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Marine Protected Areas (MPAs) are effective resource management and conservation measures, but their effectiveness is often hindered by non-compliant activities such as poaching. Better predicting poaching risk and spatial patterns is crucial for efficient law enforcement and to ensure MPAs are delivering the outcomes they were established for.

Here, we predicted poaching risk from recreational fishers within fully protected MPAs of Australia's Great Barrier Reef Marine Park (GBRMP). Combining patrol effort data, observed distribution of reported incidents, and geographically-referenced predictor variables, we modeled the occurrence probability of poaching incidents using boosted regression trees and mapped poaching risk at fine-scale. Our findings (i) reinforce the key role of fishing attractiveness, accessibility and capacity in shaping the spatial patterns of illegal recreational fishing; (ii) identify key interactions among XXX and tipping points beyond which poaching is more likely to occur; and (iii) highlight gaps in patrol effort that could be filled for improved resource allocation. The methods developed through this study provide a novel approach to quantify the relative influence of multiple interacting factors in shaping poaching occurrence, and hold promises for replication across a broad range of marine or terrestrial settings.

Introduction

Marine Protected Areas (MPAs) are widely promoted as a tool for resource management and conservation (REFs). While various elements of MPA design and implementation are essential [START_REF] Claudet | Marine reserves: size and age do matter[END_REF][START_REF] Jupiter | Ecosystem-based management in Fiji: Successes and challenges after five years of implementation[END_REF][START_REF] Green | Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design[END_REF][START_REF] Gill | Capacity shortfalls hinder the performance of marine protected areas globally[END_REF], the effectiveness of an MPA is ultimately reliant on its users' compliance with regulations. Yet, ensuring compliance, or infringements, remains a persistent problem, and numerous noncompliant activities (e.g. harvest, waste disposal, dampening, or illegal constructions) continue to occur within many MPAs worldwide (REF?). Of these, illegal fishing inside MPAs (i.e., poaching) is particularly prevalent, and can easily render MPAs ineffective [START_REF] Samoilys | Effectiveness of five small Philippines' coral reef reserves for fish populations depends on site-specific factors, particularly enforcement history[END_REF][START_REF] Guidetti | Italian marine reserve effectiveness: Does enforcement matter?[END_REF][START_REF] Campbell | Weak Compliance Undermines the Success of No-Take Zones in a Large Government-Controlled Marine Protected Area[END_REF]) and erode trust in management (REF).

As with all regulatory frameworks, individual reasons for not complying with rules vary between negligent, opportunistic and intentional offending. To be effective, compliance management should address each level of offending through appropriate strategies including, education, engagement and enforcement, respectively [START_REF] Ivec | Applications of responsive regulatory theory in Australia and overseas: Update[END_REF].

Enforcement is often associated to resource-demanding management activities in MPAs (i.e. due to vessel, personnel and legal costs), resources need to be strategically allocated by effectively targeting patrols to locations and times at which poaching is more likely to be prevalent. This is particularly critical in large MPAs .

It has recently been shown that wildlife crime tend to be concentrated in space [START_REF] Brill | A decade of illegal fishing in Table Mountain National Park (2000-2009): trends in the illicit harvest of abalone Haliotis midae and West Coast rock lobster Jasus lalandii[END_REF][START_REF] Maingi | Spatiotemporal patterns of elephant poaching in south-eastern Kenya[END_REF][START_REF] Arias | Optimizing enforcement and compliance in offshore marine protected areas: a case study from Cocos Island, Costa Rica[END_REF], time [START_REF] Diogo | Catch me if you can: Non-compliance of limpet protection in the Azores[END_REF], on specific ecosystem components [START_REF] Pires | A CRAVED Analysis of Multiple Illicit Parrot Markets in Peru and Bolivia[END_REF][START_REF] Kurland | Forest Policy and Economics The spatial pattern of redwood burl poaching and implications for prevention[END_REF]) and were concerning a restricted set of offenders [START_REF] Weekers | Conservation Criminology: Modelling Offender Target Selection for Illegal Fishing in Marine Protected Areas[END_REF]. Understanding what prevails/drives these patterns can assist in the development of cost-effective surveillance strategies.

