 1 Different nomenclatures used in the literature for ethylene isotopologues

Usual notation	Chemical formula
${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$	${ }^{12} \mathrm{CH}_{2}{ }^{12} \mathrm{CH}_{2}$
${ }^{12} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{D}$	${ }^{12} \mathrm{CHD}^{12} \mathrm{CH}_{2}$
cis- $-{ }^{12} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{D}_{2}$	cis- ${ }^{12} \mathrm{CHD}^{12} \mathrm{CHD}$
trans- ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{D}_{2}$	trans- $-{ }^{12} \mathrm{CHD}^{12} \mathrm{CHD}$
as- $-{ }^{12} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{D}_{2}$	${ }^{12} \mathrm{CH}_{2}{ }^{12} \mathrm{CD}_{2}$
${ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$	${ }^{12} \mathrm{CD}_{2}{ }^{12} \mathrm{CHD}^{2}$
${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$	${ }^{12} \mathrm{CD}_{2}{ }^{12} \mathrm{CD}_{2}$
${ }^{12} \mathrm{C}^{13} \mathrm{CH}_{4}$	${ }^{12} \mathrm{CH}_{2}{ }^{13} \mathrm{CH}_{2}$
${ }^{13} \mathrm{C}_{2} \mathrm{H}_{4}$	${ }^{12} \mathrm{CHD}_{2} \mathrm{CH}_{2}$
-	${ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2}$
-	

comparison with methane, the deuterated substitutions produce four species, namely $\mathrm{CH}_{3} \mathrm{D}, \mathrm{CH}_{2} \mathrm{D}_{2}, \mathrm{CHD}_{3}$ and CD_{4} belonging to three point groups ${ }^{20-26}\left(T_{d}, C_{3 v}\right.$ and $C_{2 v}$), while the ${ }^{12} \mathrm{C} \rightarrow{ }^{13} \mathrm{C}$ substitution does not change symmetry. In case of ethylene, both $\mathrm{H} \rightarrow \mathrm{D}$ and ${ }^{12} \mathrm{C} \rightarrow{ }^{13} \mathrm{C}$ substitutions produce a large variety of species that may lower symmetry and consequently strongly affect the overall molecular patterns.

The purpose of this paper is (i) to give an overview of the existing experimental and theoretical studies concerning ethylene isotopologues, (ii) to highlight the consequences of the $\mathrm{H} \rightarrow \mathrm{D}$ and/or ${ }^{12} \mathrm{C} \rightarrow{ }^{13} \mathrm{C}$ substitutions on the reorganization of the vibrational energy pattern and on the molecular spectra in ethylene molecule as well as (iii) to complete our previous studies ${ }^{27,28}$ by providing first variationally predicted intensities for four additional ethylene isotopologues : ${ }^{12} \mathrm{CHD}^{13} \mathrm{CH}_{2},{ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2}$, ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$ and ${ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$. By considering our previously reported studies, a total of 11 isotopic species belonging to $D_{2 h}, C_{2 h}, C_{2 v}$ and C_{s} symmetry groups is now available and freely accessible via the TheoReTS information system ${ }^{29}$.

2 Overview of the isotopic dependence and spectral density of bands for ethylene isotopologues

The most extended theoretical spectra predictions for the main ethylene isotopologue ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$ using molecular PES ${ }^{30}$ and DMS ${ }^{31}$ have been published in Ref. ${ }^{32}$ (see also Ref. ${ }^{33}$ as part of the Exomol project) and included in the TheoReTS information system ${ }^{29}$. A detailed overview of all existing experimental band centers and line position analyses for 8 isotopologues were provided in our previous works ${ }^{27,28}$ where the corresponding line lists were provided. For ${ }^{13} \mathrm{C}_{2} \mathrm{H}_{4},{ }^{13} \mathrm{C}^{12} \mathrm{CH}_{4},{ }^{12} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{D}$ and for the three bi-deuterated cis, trans, as $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{D}_{2}$, rovibrational infrared spectra of these molecules were the subject of several investigations these past few decades both at low and high resolution. The Fourier transform infrared (FTIR) spectrometers permitted to record high-resolution spectra (with the uncertainty going up to $0.00096 \mathrm{~cm}^{-1}$) for many ethylene isotopic species (see Refs. ${ }^{34-43}$). Because systematic "line-by-line" assignments remain quite tedious, the spectra of the minor ethylene isotopologues are much less studied than those of ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$. As a direct consequence, most of the line positions and line intensities are clearly missing in available spectroscopic databases ${ }^{44-46}$. Fig. 1 shows a comparison between the observed (only 151 available) and our variationally predicted vibrational (1252 calculated energy levels) band centers for 11 isotopologues up to $3100 \mathrm{~cm}^{-1}$. For the very first time, we provide first-principles "global" calculations for ${ }^{12} \mathrm{CHD}^{13} \mathrm{CH}_{2},{ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2},{ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$ and ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$. To our knowledge, there are no published experimental measurements for ${ }^{12} \mathrm{CHD}^{13} \mathrm{CH}_{2}$ and ${ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2}$. A limited number of publications were devoted to the infrared spectra of ${ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$ and ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$. The complete energy level redistribution under $\mathrm{H} \rightarrow \mathrm{D}$ substitution is clearly seen in the lower panel of Fig. 1. According to the type of substitution, the density of states will differ significantly (e.g. 213 vibrational states for ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$ against only 73 states for ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$ in the same spectral range $0-3100 \mathrm{~cm}^{-1}$).
${ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$: First measurements and assignments of the 12 fundamental vibrational modes of ${ }^{12} \mathrm{CD}_{2}^{12} \mathrm{CHD}$ were carried out by Courtoy et al. ${ }^{47,48}$ in the 50s and later on by Duncan et al. ${ }^{49}$ at low resolution. In 1993, Duncan et al. ${ }^{50}$ extended their work and assigned 33 vibrational transitions at a resolution of about $0.5 \mathrm{~cm}^{-1}$. Martin et al. ${ }^{51}$ have calculated the ab initio fundamental frequencies using augmented coupled cluster methods. The first high-resolution infrared spectra of v_{8} band was carried out by Tan et al. ${ }^{52,53}$, initially at a resolution of $0.0063 \mathrm{~cm}^{-1}$, which was improved reaching up to a resolution of 0.00096 cm^{-1} using the high-resolution synchrotron FTIR spectroscopy ${ }^{34}$. Three rotational constants, a quartic centrifugal constants and the value of the band center for the v_{6} band were also determined. Recently, Ng et al. ${ }^{54}$ carried out the first analysis of $2 v_{8}$ and its Coriolis interaction with the $\nu_{3}+v_{4}$.
${ }^{12} C_{2} D_{4}$: The first infrared spectra of some fundamental ($v_{1}, v_{5}, v_{7}, v_{9}, v_{11}, v_{12}$) and combination ($v_{2}+v_{9}, v_{5}+v_{11}, v_{1}+v_{11}$) bands of ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$ were recorded and analyzed by Harper, Morrison, and Duncan ${ }^{55-59}$ at a resolution of $0.02 \mathrm{~cm}^{-1}$. A complete analysis of the Coriolis interacting tetrad of four fundamental bands ($v_{4}, v_{7}, v_{10}, v_{12}$) was obtained by Mose et al. ${ }^{60}$ The Raman spectrum of v_{3} and v_{6} bands were further investigated in Ref. ${ }^{61}$ The ro-vibrational analysis of the v_{9}, v_{11} and v_{12} bands were carried out by Tan et al. at different resolutions (with uncertainty varying from 0.04 to $0.00096 \mathrm{~cm}^{-1}$, see Refs. ${ }^{62-65,65}$).

Table 2 Small sample of variationally predicted vibrational band centers (in cm^{-1}) of $a s-{ }^{12} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{D}_{2}$ based on the isotopic shifts from the "mother" molecule ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$ denoted by VIS ${ }^{1}$ and PMM ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{3}$ D denoted by VIS ${ }^{2}$. The Hamiltonian model $H(10-6)$ and $F(10)$ basis set were considered.

Band (Sym)	VIS 1	VIS 2	Pred 1	Pred 2	Obs-Pred 1	Obs-Pred 2
$v_{10}\left(B_{3 u}\right)$	141.36	47.55	684.57	684.59	0.07	0.05
$v_{8}\left(B_{3 g}\right)$	-3.53	0.12	943.39	943.39	0.03	0.03
$v_{7}\left(B_{2 u}\right)$	198.28	55.85	750.49	750.63	0.08	-0.06
$v_{6}\left(B_{2 g}\right)$	85.14	-16.25	1140.27	1141.52	1.99	0.75
$v_{12}\left(B_{1 u}\right)$	59.10	17.15	1383.34	1383.61	0.60	0.33
$v_{2}\left(A_{g}\right)$	40.57	19.51	1585.60	1585.99	0.45	0.06

Table 3 Small sample of theoretically predicted vibrational band centers (in cm^{-1}) of ${ }^{12} \mathrm{CHD}^{13} \mathrm{CH}_{2}$ and ${ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2}$ based on the isotopic shifts from the "mother" ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$ molecule denoted by VIS ${ }^{1}$ and the PMM ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{3}$ D denoted by VIS ${ }^{2}$. The observed band centers are completely lacking in the literature.

