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Manuscript 28 

Abstract 29 

Marine Protected Areas (MPAs) are effective resource management and conservation 30 

measures, but their effectiveness is often hindered by non-compliant activities such as 31 

poaching. Better predicting poaching risk and spatial patterns is crucial for efficient law 32 

enforcement and to ensure MPAs are delivering the outcomes they were established for. 33 

Here, we predicted poaching risk from recreational fishers within fully protected MPAs of 34 

Australia’s Great Barrier Reef Marine Park (GBRMP). Combining patrol effort data, observed 35 

distribution of reported incidents, and geographically-referenced predictor variables, we 36 

modeled the occurrence probability of poaching incidents using boosted regression trees 37 

and mapped poaching risk at fine-scale. Our findings (i) reinforce the key role of fishing 38 

attractiveness, accessibility and capacity in shaping the spatial patterns of illegal recreational 39 

fishing; (ii) identify key interactions among XXX and tipping points beyond which poaching is 40 

more likely to occur; and (iii) highlight gaps in patrol effort that could be filled for improved 41 

resource allocation. The methods developed through this study provide a novel approach to 42 

quantify the relative influence of multiple interacting factors in shaping poaching 43 

occurrence, and hold promises for replication across a broad range of marine or terrestrial 44 

settings.  45 



Introduction 46 

Marine Protected Areas (MPAs) are widely promoted as a tool for resource management 47 

and conservation (REFs). While various elements of MPA design and implementation are 48 

essential (Claudet et al. 2008; Jupiter & Egli 2011; Green et al. 2015; Gill et al. 2017), the 49 

effectiveness of an MPA is ultimately reliant on its users’ compliance with regulations. Yet, 50 

ensuring compliance, or infringements, remains a persistent problem, and numerous non-51 

compliant activities (e.g. harvest, waste disposal, dampening,  or illegal constructions) 52 

continue to occur within many MPAs worldwide (REF?). Of these, illegal fishing inside MPAs 53 

(i.e., poaching) is particularly prevalent, and can easily render MPAs ineffective (Samoilys et 54 

al. 2007; Guidetti et al. 2008; Campbell et al. 2012) and erode trust in management (REF).  55 

As with all regulatory frameworks, individual reasons for not complying with rules vary 56 

between negligent, opportunistic and intentional offending. To be effective, compliance 57 

management should address each level of offending through appropriate strategies 58 

including, education, engagement and enforcement, respectively  (Ivec & Braithwaite 2015). 59 

Enforcement is often associated to resource-demanding management activities in MPAs (i.e. 60 

due to vessel, personnel and legal costs), resources need to be strategically allocated by 61 

effectively targeting patrols to locations and times at which poaching is more likely to be 62 

prevalent. This is particularly critical in large MPAs . 63 

It has recently been shown that wildlife crime tend to be concentrated in space (Brill & 64 

Raemaekers 2009; Maingi et al. 2012; Arias et al. 2014), time (Diogo et al. 2016), on specific 65 

ecosystem components (Pires 2015; Kurland et al. 2018) and were concerning a restricted 66 

set of offenders (Weekers et al. 2019). Understanding what prevails/drives these patterns 67 

can assist in the development of cost-effective surveillance strategies.  68 

Surveillance activities are more effective when adequately and sustainably funded and 69 

staffed, and targeted to the right places at the right times (Jachmann 2008; Critchlow et al. 70 

2015, 2016; Petrossian 2015). In line with the ‘law of crime concentration’ (Weisburd 2015), 71 

poaching is far from being a random activity. Poaching is a highly structured activity driven 72 

by the convergence of willing offenders and vulnerable targets at suitable places (Moreto & 73 

Pires 2018). ‘Poaching hotspots’ are formed when these points of convergence are repeated 74 



over space and time, revealing an underlying opportunity structure for  illegal activities. 75 