Surveillance activities are more effective when adequately and sustainably funded and staffed, and targeted to the right places at the right times [START_REF] Jachmann | Monitoring law-enforcement performance in nine protected areas in Ghana[END_REF][START_REF] Critchlow | Spatiotemporal trends of illegal activities from ranger-collected data in a Ugandan national park[END_REF][START_REF] Critchlow | Improving law enforcement effectiveness and efficiency in protected areas using ranger-collected monitoring data[END_REF][START_REF] Petrossian | Preventing illegal, unreported and unregulated (IUU) fishing: a situational approach[END_REF]. In line with the 'law of crime concentration' [START_REF] Weisburd | The law of crime concentration and the criminology of place[END_REF], poaching is far from being a random activity. Poaching is a highly structured activity driven by the convergence of willing offenders and vulnerable targets at suitable places [START_REF] Moreto | Wildlife crime: An environmental criminology and crime science perspective[END_REF]. 'Poaching hotspots' are formed when these points of convergence are repeated over space and time, revealing an underlying opportunity structure for illegal activities.

Poaching hotspots tend to share a set of common characteristics, or risk factors (REF). In coastal and marine environments, they include the harvest target availability and attractiveness, accessibility (e.g. travel costs and travel time), opportunism (e.g. along MPA boundaries), guardianship effectiveness, and the perceived likelihood and consequence of getting caught [START_REF] Arias | Optimizing enforcement and compliance in offshore marine protected areas: a case study from Cocos Island, Costa Rica[END_REF]Bergseth et al. 2017;[START_REF] Weekers | Risky facilities : Analysis of illegal recreational fishing in the Great Barrier Reef[END_REF][START_REF] Weekers | Conservation Criminology: Modelling Offender Target Selection for Illegal Fishing in Marine Protected Areas[END_REF].

Determining the relative importance of risk factors and patterns of poaching is nonetheless a challenging and often context-specific tasks. While approaches assessing patterns of illegal activities based on raw patterns of incidents reported by patrols are useful tools to identify where crimes are occurring more frequently [START_REF] Hilborn | Effective Enforcement in a Conservation Area[END_REF], they are typically biased towards areas that are routinely surveyed. Failure to account for spatiotemporal variation in surveillance effort runs the risk of systematically over-or underestimating non-compliant activities [START_REF] Keane | The sleeping policeman: understanding issues of enforcement and compliance in conservation[END_REF]. Other approaches have been proposed to explicitly account for detection biases [START_REF] Critchlow | Spatiotemporal trends of illegal activities from ranger-collected data in a Ugandan national park[END_REF][START_REF] Critchlow | Improving law enforcement effectiveness and efficiency in protected areas using ranger-collected monitoring data[END_REF], but they tend to rely on assumptions that may not necessarily hold in marine systems (e.g. on the form of the relationship between predictors and incident occurrence) and fail to account for interactions between risk factors.

Here, we aim at improving patrol efficiency by better understanding and predicting how [potentially complex] interactions among [various] risk factors shape poaching risk. We use spatially-explicit environmental and human predictors combined with patrol-collected incident and monitoring data commonly available across various settings to (1) quantify the relative influence of various risk factors in shaping poaching risk; (2) identify main interactions and critical tipping points; (3) predict poaching risk in 44 no-take MPAs within Australia's Great Barrier Reef Marine Park (GBRMP); and (4) identify potential gaps in patrol surveillance effort.