	${ }^{12} \mathrm{CHD}^{13} \mathrm{CH}_{2}$					${ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2}$			
Band $($ Sym $)$	VIS 1	VIS 2	Pred 1	Pred 2	VIS 1	VIS 2	Pred 1	Pred 2	
$v_{10}\left(B_{3 u}\right)$	93.972	0.171	731.954	731.974	95.720	1.918	730.207	730.226	
$v_{8}\left(B_{3 g}\right)$	5.125	8.768	934.735	934.735	-	0.690	942.813	942.813	
					2.953				
$v_{7}\left(B_{2 u}\right)$	142.669	0.236	806.102	806.237	150.246	7.813	798.525	798.659	
$v_{4}\left(A_{u}\right)$	25.447	-	1000.142	1000.121	26.999	1.471	998.590	998.569	
		0.081							
$v_{3}\left(A_{g}\right)$	61.769	6.871	1281.771	1281.918	58.370	3.471	1285.170	1285.317	
$v_{12}\left(B_{1 u}\right)$	42.025	0.075	1400.418	1400.688	52.208	10.258	1390.235	1390.505	

3 Generalized method of vibrational isotopic shifts applied to all ethylene isotopologues

3.1 Vibrational isotopic shift procedure

In spectroscopy, most of the studies are generally devoted to main isotopologue (the most abundant species) that will be denoted as the "mother molecule" in the following. Contrary to the minor isotopic species, experimental and theoretical investigations (determination of the band centers, assignments, etc.) are much more important for the mother molecules for which results are regularly improved and updated in the well-known spectroscopic databases. However, the increasing number of experimental studies devoted to ethylene isotopologues makes necessary to have accurate theoretical predictions. In turn, these latter could be improved from experimentally-determined band centers using the VSS procedure ${ }^{66}$. So, in order to have access to a large amount of experimental informations, we have generalized in this work our previously reported vibrational isotopic shifts (VIS) method which was applied with success to methane ${ }^{24,25}$, phosphine ${ }^{67}$ and other ethylene isotopologues ${ }^{27,28}$. So far, the VIS method was based on the propagation of information from the mother (major species, called IsoA) molecule to a daughter (minor species, called IsoB) molecule. Typically, VIS was defined as the energy difference VIS=Calc(IsoA)-Calc(IsoB). Accurate knowledge of this VIS will help assigning and modelling more easily unknown ethylene bands. From the VIS and the experimental band centers of IsoA (if available), we can access to the "experimentally" lacking information for IsoB by applying the relation

$$
\begin{equation*}
\operatorname{Pred}(\mathrm{IsoB})=\mathrm{Obs}(\mathrm{IsoA})-\mathrm{VIS} \tag{1}
\end{equation*}
$$

where Pred(IsoB) can be considered as an "empirical observed value" for IsoB. This method is quite general and could be applied, in theory, to any isotopic substitution. However, for very pronounced isotopic changes due to one or more $\mathrm{H} \rightarrow \mathrm{D}$ substitutions, the determination of VIS may be less accurate. This can be simply explained by the fact that resonance interaction schemes for IsoA and IsoB may differ making convergence of variational calculations quite different. To overcome this problem, we propose to generalize the VIS method by considering, instead of IsoA, a molecular species IsoA' for which (i) the vibrational pattern is closer to that of IsoB and (ii) experimental data is available. We will denote IsoA' as a "pseudo mother" molecule (PMM) in the following. In this case, the isotopic vibrational shifts IsoA' \leftrightarrow IsoB will be determined with better accuracy than for IsoA \leftrightarrow IsoB (see Fig. 2). By this procedure, we have thus much more possibilities for propagating information to ensure accurate and consistent VIS. In turn, the same number of vibrational functions and a similar Hamiltonian model both for IsoA' and IsoB species have to be considered. In other words, variational calculations must be performed in the same point groups both for IsoA' and IsoB. In this context, the substitution of four H atoms by D or ${ }^{12} \mathrm{C}$ by ${ }^{13} \mathrm{C}$ does not alter the initial $D_{2 h}$ symmetry, while partial $\mathrm{H} \rightarrow \mathrm{D}$ and/or ${ }^{12} \mathrm{C} \rightarrow{ }^{13} \mathrm{C}$ substitutions will lead to three possible ethylene symmetry configurations, namely $C_{2 h}, C_{2 v}$ and C_{s}. Here, all calculations have been carried out in the lowest C_{s} symmetry using the Hamiltonian model $H(10-6)$ (see Refs. ${ }^{27,68}$ for the definition of the reduced model $H(m-n)$). To illustrate the method, Tab. 2 provides a small sample of variationally predicted vibrational band centers (in cm^{-1}) for $a s-{ }^{12} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{D}_{2}$ ($\equiv \mathrm{IsoB}$) based on the isotopic shifts. Rather than using ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$ (\equiv IsoA), we preferred to consider ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{D}$ (\equiv IsoA') which is closer to $a s-{ }^{12} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{D}_{2}$.

Table 2 corroborates the fact that starting from a PMM slightly improves accuracy of the predicted band centers for as $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{D}_{2}$ (see Obs-Pred ${ }^{1}$ and Obs-Pred ${ }^{2}$). Tab. 3 provides a small sample of vibrational band centers for ${ }^{12} \mathrm{CHD}^{13} \mathrm{CH}_{2}$

Table 4 Theoretically predicted vibrational band centers (in cm^{-1}) of ${ }^{12} \mathrm{C}^{13} \mathrm{CH}_{4}$ based on the isotopic shifts considering as the "mother" molecule ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4},{ }^{13} \mathrm{C}_{2} \mathrm{H}_{4}$ and ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{D}$ denoted respectively as ${ }^{1,2,3}$. The Hamiltonian model $H(10-6)$ and $F(10)$ basis set were considered.

Band (Sym)	VIS ${ }^{1}$	VIS ${ }^{2}$	VIS ${ }^{3}$	Pred ${ }^{1}$	Pred ${ }^{2}$	Pred ${ }^{3}$	Obs-Pred ${ }^{1}$	Obs-Pred ${ }^{2}$	Obs-Pred ${ }^{3}$
$v_{10}\left(B_{3 u}\right)$	0.52	-0.49	-93.28	825.407	825.405	825.426	-0.001	0.001	-0.020
$v_{8}\left(B_{3 g}\right)$	7.66	-5.33	11.30	932.199		932.199	-0.004		-0.004
$v_{7}\left(B_{2 u}\right)$	1.33	-3.67	-141.10	947.442	947.437	947.576	0.003	0.008	-0.131
$v_{4}\left(A_{u}\right)$	-0.11	0.11	-25.63	1025.694	1025.698	1025.673	0.003	0.00004	0.024
$v_{6}\left(B_{2 g}\right)$	8.76	-8.84	-92.63	1216.654		1217.903	-1.654		-2.903
$v_{3}\left(A_{g}\right)$	6.66	-7.52	-48.24	1336.883		1337.030	-0.044		-0.192
$v_{12}\left(B_{1 u}\right)$	3.09	-2.70	-38.86	1439.354	1439.355	1439.624	-0.008	-0.009	-0.278
$v_{2}\left(A_{g}\right)$	19.91	-20.67	-1.15	1606.265		1606.654	-0.171		-0.559
$2 v_{10}\left(A_{g}\right)$	2.49	-1.69	-193.48	1659.710			0.196		
$v_{8}+v_{10}\left(A_{u}\right)$	7.84	-6.13	-81.25	1758.825	1758.816				
$v_{7}+v_{10}\left(B_{1 g}\right)$	2.17	-3.84	-237.66	1778.837					
$v_{4}+v_{10}\left(B_{3 g}\right)$	0.46	-0.43	-119.00	1853.502					
$2 v_{8}\left(A_{g}\right)$	15.54	-10.23	22.31	1865.358					
$v_{7}+v_{8}\left(B_{1 u}\right)$	8.31	-9.24	-130.94	1880.670	1880.665				
$v_{4}+v_{8}\left(B_{3 u}\right)$	7.68	-5.04	-12.62	1950.607	1950.618				
$v_{4}+v_{7}\left(B_{2 g}\right)$	1.05	-3.69	-159.74	1964.394					
$v_{6}+v_{7}\left(A_{u}\right)$	9.78	-12.77	-236.31	2168.227					
$v_{4}+v_{6}\left(B_{2 u}\right)$	8.66	-8.69	-118.44	2244.146					
$v_{3}+v_{7}\left(B_{2 u}\right)$	8.10	-10.96	-187.35	2283.399					
$3 v_{10}\left(B_{3 u}\right)$	3.02	-2.40	-298.16	2501.262					
$v_{2}+v_{7}\left(B_{2 u}\right)$	22.19	-24.56	-140.13	2549.585					
$v_{7}+2 v_{10}\left(B_{2 u}\right)$	3.48	-4.511	-340.52	2619.373					
$v_{2}+v_{4}\left(A_{u}\right)$	19.95	-20.43	-27.40	2624.880					
$2 v_{3}\left(A_{g}\right)$	13.75	-15.53	-98.92	2671.552					
$v_{11}\left(B_{1 u}\right)$	7.89	-10.79	-707.25	2980.741	2980.393				
$v_{1}\left(A_{g}\right)$	5.74	-5.52	11.87	3016.114					
$v_{5}\left(B_{2 g}\right)$	8.44	-5.63	-12.66	3073.918					
$v_{9}\left(B_{3 u}\right)$	5.04	-5.90	-3.98	3099.830					

and ${ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2}$ based on the isotopic shifts using the observed band centers from ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$ and ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{D}$. We do not provide comparisons with observed band centers because they are completely lacking in the literature. In Tab. 4, the VIS method is applied to the ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{4}$ isotopologue. To this end, we have considered three PMMs, namely ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4},{ }^{13} \mathrm{C}_{2} \mathrm{H}_{4}$ and ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{D}$, for which experimental data are available. VIS ${ }^{1}$, VIS 2 and VIS 3 correspond respectively to the three VIS obtained with respect to ${ }^{12} \mathrm{C}^{13} \mathrm{CH}_{4}$. We can clearly see that the precision of the corresponding Pred^{1} and Pred^{2} (see Eq. 1) is quite similar while Pred 3 leads to larger Obs-Pred ${ }^{3}$ errors. It proves that this method is not suited for isotopic species whose geometrical structure considerably differs from the "mother" molecule. However, there are others factors to consider (assuming that all calculations are well-converged) in order to make this method efficient: the accuracy of experimentally determined band centers, the quality of the potential energy surface used in variational calculations, the vibrational states in strong resonance, etc. This last factor may have a significant impact on the precision of the isotopic shift method. As an illustration, let us consider the band v_{11} of ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{4}$ (see Tab. 4) whose the first two terms in the eigenfunction decomposition are $0.794\left|v_{11}=1\right\rangle+0.486\left|v_{2}=1, v_{12}=1\right\rangle+\cdots$. The resonance of the vibrational state $\left|v_{11}=1\right\rangle$ with $\left|v_{2}=1, v_{12}=1\right\rangle$ makes the error between Pred ${ }^{1}$ and Pred ${ }^{2}$ more pronounced, that is $0.35 \mathrm{~cm}^{-1}$ against $0.001-0.01 \mathrm{~cm}^{-1}$ for other vibrational "isolated" bands. Unless a specific treatment (e.g. use of effective Hamiltonian), such accidental resonances are generally quite difficult to control for such 6 -atomic systems and may have an impact both on the convergence of the energy levels and on intensity borrowing. However, though less accurate, the isotopic shifts remain quite relevant to refine band centers. In Tab. 5, we aim to provide the most accurate values for a sample of 25 band centers corresponding to 11 ethylene isotopologues resulting either from VIS (with symbols ${ }^{\dagger},{ }^{M}$ or ${ }^{*}$), direct variational calculations (denoted as ${ }^{V}$) or from analyses (no symbol). The predicted band centers deduced from PMM are denoted by ${ }^{\dagger}$, those obtained from the mother molecule ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$ are denoted by ${ }^{M}$ while ${ }^{" *}$ " means that the band centers have been obtained as an average of different band centers deduced from very similar PMM. For example, the $v_{7}+v_{8}$ band center was determined for

Table 5 Vibrational band centers (in cm^{-1}) for 11 ethylene isotopologues. The predicted band centers deduced from PMM are denoted by ${ }^{\dagger}$, those obtained from the mother molecule ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$ by ${ }^{M}$ and by * the band centers obtained by as an average of different band centers deduced from very similar PMM.