Poaching hotspots tend to share a set of common characteristics, or risk factors (REF). In 76 

coastal and marine environments, they include the harvest target availability and 77 

attractiveness, accessibility (e.g. travel costs and travel time), opportunism (e.g. along MPA 78 

boundaries), guardianship effectiveness, and the perceived likelihood and consequence of 79 

getting caught (Arias et al. 2014; Bergseth et al. 2017; Weekers & Zahnow 2018; Weekers et 80 

al. 2019). 81 

Determining the relative importance of risk factors and patterns of poaching is nonetheless a 82 

challenging and often context-specific tasks. While approaches assessing patterns of illegal 83 

activities based on raw patterns of incidents reported by patrols are useful tools to identify 84 

where crimes are occurring more frequently (Hilborn et al. 2006), they are typically biased 85 

towards areas that are routinely surveyed. Failure to account for spatiotemporal variation in 86 

surveillance effort runs the risk of systematically over- or underestimating non-compliant 87 

activities (Keane & Jones 2008). Other approaches have been proposed to explicitly account 88 

for detection biases (Critchlow et al. 2015, 2016), but they tend to rely on assumptions that 89 

may not necessarily hold in marine systems (e.g. on the form of the relationship between 90 

predictors and incident occurrence) and fail to account for interactions between risk factors.  91 

Here, we aim at improving patrol efficiency by better understanding and predicting how 92 

[potentially complex] interactions among [various] risk factors shape poaching risk. We use 93 

spatially-explicit environmental and human predictors combined with patrol-collected 94 

incident and monitoring data commonly available across various settings to (1) quantify the 95 

relative influence of various risk factors in shaping poaching risk; (2) identify main 96 

interactions and critical tipping points; (3) predict poaching risk in 44 no-take MPAs within 97 

Australia’s Great Barrier Reef Marine Park (GBRMP); and (4) identify potential gaps in patrol 98 

surveillance effort. 99 

Methods 100 

Study site 101 

The Cairns Management Region (CMR) is located within Australia’s Great Barrier Reef 102 

Marine Park (GBRMP) (Fig. 1). The current zoning plan was established in 2003 and came 103 



into force on 1 July 2004. It consists of various types of multiple-use areas, but we focused 104 

here on Marine National Park (Green) Zones, a key zone type for the managing authority’s 105 

strategy (Great Barrier Reef Marine Park Authority 2018). Marine National Park (Green) 106 

Zones are ‘no-take/regulated access’ areas (Horta e Costa et al. 2016) where all extractive 107 

activities like fishing or collecting are not allowed. They fall within the broader type of Fully 108 

Protected Areas (Horta e Costa et al. 2016)  (from now on, we refer to Marine National Park 109 

(Green) Zones as no-take zones). No-take zones represent about a third of the GBRMP total 110 

area (11.7% of the CRM) and thus require extensive surveillance effort. The primary form of 111 

offence in Australia’s Great Barrier Reef Marine Park (GBRMP) is poaching by recreational 112 

fishers in no-take zones (Great Barrier Reef Marine Park Authority 2018), and a number of 113 

studies have suggested that such activity may be occurring significantly more frequently 114 

than previously thought (Davis et al. 2004; Castro-sanguino et al. 2017; Bergseth et al. 2017). 115 

 116 

Figure 1: Location of the Cairns Management Region (CMR) within the Great Barrier Reef Marine Park, 117 

Australia. 118 

Incidents’ presence and pseudo-absence 119 



Drawing on spatially explicit occupancy models increasingly used in the predictive ecological 120 

community (Marmion et al. 2009), we modelled the spatial distribution of poaching risk 121 

within the CMR’s no-take zones using Boosted Regression Trees (BRT; Elith et al. (2008) 122 

based on observed distribution of reported incidents as a function of geographically-123 

referenced predictor variables,. Gradient boosted regression tree approaches such as BRT 124 

are increasingly used over statistical approaches for prediction because they better handle 125 

interactions among predictor variables and non-linearity than regression-based approaches; 126 

both of which were expected to emerge in our case. BRTs also can prevent overfitting by 127 

providing regularization (Elith et al. 2008). 128 

Presence records (i.e. occurrence of poaching incidents) were obtained from the Field 129 

Management Compliance Unit (FMCU) at the Great Barrier Reef Marine Park Authority. The 130 

data represents all reported incidents of illegal recreational fishing in CMR’s no-take zones 131 

for the period January 2015 to March 2019 (n=221, Fig. S1). About 95% of these happened 132 

during daylight hours, between 7am and 7pm, reflecting effort data from the patrol vessel. 133 