Methods

Study site

The Cairns Management Region (CMR) is located within Australia's Great Barrier Reef Marine Park (GBRMP) (Fig. 1). The current zoning plan was established in 2003 and came into force on 1 July 2004. It consists of various types of multiple-use areas, but we focused here on Marine National Park (Green) Zones, a key zone type for the managing authority's strategy (Great Barrier Reef Marine Park Authority 2018). Marine National Park (Green) Zones are 'no-take/regulated access' areas [START_REF] Horta E Costa | A regulation-based classification system for Marine Protected Areas (MPAs)[END_REF] where all extractive activities like fishing or collecting are not allowed. They fall within the broader type of Fully Protected Areas (Horta e Costa et al. 2016) (from now on, we refer to Marine National Park (Green) Zones as no-take zones). No-take zones represent about a third of the GBRMP total area (11.7% of the CRM) and thus require extensive surveillance effort. The primary form of offence in Australia's Great Barrier Reef Marine Park (GBRMP) is poaching by recreational fishers in no-take zones (Great Barrier Reef Marine Park Authority 2018), and a number of studies have suggested that such activity may be occurring significantly more frequently than previously thought [START_REF] Davis | Surveillance and poaching on inshore reefs of the Great Barrier Reef Marine Park[END_REF][START_REF] Castro-Sanguino C | Detecting conservation benefits of marine reserves on remote reefs of the northern GBR[END_REF]Bergseth et al. 2017). 

Incidents' presence and pseudo-absence

Drawing on spatially explicit occupancy models increasingly used in the predictive ecological community [START_REF] Marmion | Evaluation of consensus methods in predictive species distribution modelling[END_REF], we modelled the spatial distribution of poaching risk within the CMR's no-take zones using Boosted Regression Trees (BRT; [START_REF] Elith | A working guide to boosted regression trees[END_REF] based on observed distribution of reported incidents as a function of geographicallyreferenced predictor variables,. Gradient boosted regression tree approaches such as BRT are increasingly used over statistical approaches for prediction because they better handle interactions among predictor variables and non-linearity than regression-based approaches; both of which were expected to emerge in our case. BRTs also can prevent overfitting by providing regularization [START_REF] Elith | A working guide to boosted regression trees[END_REF].

Presence records (i.e. occurrence of poaching incidents) were obtained from the Field Management Compliance Unit (FMCU) at the Great Barrier Reef Marine Park Authority. The data represents all reported incidents of illegal recreational fishing in CMR's no-take zones for the period January 2015 to March 2019 (n=221, Fig. S1). About 95% of these happened during daylight hours, between 7am and 7pm, reflecting effort data from the patrol vessel.

The presence data used in this study represents reliable records at GPS resolution, with heterogeneous detectability due to heterogeneous monitoring effort across the study area.

To account for this, we assigned a weight to presence points based on monitoring effort, on the basis that incidents detected in highly monitored areas had lower weight than incidents detected in areas that are monitored more rarely (see Supporting Information).

In our case, confirmed absences of incidents (i.e. locations where poaching never occurred) are more difficult to obtain due to the diffuse nature of offenders and the impracticability to monitor the entire area constantly. Therefore, we created artificial absence data (herein pseudo-absence) following guidelines from [START_REF] Cerasoli | Comparing pseudo-absences generation techniques in Boosted Regression Trees models for conservation purposes : A case study on amphibians in a protected area[END_REF]. Specifically, we generated the pseudo-absences using geographically stratified random selection (i.e. based on density estimate of presences) so that the sum of the weights on the pseudo-absences (i.e.

proportional to monitoring effort) equals the sum of those on the presence points (i.e. inverse of monitoring effort). This process yielded a total of 498 pseudo-absence points (Fig. S1).