Band (Sym)	${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$	${ }^{12} \mathrm{C}^{13} \mathrm{CH}_{4}$	${ }^{13} \mathrm{C}_{2} \mathrm{H}_{4}$	${ }^{12} \mathrm{C}^{13} \mathrm{CH}_{3} \mathrm{D}$	${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{3} \mathrm{D}$	${ }^{12} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{D}$	cis	trans	as	${ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$	${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$
$v_{1}\left(A_{g}\right)$	3021.855	3016.114^{\dagger}	3010.597^{M}	3016.657^{M}	3018.524^{M}	3027.986^{M}	2300.535	2284.854*	3017.12	2281.956*	$2261.950^{\text {V }}$
$v_{2}\left(A_{g}\right)$	1626.17	1606.095	1585.422^{\dagger}	1580.930^{\dagger}	1588.223^{\dagger}	1605.5	1571.202^{\dagger}	1571.075^{\dagger}	1586.051	1548.109^{\dagger}	1517.644^{V}
$\nu_{3}\left(A_{g}\right)$	1343.54	1336.838	1329.320^{\dagger}	1281.918^{\dagger}	1285.317^{\dagger}	1288.789	1218.136^{\dagger}	1285.171^{\dagger}	1030.07	1043.217*	984.864
$v_{4}\left(A_{u}\right)$	1025.589	1025.698	1025.804	1000.121^{\dagger}	998.569^{\dagger}	1000.039	980.364	987.753	890.397*	763.655*	729.958
$v_{5}\left(B_{2 g}\right)$	3082.36	3073.918^{\dagger}	3068.292^{M}	3057.304^{M}	3050.764^{M}	3061.254^{M}	3054.735	3046.639^{\dagger}	2334.587^{\dagger}	2221.738^{\dagger}	2314.570^{V}
$v_{6}\left(B_{2 g}\right)$	1225.41	1216.654^{\dagger}	1207.816^{M}	1116.737^{\dagger}	1120.613^{\dagger}	1125.277	1039.768	1003.891^{\dagger}	1142.27	998.917	1003.347^{\dagger}
$v_{7}\left(B_{2 u}\right)$	948.77	947.445	943.763	806.237^{\dagger}	798.659^{\dagger}	806.473	842.210	724.755	750.568	724.087*	719.771
$v_{8}\left(B_{3 g}\right)$	939.86	932.196	926.865^{\dagger}	934.735^{\dagger}	942.813^{\dagger}	943.5033	759.958	863.127*	943.413	918.733	778.458^{\dagger}
$v_{9}\left(B_{3 u}\right)$	3104.872	3099.830^{\dagger}	3093.927^{M}	3084.302^{M}	3095.249^{M}	3095.854^{M}	3060.423	3065.2	3094.114	3048.673*	2341.837
$v_{10}\left(B_{3 u}\right)$	825.93	825.406	824.915	731.974^{\dagger}	730.226^{\dagger}	732.144	662.872	673.535	684.642	628.991*	593.344
$v_{11}\left(B_{1 u}\right)$	2988.631	2980.569*	2969.602	2269.733^{M}	$2259.989^{\text {M }}$	2273.492^{M}	2252.80	2276.263*	2230.545	2331.578*	2200.980
$v_{12}\left(B_{1 u}\right)$	1442.44	1439.346	1436.654	1400.688^{\dagger}	1390.505^{\dagger}	1400.763	1341.151	1298.038	1383.944	1288.552*	1076.985
$v_{8}+v_{10}\left(A_{u}\right)$	1766.665	1758.821*	1752.684	1668.678^{M}	1674.947^{M}	1677.571^{M}	1423.599^{\dagger}	1536.938	1629.900^{\dagger}	1548.786^{\dagger}	1372.407^{V}
$v_{7}+v_{8}\left(B_{1 u}\right)$	1888.978	1880.668*	1871.428	1740.687^{M}	1741.262^{M}	1749.729^{M}	1599.420	1586.162	1696.784*	1644.415*	1496.289^{V}
$v_{6}+v_{10}\left(B_{1 u}\right)$	2047.776	2038.524^{\dagger}	2029.223^{M}	1846.120^{M}	1848.491^{M}	1855.040^{M}	1697.576^{\dagger}	1674.595	1823.516^{\dagger}	1626.213^{\dagger}	1593.157^{V}
$v_{6}+v_{7}\left(A_{u}\right)$	2178.011	2168.227^{\dagger}	$2155.461{ }^{M}$	1923.214^{M}	1919.548^{M}	1931.915^{M}	1880.507^{\dagger}	1727.177	1892.537^{\dagger}	1722.063^{\dagger}	1723.205^{V}
$v_{4}+v_{8}\left(B_{3 u}\right)$	1958.282	1950.613*	1945.575	1929.367^{M}	1935.761^{M}	1937.989^{M}	1740.306^{\dagger}	1845.987	1826.665^{\dagger}	1681.918^{\dagger}	1505.009^{V}
$v_{3}+v_{7}\left(B_{2 u}\right)$	2291.5	2283.399^{\dagger}	2272.436^{M}	$2088.829^{\text {M }}$	2084.681^{M}	2096.053^{M}	2062.113^{M}	2010.745^{M}	1780.756^{M}	1768.333^{V}	1704.188^{V}
$2 v_{10}\left(A_{g}\right)$	1662.2	1659.906	1658.221^{\dagger}	1465.573^{M}	1462.12^{M}	1466.229^{M}	1330.636	1352.039*	1371.493	1260.810*	1191.218^{V}
$v_{4}+v_{7}\left(B_{2 g}\right)$	1965.44	1964.394^{\dagger}	1960.701^{M}	1804.449^{M}	1795.286^{M}	1804.654^{M}	1816.358	1713.456^{\dagger}	1635.073^{\dagger}	1484.895^{\dagger}	1445.637^{V}
$v_{6}+v_{8}\left(B_{1 g}\right)$	2169.946^{V}	2153.516^{V}	$2139.663^{\text {V }}$	$2053.900^{\text {V }}$	$2065.905^{\text {V }}$	$2071.181^{\text {V }}$	1798.060	1864.250^{\dagger}	2085.815^{\dagger}	1914.788^{\dagger}	1783.141^{V}
$v_{2}+v_{7}\left(B_{2 u}\right)$	2571.77	2549.585^{\dagger}	2525.024^{M}	2384.839^{M}	2384.620^{M}	2409.457^{M}	2410.532^{M}	2294.140^{M}	2335.448^{M}	2269.676^{\dagger}	2235.425
$2 \nu_{4}\left(A_{g}\right)$	2047.759	2047.959^{\dagger}	2048.162^{M}	1994.178^{M}	1991.296^{M}	1994.162^{M}	1954.760^{M}	1964.924^{M}	1778.248^{M}	$1524.161{ }^{V}$	1458.230^{V}
$v_{4}+v_{10}\left(B_{3 g}\right)$	1853.96	1853.502^{\dagger}	1853.075^{M}	1734.392^{M}	1731.086^{M}	1734.500^{M}	1644.11^{M}	1663.781^{M}	1576.889^{M}	1393.674^{V}	1324.372^{V}
$2 v_{7}\left(A_{g}\right)$	1899.75	1896.991^{\dagger}	1889.805^{M}	1610.146^{M}	1595.459^{M}	1610.587^{M}	1685.499^{\dagger}	1446.364^{\dagger}	1499.410	1444.812^{\dagger}	1440.126^{V}

${ }^{12} \mathrm{C}^{13} \mathrm{CH}_{4}$ by an average of $1880.67015 \mathrm{~cm}^{-1}$ obtained from the mother molecule ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$ and $1880.66512 \mathrm{~cm}^{-1}$ when ${ }^{13} \mathrm{C}_{2} \mathrm{H}_{4}$ was considered.

3.2 Correspondence between vibrational levels

The key point of the VIS approach is to properly link vibrational levels between different species. In other words, we have to be able to predict the evolution of the state A (or A') toward another state B. In general, such connection is not direct, in particular in presence of strong resonances or/and due to important changes of mass. Instead of considering drastic changes between IsoA (or IsoA') and IsoB, a way to proceed is to vary the masses almost continuously. In other words, variational calculations have to be performed on the grid $m_{A}, m_{A}+\delta, m_{A}+2 \boldsymbol{\delta}, \cdots, m_{B}$ with $\delta \ll m_{A}$ and m_{B}. As a simple illustration, Fig. 3 shows the evolution of the harmonic frequencies for five ethylene isotopologues from quasi-continuous $\mathrm{H} \rightarrow \mathrm{D}$ substitutions from ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$ to ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$. Each point on this figure corresponds to an intermediate mass m^{\prime} between m_{A} and m_{B}. Note that we have used the following atomic masses $m_{H}=1.0078250321$ a.u., $m_{D}=2.0141017780$ a.u., $m_{12} C=12$ a.u. and 18 intermediate masses have been considered. As depicted in this figure, all the correspondences are now clearly established, even for brutal changes (see e.g. w_{1} and w_{11}). In Tab. 6 we provide harmonic frequencies for 5 ethylene isotopologues corresponding to the full line of Fig. 3.