The presence data used in this study represents reliable records at GPS resolution, with 134 

heterogeneous detectability due to heterogeneous monitoring effort across the study area. 135 

To account for this, we assigned a weight to presence points based on monitoring effort, on 136 

the basis that incidents detected in highly monitored areas had lower weight than incidents 137 

detected in areas that are monitored more rarely (see Supporting Information). 138 

In our case, confirmed absences of incidents (i.e. locations where poaching never occurred) 139 

are more difficult to obtain due to the diffuse nature of offenders and the impracticability to 140 

monitor the entire area constantly. Therefore, we created artificial absence data (herein 141 

pseudo-absence) following guidelines from (Cerasoli et al. 2017). Specifically, we generated 142 

the pseudo-absences using geographically stratified random selection (i.e. based on density 143 

estimate of presences) so that the sum of the weights on the pseudo-absences (i.e. 144 

proportional to monitoring effort) equals the sum of those on the presence points (i.e. 145 

inverse of monitoring effort). This process yielded a total of 498 pseudo-absence points (Fig. 146 

S1). 147 

Predictors of poaching risk 148 



We used a set of ten spatially-explicit predictors relating to environmental and human 149 

dimensions to predict the probability of incident occurrence (Table 1). Distance-related 150 

predictors (i.e. Accessibility, Features, Islands, Reefs, and Boundary) were derived from the 151 

most up-to-date data available on each elements’ locations using the cost distance tool in 152 

ESRI’s ArcGIS 10.5. Bathymetry data (Depth) was obtained from the DeepReef database 153 

(https://www.deepreef.org/bathymetry/65-3dgbr-bathy.html). Slope and Aspect were 154 

derived from the bathymetry model, using the ‘Slope’ and ‘Aspect’ tools in QGIS, 155 

respectively. Coral was modeled as the sum of the surrounding living coral patches, 156 

described as the number of 15x15m cells dominated by a coral taxon within a 1km radius 157 

around each focal cell on the basis of the Benthic cover type map for Reef Top areas of the 158 

Cairns Management Area. Finally, Fishing capacity, defined as the overall ability of the 159 

recreational fishery to extract resources in a 50km radius, was modeled by summing the 160 

number of motorized recreational boats (all size classes) registered in postcodes located 161 

within a 50km radius around each cell. 162 

Table 1 | Predictors used to predict poaching in no-take zones of the Cairns Management Area. 163 

Name Description Range (unit) 

Accessibility Distance to the nearest boat ramp access point 0-107 (km) 

Aspect Compass direction that a slope faces (E:90°; S: 180°; W:260°; 
N:0°=360°) 

0-360 (°) 

Coral Number of coral-dominated patches within a 1km radius 0-656 (nb) 

Depth Distance from the surface to the sea bottom -150 - -0.6 (m) 

Features Distance to the nearest pontoon or mooring 0-53 (km) 

Fishing 
capacity 

Number of motorized recreational boats registered within a 
50km radius 

2.6-197.2 (nb) 

Islands Distance to the nearest island 0-53.3 (km) 

Reefs Distance to the nearest dry reef 0-19.6 (m) 

Slope Incline of the sea bottom 0-63.6 (°) 

Boundary Distance from the nearest boundary 0-6.8 (m) 

 164 

All these predictors were generated at a spatial resolution of 50m, and showed a Pearson 165 

correlation coefficient lower than |0.51| and a Variance Inflation Factor (VIF) lower than 1.6. 166 

Using this set of predictors, we were able to capture some previously unexplored potential 167 

risk factors in the GBRMP, although we acknowledge that poaching risk can have other 168 

dimensions such as individual determinants owned by offenders, weather, or time of the 169 

https://www.deepreef.org/bathymetry/65-3dgbr-bathy.html


day/week/year (Bergseth & Roscher 2017; Bergseth et al. 2017; Oyanedel et al. 2018; 170 

Weekers & Zahnow 2018; Weekers et al. 2019) that we were not able to incorporate here. 171 