Predictors of poaching risk

We used a set of ten spatially-explicit predictors relating to environmental and human dimensions to predict the probability of incident occurrence (Table 1). Distance-related predictors (i.e. Accessibility, Features, Islands, Reefs, and Boundary) were derived from the most up-to-date data available on each elements' locations using the cost distance tool in ESRI's ArcGIS 10.5. Bathymetry data (Depth) was obtained from the DeepReef database (https://www.deepreef.org/bathymetry/65-3dgbr-bathy.html). Slope and Aspect were derived from the bathymetry model, using the 'Slope' and 'Aspect' tools in QGIS, respectively. Coral was modeled as the sum of the surrounding living coral patches, described as the number of 15x15m cells dominated by a coral taxon within a 1km radius around each focal cell on the basis of the Benthic cover type map for Reef Top areas of the Cairns Management Area. Finally, Fishing capacity, defined as the overall ability of the recreational fishery to extract resources in a 50km radius, was modeled by summing the number of motorized recreational boats (all size classes) registered in postcodes located within a 50km radius around each cell. Hence, our predictive model provides a static picture of poaching risk, and therefore assumes that other potential drivers are held evenly distributed throughout the study area.

Building a predictive model of poaching risk

We fitted the BRT models with a weighted logistic regression for binary classification against the ten predictors (Table 1) using the {dismo} package [START_REF] Hijmans | dismo: Species Distribution Modeling[END_REF] in the R statistical software version 3.4.0 (R Core Team 2017). This technique requires the specification of three main parameters: the shrinkage parameter, limiting the contribution of the single trees added to the model through the boosting algorithm (tc), the minimum loss reduction required to make a split (lr), and the bag fraction (bf), proportion of data to be selected at each step. In order to identify the best set of parameters, we implemented a two-step tuning process that retained the set of parameters maximizing cross-validated Area

Under the Curve (AUC) (Supplementary Information). We also explored the possibility of eliminating non-informative predictor variables to select the most parsimonious model, which led to the exclusion of the variable Coral. The final model explained 61% of the crossvalidated variance and had an AUC score of 0.93, indicating strong explanatory and predictive performance, respectively.

We quantified the relative interaction strength and significance between the nine remaining predictor variables using 500 bootstrap resampling [START_REF] Pinsky | Fishing, fast growth and climate variability increase the risk of collapse[END_REF].

We calculated the relative influence of the predictor 95% confidence intervals from 1,000 bootstrap replicates of the original dataset. Based on the same bootstrap replicates, we obtained partial dependency plots with 95% confidence intervals to visualize the relationships between the most influential predictor variables and the response (occurrence probability), while keeping all other predictors constant. Maps of the predicted poaching risk (i.e. probability of incident occurrence) were generated from the optimal BRT model's projections over the whole study area at each 50m * 50m cell with a continuous scale 0-1 for each bootstrap replicate, allowing the median predicted poaching risk +/-95% confidence interval to be mapped. Detailed methods used for model building and bootstrapping are provided in Supplementary Information.

Because the model underlying this map accounts for heterogeneous detectability, we were able to overlap the predicted poaching risk with patrol effort and identify potential spatial mismatch. We visualized how predicted poaching risk with patrol effort overlap using a bivariate choropleth map.

Results

Almost 75% of the spatio-temporal variability of incident occurrence was described by four predictors (Fig. 2). Fishing capacity was the most important predictor variable, accounting for 25.7% of the explained variability in incident occurrence. Depth, Accessibility, and Slope explained a broadly similar portion of the variability in incident occurrence, ranging between 17.8% and 14.3%. Boundary, Islands, and Features had smaller contributions to the model prediction (6.1% each). Reefs and Aspect explained little variability of incident occurrence(s). The occurrence probability remained low at low levels of Fishing capacity (25.7% relative influence) and then steadily increased from 100 boats per 50km radius onwards (Fig. 2).

Similar patterns were observed for Depth (17.8%), with initially low levels of poaching likelihood below -40m increasing until reaching a plateau around -20m depth. Accessibility was the third most important predictor of poaching occurrence (15.6%), with a negative non-linear relationship displaying a threshold around 45km from the nearest boat ramp.

Fitted function for Slope (14.3%) displayed a positive asymptotic relationship that reached a plateau around 15° angle. Other less significant predictors with negative relationships were distance to: Boundary (6.1%), Features (6.1%), Islands (6.1%), and Reefs (3.6%).