4 Computational models for energy level and intensity calculations

Following our previous works ${ }^{24,28,69}$ a reduced form of the Watson-Eckart Hamiltonian in normal coordinates was employed ${ }^{70}$. This Hamiltonian was initially Taylor-expanded up to order $n=10$ and then reduced at order $m=6$ resulting in the $H(10-6)$ Hamiltonian model for all ethylene isotopologues. The total number of Hamiltonian operators was only 10882 for the $D_{2 h}$ species ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$ against ≈ 107000 operators for the C_{s} isotopologues. Vibrational calculations were performed using the cut-off criterion as follows: $F_{k_{i}}\left(v_{\max }\right) \Leftrightarrow \sum k_{i} v_{i} \leq v_{\max }$ where $k_{i}(i=1, \cdots, 12)$ stand for weight coefficients and $v_{i}=0, \cdots, v_{\max }$. The weight coefficients were chosen to select 7,8 and 10 basis functions for the stretching, bending and torsional modes for all $3 C_{s}$ isotopologues $\left({ }^{12} \mathrm{CHD}^{13} \mathrm{CH}_{2},{ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2}\right.$ and $\left.{ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}\right)$. For the $D_{2 h}$ isotopologue $\left({ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}\right)$, the k_{i} coefficients were chosen to select 9 functions for stretching and 11 for bending and torsional modes. To ensure that the memory necessary to store the A^{\prime} and $A^{\prime \prime}$ blocks for diagonalization does not exceed 100 Gb , the rovibrational calculations were splitted for C_{s} isotopologues in two parts : for $1<J<18$, calculations were carried out using the $F(10-6)$ basis and for $19<J<30$ the $F(10-5)$ basis was

Table 6 Calculated harmonic frequencies of ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4},{ }^{12} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{D}$, cis- ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{D}_{2},{ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$ and ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$. S. and A. stand for "symmetric" and "antisymmetric". All values are given in cm^{-1}.

	$\left(S y m=D_{2 h}\right)$ Description ${ }^{\dagger}$	${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$	${ }^{12} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{D}$	cis- ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{D}_{2}{ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$	${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$	
ω_{1}	$\left(A_{g}\right)$ S. CH stretch	3159.355	3151.307	2374.690	2363.201	2335.502
ω_{2}	$\left(A_{g}\right)$ CC stretch	1673.811	1644.751	1606.808	1579.701	1548.922
ω_{3}	$\left(A_{g}\right)$ S. HCH bend	1370.120	1313.760	1241.048	1061.270	1002.208
ω_{4}	$\left(A_{u}\right) \mathrm{H}_{2} \mathrm{C}-\mathrm{CH}_{2}$ torsion	1051.450	1023.745	1000.678	936.929	743.773
ω_{5}	$\left(B_{2 g}\right)$ trans CH stretch	3225.390	3196.283	3187.506	2413.807	2405.222
ω_{6}	$\left(B_{2 g}\right)$ A. HCH wag	1247.904	1142.722	1054.883	1013.049	1015.796
ω_{7}	$\left(B_{2 u}\right)$ S. out of plane bend	965.646	959.993	856.174	735.592	730.475
ω_{8}	$\left(B_{3 g}\right)$ A. out of plane bend	955.743	819.426	772.233	775.525	789.438
ω_{9}	$\left(B_{3 u}\right)$ cis CH stretch	3251.893	3240.999	3208.553	3198.196	2421.509
ω_{10}	$\left(B_{3 u}\right)$ S. HCH wag	828.462	734.663	665.524	631.043	595.336
ω_{11}	$\left(B_{1 u}\right)$ A. CH stretch	3144.151	2355.270	2335.535	2294.605	2270.347
ω_{12}	$\left(B_{1 u}\right)$ A. HCH bend	1479.819	1433.755	1370.139	1313.772	1096.628

\dagger Types of vibrations for ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$. According to the bond length involved in the vibration, they will change for each isotopologue.
considered. To ensure good convergence of ro-vibrational levels and partition function for ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$, ro-vibrational calculations were carried out up to $J=35$ using the $F(11-6)$ basis set. The total internal partition function at a given temperature is given by

$$
\begin{equation*}
Q(T)=\sum_{v, J}(2 J+1) g_{C} e^{-c_{2} E_{v J} / T} \tag{2}
\end{equation*}
$$

where $E_{v J}$ are our variationally-computed energy levels, c_{2} corresponds to the factor $h c / k=1.4388 \mathrm{~cm} \cdot \mathrm{~K}$ with k the Boltzman constant and g_{C} are the nuclear spin statistical weights. For ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$, we have obtained $g_{A}=27\left(A \equiv A_{g}, A_{u}\right)$ and $g_{B}=18$ $\left(B \equiv B_{1 g}, B_{2 g}, B_{3 g}, B_{1 u}, B_{2 u}, B_{3 u}\right.$). Concerning ${ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$ and ${ }^{12} \mathrm{CHD}^{13} \mathrm{CH}_{2} /{ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2}$ we have determined, respectively, $g_{A^{\prime}}=$ $g_{A^{\prime \prime}}=54$ and $g_{A^{\prime}}=g_{A^{\prime \prime}}=48$. For C_{s} isotopologues, we have obtained $Q(296 \mathrm{~K})=163855.9$ for ${ }^{12} \mathrm{C}^{13} \mathrm{CH}_{3} \mathrm{D}, Q(296 \mathrm{~K})=163$ 252.5 for ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{3} \mathrm{D}$ and $Q(296 \mathrm{~K})=262884.9$ for ${ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$ up to $J=30$. After a simple convergence test (error between $Q_{J=30}$ and $Q_{J=29}$), we have estimated that the error on Q does not exceed 1.0% at 296 K . For ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$, we have obtained $Q(296$ $\mathrm{K})=120985.2$ with an error estimated at $\approx 0.5 \%$. The two quantities $\left(Q, g_{C}\right)$ are necessary for the computation of the infrared line intensities given in $\mathrm{cm}^{-1} /\left(\mathrm{cm}^{-2}\right.$ molecule $\left.{ }^{-1}\right) \equiv \mathrm{cm} /$ molecule

$$
\begin{equation*}
S_{i f}=\frac{8 \pi^{3} 10^{-36}}{3 h c Q(T)} g_{C} v_{i f} e^{-c_{2} E_{i} / T}\left(1-e^{-c_{2} v_{i f} / T}\right) \mathscr{R}_{i f} \tag{3}
\end{equation*}
$$

where E_{i} is the lower state energy. The $v_{i f}$ is the rovibrational transition wavenumber (in cm^{-1}), $\mathscr{R}_{i f}$ is the line strength (square of the absolute value of the ro-vibrational matrix elements of the dipole moment). The probability of a transition $i \leftarrow f$ is given by the square of the transition-moment matrix elements by summing over all magnetic sublevels of both initial and final states

$$
\begin{equation*}
\left.\mathscr{R}_{i f}^{\theta} \equiv \sum_{M_{i}, M_{f}}\left|\left\langle\Psi_{v_{i}, M_{i}}^{\left(J_{i}, C_{i}\right)}\right| \mu_{\theta}^{\mathbf{L}}\right| \Psi_{v_{f}, M_{f}}^{\left(J_{f}, C_{f}\right)}\right\rangle\left.\right|^{2}, \tag{4}
\end{equation*}
$$

where $\theta=X, Y, Z$ are the space-fixed electronic dipole moment components. Due to the isotropy of space, only the Z component is necessary such that $\mathscr{R}_{i f}=\mathscr{R}_{i f}^{X}+\mathscr{R}_{i f}^{Y}+\mathscr{R}_{i f}^{Z} \equiv 3 \mathscr{R}_{i f}^{Z}$. In that case, we write

$$
\begin{equation*}
\mu_{Z}^{L}=\sum_{\alpha} \lambda_{Z \alpha} \mu_{\alpha}^{M} \tag{5}
\end{equation*}
$$

where $\lambda_{Z \alpha}$ are the direction cosines ${ }^{71-73}$ and μ_{α}^{M} are the ab initio molecule-fixed dipole moment components $(\alpha=x, y, z)$. For matrix element calculations, it is computationally advantageous to consider the spherical tensor formalism and Wigner Dfunctions (see e.g. ${ }^{72}$). Here, we have considered the 12D ethylene DMS reported by Delahaye et al. in Ref. ${ }^{31}$ which was originally expressed in symmetry-adapted $D_{2 h}$ normal coordinates. The normal mode VQZ 4th order ethylene DMS $\mu_{\alpha}(q)$ ($\alpha=x, y, z$) has been rewritten in terms of the q_{i}^{\prime} (Iso) coordinates and expanded to third order without any refitting procedures using the nonlinear transformation given in Refs. ${ }^{25,26,67}$. The symmetry branching rules are deduced in a straightforward manner from $\left(\mu_{x}^{\left(B_{3 u}\right)}, \mu_{y}^{\left(B_{2 u}\right)}, \mu_{z}^{\left(B_{1 u}\right)}\right)_{D_{2 h}}$ using the correlation table: $\left(B_{3 u}\right) \rightarrow A^{\prime},\left(B_{2 u}\right) \rightarrow A^{\prime \prime}$ and $\left(B_{1 u}\right) \rightarrow A^{\prime}$.