Hence, our predictive model provides a static picture of poaching risk, and therefore 172 

assumes that other potential drivers are held evenly distributed throughout the study area. 173 

Building a predictive model of poaching risk 174 

We fitted the BRT models with a weighted logistic regression for binary classification against 175 

the ten predictors (Table 1) using the {dismo} package (Hijmans et al. 2016) in the R 176 

statistical software version 3.4.0 (R Core Team 2017). This technique requires the 177 

specification of three main parameters: the shrinkage parameter, limiting the contribution 178 

of the single trees added to the model through the boosting algorithm (tc), the minimum 179 

loss reduction required to make a split (lr), and the bag fraction (bf), proportion of data to be 180 

selected at each step. In order to identify the best set of parameters, we implemented a 181 

two-step tuning process that retained the set of parameters maximizing cross-validated Area 182 

Under the Curve (AUC) (Supplementary Information). We also explored the possibility of 183 

eliminating non-informative predictor variables to select the most parsimonious model, 184 

which led to the exclusion of the variable Coral. The final model explained 61% of the cross-185 

validated variance and had an AUC score of 0.93, indicating strong explanatory and 186 

predictive performance, respectively. 187 

We quantified the relative interaction strength and significance between the nine remaining 188 

predictor variables using 500 bootstrap resampling (Pinsky & Byler 2015).  189 

We calculated the relative influence of the predictor 95% confidence intervals from 1,000 190 

bootstrap replicates of the original dataset. Based on the same bootstrap replicates, we 191 

obtained partial dependency plots with 95% confidence intervals to visualize the 192 

relationships between the most influential predictor variables and the response (occurrence 193 

probability), while keeping all other predictors constant. Maps of the predicted poaching risk 194 

(i.e. probability of incident occurrence) were generated from the optimal BRT model’s 195 

projections over the whole study area at each 50m * 50m cell with a continuous scale 0-1 for 196 

each bootstrap replicate, allowing the median predicted poaching risk +/- 95% confidence 197 

interval to be mapped. Detailed methods used for model building and bootstrapping are 198 

provided in Supplementary Information. 199 



Because the model underlying this map accounts for heterogeneous detectability, we were 200 

able to overlap the predicted poaching risk with patrol effort and identify potential spatial 201 

mismatch. We visualized how predicted poaching risk with patrol effort overlap using a 202 

bivariate choropleth map. 203 

Results 204 

Almost 75% of the spatio-temporal variability of incident occurrence was described by four 205 

predictors (Fig. 2). Fishing capacity was the most important predictor variable, accounting 206 

for 25.7% of the explained variability in incident occurrence. Depth, Accessibility, and Slope 207 

explained a broadly similar portion of the variability in incident occurrence, ranging between 208 

17.8% and 14.3%. Boundary, Islands, and Features had smaller contributions to the model 209 

prediction (6.1% each). Reefs and Aspect explained little variability of incident occurrence(s). 210 

 211 

Figure 2: Predictors of recreational incident occurrence in no-take zones. The left panel shows the relative 212 

influence (and 95% confidence intervals) of the predictor variables. The right panel shows partial dependency 213 

plots with 95% confidence intervals for the four most influential variables. The graphs show the effect of a 214 

given predictor on the probability of incident occurrence while holding all other predictor variables constant at 215 

their mean. 216 

The occurrence probability remained low at low levels of Fishing capacity (25.7% relative 217 

influence) and then steadily increased from 100 boats per 50km radius onwards (Fig. 2). 218 

Similar patterns were observed for Depth (17.8%), with initially low levels of poaching 219 

likelihood below -40m increasing until reaching a plateau around -20m depth. Accessibility 220 



was the third most important predictor of poaching occurrence (15.6%), with a negative 221 

non-linear relationship displaying a threshold around 45km from the nearest boat ramp. 222 

Fitted function for Slope (14.3%) displayed a positive asymptotic relationship that reached a 223 

plateau around 15° angle. Other less significant predictors with negative relationships were 224 

distance to: Boundary (6.1%), Features (6.1%), Islands (6.1%), and Reefs (3.6%). 225 

Models considering interactions between predictors performed better than simpler ones. 226 