5 Ab initio rovibrational intensity predictions and comparison with observed spectra

For the first time, accurate theoretical line positions and line intensities are computed for ${ }^{12} \mathrm{CHD}^{13} \mathrm{CH}_{2},{ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2},{ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$ and ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$ ethylene isotopologues in the range $\left[0-4500 \mathrm{~cm}^{-1}\right]$. The corresponding line lists are summarized in Fig. 4 where the main ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$ isotopologue has been added (top panel). We clearly see in this figure the impact of the successive isotopic substitutions on the global shape of the spectra with a reorganization of the vibrational bands and polyad structure. In Tabs. 7, $8,9,10$, we provide a sample of theoretical line intensities and Einstein coefficients A for the strongest transitions. The best way to validate quality and accuracy of our variational predictions is to make direct comparisons with experiment, when available, except for ${ }^{12} \mathrm{CHD}^{13} \mathrm{CH}_{2}$ and ${ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2}$ whose spectra have not been yet measured. As expected and as confirmed in Fig. 4, the shape of the spectrum of these two species is quite similar to that of ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{D}^{27}$. Fig. 5 gives comparisons of transmittance spectra between ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{D},{ }^{12} \mathrm{CHD}^{13} \mathrm{CH}_{2}$ and ${ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2}$. We note that the vibrational isotopic displacement with respect to ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{D}$ is more pronounced for ${ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2}$. For $3-d$ ethylene, we show in Fig. 6 a very good agreement between the simulated spectrum ad the experiment ${ }^{53}$ in the region of the v_{8} band. Recently, the $2 v_{8}$ of ${ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$ band was analysed by Ng et al. ${ }^{54}$. Figs. 7 and 8 display two comparisons between variational-predicted and experimental spectra ${ }^{54}$ and show the good qualitative agreement. The v_{12} and v_{9} bands of ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$ were analysed by Tan et al. in Refs. ${ }^{62,64,74}$ The survey spectrum of v_{12} band obtained by our variational calculations is given in Fig. 9 (left) and compared to the experimental spectrum on the right-hand side. The detailed portion of the P branch is plotted in Fig. 10 where the corresponding experimental spectrum is taken from Ref. ${ }^{74}$ The large spectral range involving the Q branch of the v_{12} band and located around $1078 \mathrm{~cm}^{-1}$ is shown in Fig. 11 (see also Fig. 12 for a detailed portion). The R branch region portion is displayed in Fig. 13 and compared to the experimental spectrum taken from Ref. ${ }^{64}$ Once again, we note a good agreement between theory and experiment. Finally, the detailed portions of the v_{9} band are given in Figs. 14 and 15 where comparisons with experiment show a qualitative good agreement.

6 Conclusion

This paper gives a general insight of rotationally resolved spectra for eleven ethylene isotopic species obtained from accurate global variational calculations. In this work, we have completed our previous studies with four additional species $-{ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$, ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4},{ }^{12} \mathrm{CHD}^{13} \mathrm{CH}_{2}$ and ${ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2}$ - for which the first two molecules contributed to the derivation of the full chain of successive $\mathrm{H} \rightarrow \mathrm{D}$ substitutions (in total, 6 different deuterated ethylene species were considered). To make calculations tractable for such 6-atomic systems, we have applied all our previous techniques (reduction/compression, nonlinear transformations between normal coordinates) and built our normal mode reduced models and basis-sets. The study of the most abundant ${ }^{13} \mathrm{C}$ enriched ethylene species was the topic of our previous paper ${ }^{27}$. Here, we give the first theoretical predictions for the ${ }^{13} \mathrm{C}$ and D enriched isotopologues ${ }^{12} \mathrm{CHD}^{13} \mathrm{CH}_{2},{ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2}$ for which no experimental data is available. All calculated line positions and intensities will be included in the freely accessible TheoReTS database ${ }^{29}$. In order to predict accurately unpublished vibrational band centers, we have proposed a general method based on the propagation of information between a "pseudo" mother and a "daughter" molecule. This generalizes the vibrational isotopic shift method reported elsewhere ${ }^{24,25,28,67}$. To properly make correspondence between vibrational states of different species, we have also introduced intermediate masses in the variational calculations.

Conflicts of interest

There are no conflicts to declare.

Acknowledgments

The support from French ANR e-PYTHEAS project (Grant 16-CE31-0005-04), from French-Russian joint Laboratory LIA "SAMIA", from Academic D.A. Mendeleev program of Tomsk State University, from Russian RFBR grant (19-03-00581) and from computing centers (ROMEO Champagne-Ardenne; IDRIS CNRS France) are acknowledged.

References

1 J. Aguilera and L. Whigham, Isotopes in Environmental and Health Studies, 2018, 54, 573-587.

Table 7 Selected strong transitions for ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$ computed at $T=296 \mathrm{~K} . A$ is the Einstein coefficient (in $1 / \mathrm{s}$) and $E_{\text {low }}$ is the lower state energy." 1 " and "u" stand for lower and upper states.

$\tilde{v}\left(\mathrm{~cm}^{-1}\right)$	$I(\mathrm{~cm} / \mathrm{mol})$	A(1/s)	$E_{\text {low }}\left(\mathrm{cm}^{-1}\right)$	$\left(J K_{a} K_{c}, C\right)^{l}$	$\left(J K_{a} K_{c}, C\right)^{u}$	Band
718.445	1.252×10^{-20}	1.535	91.620	$11210, A_{g}$	$11110, A_{u}$	v_{7}
719.120	1.473×10^{-20}	1.795	122.938	$13212, A_{g}$	$13112, A_{u}$	v_{7}
719.359	1.082×10^{-20}	2.329	35.457	$717, B_{3 g}$	$707, B_{3 u}$	v_{7}
719.731	1.450×10^{-20}	2.606	67.447	$10110, B_{2 g}$	$10010, B_{2 u}$	v_{7}
719.802	1.525×10^{-20}	2.665	80.392	$11111, B_{3 g}$	$11011, B_{3 u}$	v_{7}
719.959	2.366×10^{-20}	2.717	94.425	$12012, A_{g}$	$12112, A_{u}$	v_{7}
719.964	1.528×10^{-20}	2.671	80.317	$11011, B_{1 g}$	$11111, B_{1 u}$	v_{7}
719.987	2.181×10^{-20}	2.614	67.327	$10010, A_{g}$	$10110, A_{u}$	v_{7}
720.037	1.357×10^{-20}	2.545	55.451	$909, B_{1 g}$	$919, B_{1 u}$	v_{7}
720.122	1.853×10^{-20}	2.458	44.685	$808, A_{g}$	$818, A_{u}$	v_{7}
720.159	1.394×10^{-20}	2.899	224.617	$19119, B_{3 g}$	$19019, B_{3 u}$	v_{7}
720.162	1.394×10^{-20}	2.899	224.616	190 19, $B_{1 g}$	$19119, B_{1 u}$	v_{7}
720.206	1.316×10^{-20}	2.914	247.714	$20120, B_{2 g}$	$20020, B_{2 u}$	v_{7}
1061.886	1.074×10^{-21}	0.451	105.788	$1211, B_{3 g}$	$11110, B_{3 u}$	v_{12}
1062.204	1.038×10^{-21}	0.438	106.692	$12211, B_{1 g}$	$11210, B_{1 u}$	v_{12}
1064.044	1.044×10^{-21}	0.426	80.317	$11011, B_{1 g}$	$10010, B_{1 u}$	v_{12}
1067.380	1.354×10^{-21}	0.436	44.685	$808, A_{g}$	$707, A_{u}$	v_{12}
1077.807	1.456×10^{-21}	0.693	91.750	$660, A_{g}$	$661, A_{u}$	v_{12}
1078.435	1.407×10^{-21}	0.719	161.329	$880, A_{g}$	$881, A_{u}$	v_{12}
1079.233	1.152×10^{-21}	0.736	250.360	$10100, A_{g}$	$1001, A_{u}$	v_{12}
1085.579	1.179×10^{-21}	0.359	26.486	$606, A_{g}$	$707, A_{u}$	v_{12}
1091.102	1.043×10^{-21}	0.375	80.392	$11111, B_{3 g}$	$12112, B_{3 u}$	v_{12}
1091.133	1.041×10^{-21}	0.375	80.317	$11011, B_{1 g}$	$12012, B_{1 u}$	v_{12}
1092.247	1.582×10^{-21}	0.377	94.424	$12012, A_{g}$	$13013, A_{u}$	v_{12}
2180.839	1.171×10^{-21}	2.180	178.605	$16215, B_{1 g}$	$15214, B_{1 u}$	v_{11}
2182.410	1.155×10^{-21}	2.183	153.140	$14312, B_{2 g}$	$13311, B_{2 u}$	v_{11}
2183.045	1.264×10^{-21}	2.243	139.915	$14113, B_{3 g}$	$13112, B_{3 u}$	v_{11}
2183.173	1.360×10^{-21}	2.286	143.476	$15015, B_{1 g}$	$14014, B_{1 u}$	v_{11}
2184.350	1.386×10^{-21}	2.300	126.020	$14114, B_{2 g}$	$13113, B_{2 u}$	v_{11}
2185.809	1.136×10^{-21}	2.178	103.725	$1138, B_{2 g}$	$1037, B_{2 u}$	v_{11}
2187.291	1.096×10^{-21}	2.164	88.830	$1037, B_{3 g}$	$936, B_{3 u}$	v_{11}
2188.452	1.145×10^{-21}	2.287	68.002	$927, B_{1 g}$	$826, B_{1 u}$	v_{11}
2190.203	1.168×10^{-21}	1.830	75.635	$844, A_{g}$	$743, A_{u}$	v_{11}
2190.602	1.079×10^{-21}	2.281	53.577	$827, B_{1 g}$	$726, B_{1 u}$	v_{11}
2191.234	1.787×10^{-21}	2.413	44.685	$808, A_{g}$	$707, A_{u}$	v_{11}
2192.545	1.085×10^{-21}	2.427	35.457	$717, B_{3 g}$	$616, B_{3 u}$	v_{11}
2199.971	1.120×10^{-21}	3.369	73.053	$981, B_{1 g}$	$982, B_{1 u}$	v_{11}
2200.002	1.330×10^{-21}	4.222	61.329	$881, B_{1 g}$	$880, B_{1 u}$	v_{11}

2 A. Kohen and H.-H. Limbach, Isotope effects in chemistry and biology, 2005, pp. 1-1075.
3 M. Wolfsberg, W. Alexander Van Hook, P. Paneth and L. Rebelo, Isotope effects: In the chemical, geological, and bio sciences, 2009, pp. 1-466.
4 T. Kostiuk, Infrared Physics and Technology, 1994, 35, 243-266.
5 P. Romani, D. Jennings, G. Bjoraker, P. Sada, G. McCabe and R. Boyle, Icarus, 2008, 198, 420-434.
6 D. Jennings, R. Achterberg, B. Bézard, G. Bjoraker, J. Brasunas, R. Carlson, A. Coustenis, F. Flasar, P. Irwin, V. Kunde, A. Mamoutkine, C. Nixon, G. Orton, J. Pearl, P. Romani, M. Segura, A. Simon-Miller, E. Wishnow and S. Vinatier, Optics InfoBase Conference Papers, 2007.
7 J. Moses, B. Bézard, E. Lellouch, G. Gladstone, H. Feuchtgruber and M. Allen, Icarus, 2000, 143, 244-298.
8 B. Hesman, G. Bjoraker, P. Sada, R. Achterberg, D. Jennings, P. Romani, A. Lunsford, L. Fletcher, R. Boyle, A. Simon-Miller,

Table 8 Selected strong transitions for ${ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$ computed at $T=296 \mathrm{~K} . A$ is the Einstein coefficient (in $1 / \mathrm{s}$) and $E_{\text {low }}$ is the lower state energy. "l" and "u" stand for lower and upper states.

$\tilde{v}\left(\mathrm{~cm}^{-1}\right)$	$I(\mathrm{~cm} / \mathrm{mol})$	A(1/s)	$E_{\text {low }}\left(\mathrm{cm}^{-1}\right)$	$\left(J K_{a} K_{c}, C\right)^{l}$	$\left(J K_{a} K_{c}, C\right)^{u}$	Band
723.865	1.036×10^{-20}	1.532	49.038	$818, A^{\prime}$	$808, A^{\prime \prime}$	v_{7}
724.045	1.136×10^{-20}	1.591	60.644	$919, A^{\prime \prime}$	$909, A^{\prime}$	v_{7}
724.189	1.214×10^{-20}	1.638	73.499	$10110, A^{\prime}$	$10010, A^{\prime \prime}$	v_{7}
724.304	1.269×10^{-20}	1.675	87.596	$11111, A^{\prime \prime}$	$11011, A^{\prime}$	v_{7}
724.399	1.303×10^{-20}	1.705	102.932	$12112, A^{\prime}$	$12012, A^{\prime \prime}$	v_{7}
724.480	1.316×10^{-20}	1.729	119.503	$13113, A^{\prime \prime}$	$13013, A^{\prime}$	v_{7}
724.552	1.310×10^{-20}	1.747	137.305	$14114, A^{\prime}$	$14014, A^{\prime \prime}$	v_{7}
724.586	1.304×10^{-20}	1.706	102.839	$12012, A^{\prime}$	$12112, A^{\prime \prime}$	v_{7}
724.591	1.270×10^{-20}	1.676	87.454	$11011, A^{\prime \prime}$	$11111, A^{\prime}$	v_{7}
724.601	1.316×10^{-20}	1.729	119.443	$13013, A^{\prime \prime}$	$13113, A^{\prime}$	v_{7}
724.619	1.288×10^{-20}	1.763	156.338	$15115, A^{\prime \prime}$	$15015, A^{\prime}$	v_{7}
847.668	1.032×10^{-21}	0.914	417.218	$12120, A^{\prime}$	$11110, A^{\prime \prime}$	v_{8}
847.668	1.032×10^{-21}	0.914	417.218	$12121, A^{\prime \prime}$	$11111, A^{\prime}$	v_{8}
849.883	1.016×10^{-21}	0.729	406.027	$14114, A^{\prime}$	$13104, A^{\prime \prime}$	v_{8}
849.883	1.016×10^{-21}	0.729	406.027	$14113, A^{\prime \prime}$	$13103, A^{\prime}$	v_{8}
851.308	1.108×10^{-21}	0.783	386.385	$13113, A^{\prime \prime}$	$12103, A^{\prime}$	v_{8}
852.731	1.203×10^{-21}	0.849	368.151	$12112, A^{\prime}$	$11102, A^{\prime \prime}$	v_{8}
854.153	1.301×10^{-21}	0.929	351.322	$11110, A^{\prime}$	$10100, A^{\prime \prime}$	v_{8}
854.891	1.167×10^{-21}	0.681	361.224	$14104, A^{\prime}$	$1394, A^{\prime \prime}$	v_{8}
856.316	1.267×10^{-21}	0.729	341.572	$13103, A^{\prime \prime}$	$1293, A^{\prime}$	v_{8}
857.739	1.370×10^{-21}	0.786	323.328	$12103, A^{\prime \prime}$	$1193, A^{\prime}$	v_{8}
858.416	1.206×10^{-21}	0.601	341.757	$1596, A^{\prime}$	$1486, A^{\prime \prime}$	v_{8}
859.840	1.311×10^{-21}	0.636	320.679	$1495, A^{\prime \prime}$	$1385, A^{\prime}$	v_{8}
2383.284	4.117×10^{-22}	1.056	214.152	$1082, A^{\prime}$	$1193, A^{\prime \prime}$	v_{11}
2383.549	5.702×10^{-22}	1.270	232.717	$1376, A^{\prime}$	$1487, A^{\prime \prime}$	v_{11}
2394.627	4.294×10^{-22}	1.441	341.757	$1596, A^{\prime}$	$16107, A^{\prime \prime}$	v_{11}
2394.802	5.263×10^{-22}	1.974	323.328	$12103, A^{\prime \prime}$	$13112, A^{\prime}$	v_{11}
2396.212	4.739×10^{-22}	1.811	341.572	$13104, A^{\prime}$	$14113, A^{\prime \prime}$	v_{11}
2397.510	5.445×10^{-22}	2.533	351.322	$11111, A^{\prime \prime}$	$12120, A^{\prime}$	v_{11}
2397.616	3.441×10^{-22}	1.294	388.168	$1798, A^{\prime}$	$18109, A^{\prime \prime}$	v_{11}
2400.698	3.391×10^{-22}	1.465	404.758	$16106, A^{\prime}$	$17117, A^{\prime \prime}$	v_{11}
2401.399	3.679×10^{-22}	1.807	406.027	$14114, A^{\prime}$	$15123, A^{\prime \prime}$	v_{11}
2403.012	4.369×10^{-22}	2.605	417.218	$12120, A^{\prime}$	$13131, A^{\prime \prime}$	v_{11}
2404.283	3.858×10^{-22}	2.342	435.445	1312 2, A^{\prime}	$14131, A^{\prime \prime}$	v_{11}
2409.810	3.142×10^{-22}	2.556	508.364	$14132, A^{\prime}$	$15141, A^{\prime \prime}$	v_{11}

C. Nixon and P. Irwin, Astrophys. J., 2012, 760, 24.

9 R. Hu and S. Seager, Astrophys. J., 2014, 784, 63.
10 A. Coustenis, R. Achterberg, B. Conrath, D. Jennings, A. Marten, D. Gautier, C. Nixon, F. Flasar, N. Teanby, B. Bézard, R. Samuelson, R. Carlson, E. Lellouch, G. Bjoraker, P. Romani, F. Taylor, P. Irwin, T. Fouchet, A. Hubert, G. Orton, V. Kunde, S. Vinatier, J. Mondellini, M. Abbas and R. Courtin, Icarus, 2007, 189, 35-62.

11 A. Coustenis and B. Bézard, Icarus, 1995, 115, 126-140.
12 A. Coustenis, B. Bézard, D. Gautier, A. Marten and R. Samuelson, Icarus, 1991, 89, 152-167.
13 S. Vinatier, B. Bézard, C. Nixon, A. Mamoutkine, R. Carlson, D. Jennings, E. Guandique, N. Teanby, G. Bjoraker, F. Michael Flasar and V. Kunde, Icarus, 2010, 205, 559-570.

14 J. Kaye, Rev. Geophys., 1987, 25, 1609-1658.
15 J. Linsky, B. Draine, H. Moos, E. Jenkins, B. Wood, C. Oliveira, W. Blair, S. Friedman, C. Gry, D. Knauth, J. Kruk, S. Lacour, N. Lehner, S. Redfield, J. Shull, G. Sonneborn and G. Williger, Astrophys. J., 2006, 647, 1106-1124.

16 E. Lellouch, European Space Agency, (Special Publication) ESA SP, 2001, 287-294.

Table 9 Selected strong transitions for ${ }^{12} \mathrm{CHD}^{13} \mathrm{CH}_{2}$ computed at $T=296 \mathrm{~K} . A$ is the Einstein coefficient (in $1 / \mathrm{s}$) and $E_{\text {low }}$ is the lower state energy." 1 " and "u" stand for lower and upper states.