The four strongest pairwise interactions were Fishing capacity x Accessibility (71.51; p-227 

value<0.001), Fishing capacity x Depth (36.9; p-value<0.001), Slope x Accessibility (14.1; p-228 

value<0.001) and Fishing capacity x Slope (9.9; p-value<0.01). Occurrence probability for 229 

incidents was higher in areas characterized by higher Fishing capacity, shallower Depths, 230 

shorter distances to boat ramps (i.e. Accessibility), and steeper sea bottom (Figs. 2-3). 231 



 232 

Figure 3: Pairwise interaction plots of the four strongest interactions between variables predicting poaching 233 

risk. The left panels indicate the median fitted function calculated on 1,000 bootstrap replicates. The right 234 

panel indicates error around this fitted function, measured as the difference between the 0.95 and 0.05 235 

quantiles calculated on the same bootstrap replicates. All interactions were significant (p<0.01). 236 



As a consequence of these interactions and thresholds, predicted poaching risk was highly 237 

heterogeneous across the study area (Fig. 4). Poaching risk was concentrated on inshore and 238 

mid-shelf reefs located near major towns (Port Douglas, Cairns and Innisfail). Conversely, no-239 

take zones located far off-shore and in the north of the Cairns Management Region were 240 

exposed to lower levels of predicted poaching risk. Poaching hotspots include sites such as 241 

Low Isles Reef, Upolu Reef, Green Island Reef, Wide Bay, and Sisters-Stephens Reef (Fig. 4). 242 

 243 

Figure 4: Predicted relative probability of incident occurrence within the no-take MPAs of the Cairns 244 

Management Region of the Great Barrier Reef Marine Park, and associated level of patrol monitoring effort. 245 

Numbers indicate poaching hotspots within no-take zones: 1- Tongue Reef; 2-Low Isles Reef; 3-Michaelmas 246 

Reef; 4-Upolu Reef; 5-Green Island Reef; 6-Wide Bay; 7-Scott Reef; 8-MNP-17-1070; 9-Normanby-Mabel Reef; 247 

10-Feather Reef; 11-Sisters-Stephens Reef; 12-Gardens Beach. 248 



Patrol allocation was skewed towards a few MPAs around Cairns and, to a lower extent, Port 249 

Douglas (Fig. 4). Indeed, among the 44 MPAs located within the CRM, 75% of the total patrol 250 

monitoring conducted between 2015 and 2019 was allocated in only four of them (Fig. S2). 251 

This great heterogeneity of patrol effort partially matched with the spatial distribution of 252 

predicted poaching risk (Fig. 5). Indeed, while the highest levels of patrol effort were found 253 

in the three major poaching hotspots (yellow in Fig. 5), other areas with comparable levels of 254 

poaching risk received much less monitoring. Such areas, which may represent enforcement 255 

gaps, are mostly located in the south of the CMR (maroon in Fig. 5). Areas predicted to be 256 

exposed to low poaching risk tended to be monitored less (blue in Fig. 5). 257 

 258 

Figure 5: Congruence and mismatch between patrol effort and poaching risk. Bi-plot represent MPA averages. 259 

Areas in yellow and blue respectively indicate where patrol distribution matches with poaching risk. Areas in 260 

greatest risk of poaching exposure with low surveillance effort are shown in maroon; they correspond with 261 



areas potentially requiring more patrolling given their predicted level of poaching risk. These include 1-Sisters-262 

Stephens Reef; 2-Gardens Beach; 3-Feather Reef; 8-MNP-17-1070.  263 

Discussion 264 

Identifying the underlying drivers of poaching and understanding how they interact to 265 

structure poaching risk offer great value to managers for cost effective surveillance. This 266 

study presents the first attempt at quantifying the relative importance of, and interaction 267 

between multiple risk factors of recreational poaching in a large Marine Protected Area 268 