$\tilde{v}\left(\mathrm{~cm}^{-1}\right)$	$I(\mathrm{~cm} / \mathrm{mol})$	$A(1 / \mathrm{s})$	$E_{\text {low }}\left(\mathrm{cm}^{-1}\right)$	$\left(J K_{a} K_{c}, C\right)^{\prime}$	$\left(J K_{a} K_{c}, C\right)^{u}$	Band
805.307	1.055×10^{-21}	1.402	58.300	$818, A^{\prime}$	$808, A^{\prime \prime}$	v_{7}
805.919	1.222×10^{-21}	1.515	87.173	$10110, A^{\prime}$	$10010, A^{\prime \prime}$	v_{7}
806.167	1.269×10^{-21}	1.559	103.836	$11111, A^{\prime \prime}$	$11011, A^{\prime}$	v_{7}
806.875	1.224×10^{-21}	1.659	185.208	$15115, A^{\prime \prime}$	$15015, A^{\prime}$	v_{7}
807.013	1.166×10^{-21}	1.669	209.212	$16116, A^{\prime}$	$16016, A^{\prime \prime}$	v_{7}
807.210	1.168×10^{-21}	1.672	209.111	$16016, A^{\prime}$	$16116, A^{\prime \prime}$	v_{7}
807.240	1.273×10^{-21}	1.564	103.308	$11011, A^{\prime \prime}$	$11111, A^{\prime}$	v_{7}
807.275	1.097×10^{-21}	1.676	234.604	$17017, A^{\prime \prime}$	$17117, A^{\prime}$	v_{7}
807.355	1.227×10^{-21}	1.521	86.466	$10010, A^{\prime}$	$10110, A^{\prime \prime}$	v_{7}
932.609	1.001×10^{-21}	2.337	26.227	$515, A^{\prime \prime}$	$505, A^{\prime}$	v_{8}
932.922	1.194×10^{-21}	2.469	35.410	$616, A^{\prime}$	$606, A^{\prime \prime}$	v_{8}
934.397	1.940×10^{-21}	3.245	141.587	$13113, A^{\prime \prime}$	$13013, A^{\prime}$	v_{8}
934.626	1.696×10^{-21}	3.444	234.674	$17117, A^{\prime \prime}$	$17017, A^{\prime}$	v_{8}
935.069	1.938×10^{-21}	3.183	121.587	$12012, A^{\prime}$	$12112, A^{\prime \prime}$	v_{8}
935.391	1.821×10^{-21}	3.003	86.466	$10010, A^{\prime}$	$10110, A^{\prime \prime}$	v_{8}
936.185	1.396×10^{-21}	2.633	44.616	$707, A^{\prime \prime}$	$717, A^{\prime}$	v_{8}
936.511	1.210×10^{-21}	2.498	33.601	$606, A^{\prime}$	$616, A^{\prime \prime}$	v_{8}
936.844	1.015×10^{-21}	2.368	24.091	$505, A^{\prime \prime}$	$515, A^{\prime}$	v_{8}
979.163	1.403×10^{-22}	0.841	38.475	$331, A^{\prime \prime}$	$221, A^{\prime \prime}$	v_{4}
979.169	1.403×10^{-22}	0.842	38.475	$330, A^{\prime}$	$220, A^{\prime \prime}$	v_{4}
985.491	1.002×10^{-22}	0.563	22.502	$322, A^{\prime}$	$212, A^{\prime \prime}$	v_{4}
985.944	1.077×10^{-22}	0.606	22.534	$321, A^{\prime \prime}$	$211, A^{\prime}$	v_{4}
991.686	1.237×10^{-22}	0.674	13.409	$312, A^{\prime}$	$202, A^{\prime \prime}$	v_{4}
997.130	1.001×10^{-22}	0.880	4.733	$111, A^{\prime \prime}$	$101, A^{\prime}$	v_{4}
997.285	1.686×10^{-22}	0.903	7.810	$212, A^{\prime}$	$202, A^{\prime \prime}$	v_{4}
1003.137	1.710×10^{-22}	0.913	4.856	$202, A^{\prime}$	$212, A^{\prime \prime}$	v_{4}
1003.296	1.016×10^{-22}	0.891	1.621	$101, A^{\prime \prime}$	$111, A^{\prime}$	v_{4}
1006.857	1.030×10^{-22}	0.545	1.621	$101, A^{\prime \prime}$	$211, A^{\prime}$	v_{4}
1008.717	1.342×10^{-22}	0.518	4.856	$202, A^{\prime}$	$312, A^{\prime \prime}$	v_{4}

17 T. Millar, Plasma Sources Science and Technology, 2015, 24, 043001.
18 T. Coplen, W. Brand, M. Gehre, M. Gröning, H. Meijer, B. Toman and R. Verkouteren, Anal. Chem., 2006, 78, 2439-2441.
19 H. Feuchtgruber, E. Lellouch, G. Orton, T. De Graauw, B. Vandenbussche, B. Swinyard, R. Moreno, C. Jarchow, F. Billebaud,
T. Cavalié, S. Sidher and P. Hartogh, A\&A., 2013, 551, A126.

20 A. Nikitin, J. Champion, V. Tyuterev and L. Brown, J.Mol.Spectrosc., 1997, 184, 120-128.
21 A. Nikitin, J. Champion, V. Tyuterev, L. Brown, G. Mellau and M. Lock, J. Mol.Struct., 2000, 517-518, 1-24.
22 A. Nikitin, L. Brown, L. Féjard, J. Champion and V. Tyuterev, J.Mol.Spectrosc., 2002, 216, 225-251.
23 M. Rey, A. V. Nikitin and V. G. Tyuterev, J. Chem. Phys., 2014, 141, 044316.
24 M. Rey, A. V. Nikitin and V. G. Tyuterev, J. Phys. Chem. A, 2015, 119, 4763-4779.
25 M. Rey, A. V. Nikitin and V. G. Tyuterev, J. Mol. Spectrosc., 2013, 291, 85-97.
26 M. Rey, A. V. Nikitin and V. G. Tyuterev, Phys. Chem. Chem. Phys., 2013, 15, 10049-10061.
27 D. Viglaska, M. Rey, T. Delahaye and A. Nikitin, J. Quant. Spectrosc. Radiat. Transf., 2019, 230, 142-154.
28 D. Viglaska, M. Rey, A. Nikitin and V. Tyuterev, J. Chem. Phys., 2019, 150, 194303.
29 M. Rey, A. Nikitin, Y. Babikov and V. Tyuterev, J.Mol.Spectrosc., 2016, 327, 138-158.
30 T. Delahaye, A. Nikitin, M. Rey, P. Szalay and V. Tyuterev, J.Chem.Phys., 2014, 141, 104301.
31 T. Delahaye, A. Nikitin, M. Rey, P. Szalay and V. Tyuterev, Chem. Phys. Letters, 2015, 639, 275-282.
32 M. Rey, T. Delahaye, A. Nikitin and V. Tyuterev, A\&A, 2016, 594, A47.
33 B. Mant, A. Yachmenev, J. Tennyson and S. Yurchenko, Mon. Not. R. Astron. Soc., 2018, 478, 3220-3232.

Table 10 Selected strong transitions for ${ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2}$ computed at $T=296 \mathrm{~K} . A$ is the Einstein coefficient (in $1 / \mathrm{s}$) and $E_{\text {low }}$ is the lower state energy. "l" and "u" stand for lower and upper states.

$\tilde{v}\left(\mathrm{~cm}^{-1}\right)$	$I(\mathrm{~cm} / \mathrm{mol})$	$A(1 / \mathrm{s})$	$E_{\text {low }}\left(\mathrm{cm}^{-1}\right)$	$\left(J K_{a} K_{c}, C\right)^{l}$	$\left(J K_{a} K_{c}, C\right)^{u}$	Band
797.768	1.047×10^{-21}	1.363	58.572	$818, A^{\prime}$	$808, A^{\prime \prime}$	v_{7}
798.096	1.140×10^{-21}	1.421	72.332	$919, A^{\prime \prime}$	$909, A^{\prime}$	v_{7}
798.386	1.210×10^{-21}	1.471	87.588	$10110, A^{\prime}$	$10010, A^{\prime \prime}$	v_{7}
798.638	1.255×10^{-21}	1.512	104.333	$11111, A^{\prime \prime}$	$11011, A^{\prime}$	v_{7}
798.856	1.274×10^{-21}	1.544	122.562	$12112, A^{\prime}$	$12012, A^{\prime \prime}$	v_{7}
799.047	1.270×10^{-21}	1.569	142.268	$13113, A^{\prime \prime}$	$13013, A^{\prime}$	v_{7}
799.215	1.245×10^{-21}	1.587	163.449	$14114, A^{\prime}$	$14014, A^{\prime \prime}$	v_{7}
799.370	1.199×10^{-21}	1.598	186.101	$15115, A^{\prime \prime}$	$15015, A^{\prime}$	v_{7}
799.519	1.136×10^{-21}	1.600	210.222	$16116, A^{\prime}$	$16016, A^{\prime \prime}$	v_{7}
799.560	1.274×10^{-21}	1.574	141.997	$13013, A^{\prime \prime}$	$13113, A^{\prime}$	v_{7}
799.607	1.248×10^{-21}	1.592	163.256	$14014, A^{\prime}$	$14114, A^{\prime \prime}$	v_{7}
799.624	1.278×10^{-21}	1.549	122.186	$12012, A^{\prime}$	$12112, A^{\prime \prime}$	v_{7}
799.663	1.049×10^{-21}	1.578	235.807	$17117, A^{\prime \prime}$	$17017, A^{\prime}$	v_{7}
799.701	1.141×10^{-21}	1.607	210.125	160 16, A^{\prime}	$16116, A^{\prime \prime}$	v_{7}
799.794	1.216×10^{-21}	1.478	86.899	$10010, A^{\prime}$	$10110, A^{\prime \prime}$	v_{7}
896.237	4.617×10^{-22}	1.804	48.789	$660, A^{\prime}$	$550, A^{\prime \prime}$	v_{8}
903.224	4.610×10^{-22}	1.543	13.819	$651, A^{\prime \prime}$	$541, A^{\prime}$	v_{8}
910.086	4.406×10^{-22}	1.302	85.202	$643, A^{\prime \prime}$	$533, A^{\prime}$	v_{8}
911.737	4.409×10^{-22}	1.524	75.404	$541, A^{\prime \prime}$	$431, A^{\prime}$	v_{8}
913.382	4.437×10^{-22}	1.901	67.242	$440, A^{\prime}$	$330, A^{\prime \prime}$	v_{8}
916.734	4.031×10^{-22}	1.084	62.949	$634, A^{\prime}$	$524, A^{\prime \prime}$	v_{8}
918.427	3.907×10^{-22}	1.229	53.140	$533, A^{\prime \prime}$	$423, A^{\prime}$	v_{8}
986.044	1.567×10^{-22}	5.034	28.832	$514, A^{\prime}$	$404, A^{\prime \prime}$	v_{4}
986.836	1.005×10^{-22}	2.449	47.355	$624, A^{\prime}$	$616, A^{\prime \prime}$	v_{4}
987.574	1.017×10^{-22}	2.795	37.389	$523, A^{\prime \prime}$	$515, A^{\prime}$	v_{4}
988.130	1.430×10^{-22}	5.690	20.297	$413, A^{\prime \prime}$	$303, A^{\prime}$	v_{4}
989.867	1.246×10^{-22}	4.036	29.030	$423, A^{\prime \prime}$	$413, A^{\prime}$	v_{4}
990.111	1.225×10^{-22}	6.623	13.459	$312, A^{\prime}$	$202, A^{\prime \prime}$	v_{4}
990.253	1.569×10^{-22}	4.328	37.164	$524, A^{\prime}$	$514, A^{\prime \prime}$	v_{4}
990.707	1.878×10^{-22}	4.601	46.912	$625, A^{\prime \prime}$	$615, A^{\prime}$	v_{4}
995.746	1.670×10^{-22}	8.886	7.824	$212, A^{\prime}$	$202, A^{\prime \prime}$	v_{4}