(MPA) using commonly available patrol-collected data. As such, it offers novel insights that 269 

can inform management strategies and planning, via a new predictive approach that can 270 

potentially be applied to other settings. 271 

The overwhelming influence of only four predictors (Fishing capacity, Depth, Accessibility 272 

and Slope) in explaining poaching risk is striking. Our analysis confirms the assumption that 273 

poaching ‘hotspots’ are characterized by substantial Fishing capacity; however, our model 274 

identifies a threshold (i.e. >100 boats within a 50km radius; Fig. 2) beyond which poaching 275 

risk increases markedly. Similarly, poaching ‘hotspots’ were predicted by the model at 276 

depths shallower than 40m, short(er) distances to the nearest boat ramp (0 to 45km) and in 277 

areas of complex topography, defined by steep(er) sea bottom (Figs. 2-3). Overall, these 278 

findings emphasize the value of these simple yet critical features in the assessment of an 279 

MPA’s likelihood to be exposed to poaching and provide insights into the mechanisms by 280 

which they can interact. 281 

Our results highlight the critical role of benthic topography (Depth and Slope) in driving 282 

poaching risk. In coral reefs, areas with high slope and low depth –where poaching risk is the 283 

highest– typically reflect reef slopes and edges, which often harbor higher target fish 284 

abundance and biomass. This suggests that these two variables can be appealing to 285 

recreational fishers and therefore may broadly define environmental bounds of 286 

“attractiveness” to recreational poachers. Since travel time or cost remain constraining 287 

factors (Maire et al. 2016), Accessibility proved also to be an important driver. Nevertheless, 288 

it is worth noting that the tipping point beyond which poaching risk diminishes significantly 289 

(around 45km from the nearest boat ramp) remains substantially higher in the GBRMP than 290 

in other places globally (Daw 2008; Daw et al. 2011; Metcalfe et al. 2017). Such difference in 291 



maximum travel distance might reflect the relative wealth of Australians and the investment 292 

by recreational fishers in faster and more sea-worthy vessels as fishing platforms (CRC 2017, 293 

2018). 294 

Poaching risk was better predicted when drivers related to fishers’ spatial preference (i.e. 295 

accessibility and attractiveness) interacted with Fishing capacity (Fig. 3). The combined 296 

effects of attractiveness, accessibility and fishing capacity in driving fishing pressure 297 

generally (Daw 2008; Castro-sanguino et al. 2017; Thiault et al. 2017; Metcalfe et al. 2017; 298 

Harborne et al. 2018), and poaching risk specifically (Diogo et al. 2016; Weekers & Zahnow 299 

2018) have been showed elsewhere. However, the fact that poaching-specific predictors 300 

(e.g. distance to the nearest boundary) are more marginal compared to fishing capacity 301 

suggests that most incidents may be due to fishers’ negligence rather than driven by 302 

opportunistic or intentional motivations. This is particularly XXXX given the fishers’ positive 303 

perception of the current zoning (Sutton & Tobin 2009) and their negative attitude towards 304 

poaching activities in general (Bergseth & Roscher 2017) XXXXX . 305 

The critical roles of fishing capacity (determined by the number and location of registered 306 

recreational boats) and accessibility (determined by the number and location of boat ramps) 307 

indicate potential benefits associated with increased integration of new and updated data, 308 

for example, in coordination with the Queensland Department of Transport and Main Roads 309 

(TMR). Although the number of boats registered cannot be capped, TMR registration data, 310 

regulatory conditions, and planning schemes (e.g. for development and maintenance of 311 

recreational access points) represent potentially valuable points of opportunity around 312 

which to foster collaborative monitoring and management. [It is also worth noting that the 313 

main predictor of poaching risk in our case (i.e. Fishing capacity) is largely influenced by boat 314 

ownership, which is in turn driven by the broader external economic context (e.g. 315 

Queensland’s resources boom and associated Fly-In-Fly-Out workforce patterns; Queesnland 316 