34 L. Ng, T. Tan, L. Akasyah, A. Wong, D. Appadoo and D. McNaughton, J. Mol. Spectrosc., 2017, 340, 29-35.
35 L. Ng, T. Tan, A. Wong, D. Appadoo and D. McNaughton, Mol. Phys., 2016, 114, 2798-2807.
36 T. Tan and M. Gabona, J. Mol. Spectrosc., 2012, 272, 51-54.
37 T. Tan and G. Lebron, J. Mol. Spectrosc., 2010, 261, 87-90.
38 L. Ng, T. Tan and M. Gabona, J. Mol. Spectrosc., 2015, 316, 90-94.
39 M. Gabona and T. Tan, J. Mol. Spectrosc., 2014, 299, 31-34.
40 K. Goh, T. Tan, P. Ong and H. Teo, Chem. Phys. Letters, 2000, 325, 584-588.
41 G. Lebron and T. Tan, J. Mol. Spectrosc., 2012, 271, 44-49.
42 O. Ulenikov, O. Gromova, E. Bekhtereva, Y. Aslapovskaya, A. Ziatkova, C. Sydow, C. Maul and S. Bauerecker, J. Quant. Spectrosc. Radiat. Transfer, 2016, 184, 76-88.
43 O. Ulenikov, O. Gromova, E. Bekhtereva, K. Berezkin, E. Sklyarova, C. Maul, K.-H. Gericke and S. Bauerecker, J. Quant. Spectrosc. Radiat. Transfer, 2015, 161, 180-196.
44 Y. A. Ba, C. Wenger, R. Surleau, V. Boudon, M. Rotger, L. Daumont, D. A. Bonhommeau, V. G. Tyuterev and M. L. Dubernet, J. Quant. Spectrosc. Radiat. Transf., 2013, 130, 62-68.

45 I. Gordon, L. Rothman, C. Hill, R. Kochanov, Y. Tan, Bernath et al., J. Quant. Spectrosc. Radiat. Transfer, 2017, 203, 3-69.
46 N. Jacquinet-Husson, R. Armante, N. Scott, A. Chédin, Crépeau et al., J.Mol.Spectrosc., 2016, 327, 31-72.

47 C. Courtoy and M. de Hemptine, Ann. Soc. Sci. Bruxelles, Ser.I., 1953, 67, 285-295.
48 C. Courtoy and M. de Hemptine, Ann. Soc. Sci. Bruxelles, Ser.I., 1953, 67, 296-308.
49 J. Duncan, D. McKean and P. Mallinson, J. Mol. Spectrosc., 1973, 45, 221-246.
50 J. Duncan, A. Ferguson and S. Goodlad, Spectroc. Acta A : Mol. Spectrosc., 1993, 49, 149-160.
51 J. Martin, T. Lee, P. Taylor and J.-P. Francois, J. Chem. Phys., 1995, 103, 2589-2602.
52 T. Tan and G. Lebron, J. Mol. Spectrosc., 2011, 269, 109-112.
53 L. Ng, T. Tan, M. Gabona, P. Godfrey and D. McNaughton, J. Mol. Spectrosc., 2015, 316, 79-83.
54 L. Ng, T. Tan and A. Chia, J. Mol. Spectrosc., 2018, 344, 27-33.
55 J. Duncan and A. Ferguson, J. Chem. Phys., 1988, 89, 4216-4226.
56 J. Duncan, Mol. Phys., 1994, 83, 159-169.
57 J. Duncan, E. Hamilton, A. Fayt, D. Van Lerberghe and F. Hegelund, Mol. Phys., 1981, 43, 737-752.
58 J. Harper and J. Duncan, Mol. Phys., 1982, 46, 139-149.
59 J. Harper, A. Morrisson and J. Duncan, Chem. Phys. Lett., 1981, 83, 32-36.
60 A.-K. Mose, F. Hegelund and F. Nicolaisen, J. Mol. Spectrosc., 1989, 137, 286-295.
61 F. Mompeán, R. Escribano, S. Montero, J. Bendtsen and R. Butcher, J. Mol. Spectrosc., 1986, 116, 48-57.
62 T. Tan, K. Goh, P. Ong and H. Teo, J. Mol. Spectrosc., 2000, 202, 249-252.
63 K. Goh, T. Tan, P. Ong and H. Teo, Mol. Phys., 2002, 98, 583-587.
64 T. Tan, K. Goh, P. Ong and H. Teo, Chem. Phys. Letters, 1999, 315, 82-86.
65 T. Tan, M. Gabona, D. Appadoo, P. Godfrey and D. McNaughton, J. Mol. Spectrosc., 2014, 303, 42-45.
66 M. Rey, I. Chizhmakova, A. Nikitin and V. Tyuterev, Phys. Chem. Chem. Phys., 2018, 20, 21008-21033.
67 D. Viglaska, M. Rey, A. Nikitin and V. Tyuterev, J. Chem. Phys, 2018, 149, 174305.
68 M.Rey, A.V.Nikitin and V.G.Tyuterev, J. Chem. Phys., 2012, 136, 244106.
69 M. Rey, A. V. Nikitin and V. G. Tyuterev, J. Quant. Spectrosc. Radiat. Transf., 2015, 164, 207-220.
70 J. Watson, Mol.Phys., 1968, 15, 479-490.
71 N. R. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics, Wiley, 1991.
72 P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, NRC-CNRC, Ottawa, 1998.
73 P. Bunker and P. Jensen, Fundamentals of molecular symmetry, IOP Publishing, London, 2005.
74 T. Tan, M. Gabona and G. Lebron, J. Mol. Spectrosc., 2011, 266, 113-115.

151 observed vibrational band centers up to $3100 \mathbf{c m}^{\mathbf{1}}$

1252 variationally predicted vibrational band centers up to $3100 \mathrm{~cm}^{-1}$ (This Work)
Fig. 1 Observed vibrational band centers determined by empirical analysis (upper panel) and variationally predicted energy levels for 11 ethylene isotopologues (lower panel) in the range $\leq 3100 \mathrm{~cm}^{-1}$.

Fig. 2 Schematic representation of vibrational isotopic shift method based on the "mother" (IsoA) and "pseudo mother" (IsoA') molecules.

Fig. 3 Correlation diagram for harmonic frequencies for five ethylene isotopologues from successive quasi-continuous $\mathrm{H} \rightarrow \mathrm{D}$ substitutions from ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4}$ to ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$ (see text).

Fig. 4 Overview spectrum of ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{4},{ }^{12} \mathrm{CHD}^{13} \mathrm{CH}_{2},{ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2},{ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$ and ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$ from calculation at 296 K in log scale using the $a b$ initio PES and DMS of Refs. ${ }^{31},{ }^{30}$.

Fig. 5 Comparison between ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{D}$ and ${ }^{12} \mathrm{CHD}^{13} \mathrm{CH}_{2}$ and ${ }^{13} \mathrm{CHD}^{12} \mathrm{CH}_{2}$ simulated spectra in the region $1330-1480 \mathrm{~cm}^{-1}$.

Fig. 6 Detailed portion of the v_{8} band of ${ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$ obtained by variational calculations (this work) (top panel) compared to experiment (bottom panel) taken from Fig. 3 of Ref. ${ }^{34}$

Fig. 7 Detailed portion of the $2 v_{8}$ band of ${ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$ obtained by variational calculations (this work) (top panel) compared to experiment (bottom panel) taken from Fig. 2 of Ref. ${ }^{54}$

Fig. 8 Detailed portion of the R branch of the $2 v_{8}$ band of ${ }^{12} \mathrm{C}_{2} \mathrm{HD}_{3}$ obtained from variational calculations (this work) (top panel) compared to experiment (bottom panel) taken from Fig. 3 of Ref. ${ }^{54}$

Fig. 9 Survey spectrum of the v_{12} band of ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$ obtained by variational calculations (this work) (left) compared to experiment (right) taken from Fig. 1 of Ref. ${ }^{64}$

Fig. 10 Detailed portion of the P branch of the v_{12} band of ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$ obtained by variational calculations (this work) (top panel) compared to experiment (bottom panel) taken from Fig. 1 of Ref. ${ }^{74}$

Fig. 11 Portion spectrum of the v_{12} band of ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$ in the region of $1078 \mathrm{~cm}^{-1}$ obtained by variational calculations (this work) (top panel) compared to experiment (bottom panel) taken from Fig. 2 of Ref. ${ }^{65}$

Fig. 12 Detailed portion of the Q branch of the v_{12} band of ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$ obtained by variational calculations (this work) (top panel) compared to experiment (bottom panel) taken from Fig. 2 of Ref. ${ }^{64}$

Fig. 13 Detailed portion of the R branch of the v_{12} band of ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$ obtained by variational calculations (this work) (top panel) compared to experiment (bottom panel) taken from Fig. 4 of Ref. ${ }^{64}$

Fig. 14 Detailed portion of the P branch of v_{9} band of ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$ obtained by variational calculations (this work) (left) compared to experiment (right) taken from Fig. 2 of Ref. ${ }^{62}$

Fig. 15 Detailed portion of the Q branch of v_{9} band of ${ }^{12} \mathrm{C}_{2} \mathrm{D}_{4}$ obtained by variational calculations (this work) (left) compared to experiment (right) taken from Fig. 4 of Ref. ${ }^{62}$

[^0]: a Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, BP 1039, F-51687, Reims Cedex 2, France; E-mail: dominika.viglaska@univ-reims.fr, michael.rey@univ-reims.fr
 ${ }^{b}$ Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, SB RAS, 634055 TOMSK, Russia.
 ${ }^{c}$ Laboratory of Quantum Mechanics of Molecules and Radiative Processes,
 Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia
 ${ }^{d}$ Laboratoire de Météorologie Dynamique/IPSL, CNRS, Ecole polytechnique,
 Université Paris-Saclay, Palaiseau, 91128, France