Government, 2015).] 317 

Our findings provide the preliminary indication that the patrol strategies applied in this case 318 

may have been sub-optimal, as patrolling effort only partially matches with the identified 319 

spatial patterns of poaching risk. Designing more cost-effective enforcement strategies may 320 

require redistributing partly patrol effort where enforcement gaps are likely to occur (i.e. 321 



higher poaching risk and lower patrol effort). No-take MPAs that may benefit from increased 322 

effort are often adjacent to shore. Thus, land-based compliance officers might be deployed 323 

more frequently in these areas. Systematic resource allocation methods (e.g., Marxan) could 324 

also be used to achieve an optimum deployment of patrol vessels, aiding the design of cost-325 

effective enforcement strategies (Plumptre et al. 2014). 326 

The benefit of our approach provides a nuanced and precise understanding of the 327 

interactions among various risk factors related to recreational poaching, allowing one to 328 

reliably and accurately predict poaching risk and examine where patrols may be 329 

preferentially allocated. The relatively low sample size, however, means that we were not 330 

able to incorporate the temporal dimension and identify when such patrols should be 331 

deployed. Future applications based on multiple times and long periods would provide more 332 

dynamic predictions. Weather effects would for instance enable an improved contextual 333 

understanding and help to better predict poacher behavior on a day-to-day basis (Critchlow 334 

et al. 2015), while longer temporal changes could help determining the deterrence effects of 335 

patrols (Dobson et al. 2018), both of which will aid patrol strategy decisions and improve 336 

patrol efficiency as a whole. It also important to never forget to invest in all activities that 337 

also help promote compliance, such as information or participation to decision-making. 338 
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Table  470 

Table 1 | Predictors used to predict poaching in Green Zones of the Cairns Management Area. 471 

Name Description Range (unit) 

Accessibility Distance to the nearest boat ramp access point 0-107 (km) 

Aspect Compass direction that a slope faces (E:90°; S: 180°; W:260°; 

N:0°=360°) 

0-360 (°) 

Coral Number of coral-dominated patches within a 1km radius 0-656 (nb) 

Depth Distance from the surface to the sea bottom -150 - -0.6 (m) 

Features Distance to the nearest pontoon or mooring 0-53 (km) 

Fishing 

capacity 

Number of motorized recreational boats registered within a 

50km radius 

2.6-197.2 (nb) 

Islands Distance to the nearest island 0-53.3 (km) 

Reefs Distance to the nearest dry reef 0-19.6 (m) 

Slope Incline of the sea bottom 0-63.6 (°) 

Boundary Distance from the nearest boundary 0-6.8 (m) 

  472 



Figures 473 

Figure 1: Location of the Cairns Management Region (CMR) within the Great Barrier Reef Marine Park, 474 

Australia. 475 

Figure 2: Predictors of poaching risk in no-take zones according to the final BRT model. The top-left plot shows 476 

the relative influence of the predictor variables used to model the occurrence of poaching incidents. The other 477 

plots show partial dependency plots with 95% confidence intervals for the four most influential variables. The 478 

graphs show the effect of a given predictor on the probability of incident occurrence while holding all other 479 

predictor variables constant at their mean. 480 

Figure 3: Pairwise interaction plots of the four strongest interactions between variables predicting poaching 481 

risk. The left panels indicate the median fitted function calculated on 1,000 bootstrap replicates. The right 482 

panel indicates error around this fitted function, measured as the difference between the 0.95 and 0.05 483 

quantiles calculated on the same bootstrap replicates. All interactions were significant (p<0.01). 484 

Figure 4: Predicted relative probability of incident occurrence within the no-take MPAs of the Cairns 485 

Management Region, and associated level of patrol monitoring effort. Numbers indicate poaching hotspots 486 

within no-take zones: 1- Tongue Reef; 2-Low Isles Reef; 3-Michaelmas Reef; 4-Upolu Reef; 5-Green Island Reef; 487 

6-Wide Bay; 7-Scott Reef; 8-MNP-17-1070; 9-Normanby-Mabel Reef; 10-Feather Reef; 11-Sisters-Stephens 488 

Reef; 12-Gardens Beach. 489 

Figure 5: Identifying potential mismatch between patrol effort and poaching risk. Bi-plot represent MPA 490 

averages. Areas in yellow and blue respectively indicate where patrol distribution matches with poaching risk. 491 

Areas in greatest risk of poaching exposure with low surveillance effort are shown in maroon; they correspond 492 

with areas potentially requiring more patrolling given their predicted level of poaching risk. These include 1-493 

Sisters-Stephens Reef; 2-Gardens Beach; 3-Feather Reef; 8-MNP-17-1070.  494 