Models considering interactions between predictors performed better than simpler ones.

The four strongest pairwise interactions were Fishing capacity x Accessibility (71.51; p-value<0.001), Fishing capacity x Depth (36.9; p-value<0.001), Slope x Accessibility (14.1; p-value<0.001) and Fishing capacity x Slope (9.9; p-value<0.01). Occurrence probability for incidents was higher in areas characterized by higher Fishing capacity, shallower Depths, shorter distances to boat ramps (i.e. Accessibility), and steeper sea bottom (Figs. 23). As a consequence of these interactions and thresholds, predicted poaching risk was highly heterogeneous across the study area (Fig. 4). Poaching risk was concentrated on inshore and mid-shelf reefs located near major towns (Port Douglas, Cairns and Innisfail). Conversely, notake zones located far off-shore and in the north of the Cairns Management Region were exposed to lower levels of predicted poaching risk. Poaching hotspots include sites such as Low Isles Reef, Upolu Reef, Green Island Reef, Wide Bay, and Sisters-Stephens Reef (Fig. 4). Patrol allocation was skewed towards a few MPAs around Cairns and, to a lower extent, Port Douglas (Fig. 4). Indeed, among the 44 MPAs located within the CRM, 75% of the total patrol monitoring conducted between 2015 and 2019 was allocated in only four of them (Fig. S2).

This great heterogeneity of patrol effort partially matched with the spatial distribution of predicted poaching risk (Fig. 5). Indeed, while the highest levels of patrol effort were found in the three major poaching hotspots (yellow in Fig. 5), other areas with comparable levels of poaching risk received much less monitoring. Such areas, which may represent enforcement gaps, are mostly located in the south of the CMR (maroon in Fig. 5). Areas predicted to be exposed to low poaching risk tended to be monitored less (blue in Fig. 5). 

Discussion

Identifying the underlying drivers of poaching and understanding how they interact to structure poaching risk offer great value to managers for cost effective surveillance. This study presents the first attempt at quantifying the relative importance of, and interaction between multiple risk factors of recreational poaching in a large Marine Protected Area (MPA) using commonly available patrol-collected data. As such, it offers novel insights that can inform management strategies and planning, via a new predictive approach that can potentially be applied to other settings.

The overwhelming influence of only four predictors (Fishing capacity, Depth, Accessibility and Slope) in explaining poaching risk is striking. Our analysis confirms the assumption that poaching 'hotspots' are characterized by substantial Fishing capacity; however, our model identifies a threshold (i.e. >100 boats within a 50km radius; Fig. 2) beyond which poaching risk increases markedly. Similarly, poaching 'hotspots' were predicted by the model at depths shallower than 40m, short(er) distances to the nearest boat ramp (0 to 45km) and in areas of complex topography, defined by steep(er) sea bottom (Figs. 23). Overall, these findings emphasize the value of these simple yet critical features in the assessment of an MPA's likelihood to be exposed to poaching and provide insights into the mechanisms by which they can interact.

Our results highlight the critical role of benthic topography (Depth and Slope) in driving poaching risk. In coral reefs, areas with high slope and low depth -where poaching risk is the highest-typically reflect reef slopes and edges, which often harbor higher target fish abundance and biomass. This suggests that these two variables can be appealing to recreational fishers and therefore may broadly define environmental bounds of "attractiveness" to recreational poachers. Since travel time or cost remain constraining factors [START_REF] Maire | How accessible are coral reefs to people? A global assessment based on travel time[END_REF], Accessibility proved also to be an important driver. Nevertheless, it is worth noting that the tipping point beyond which poaching risk diminishes significantly (around 45km from the nearest boat ramp) remains substantially higher in the GBRMP than in other places globally [START_REF] Daw | Spatial distribution of effort by artisanal fishers: Exploring economic factors affecting the lobster fisheries of the Corn Islands, Nicaragua[END_REF][START_REF] Daw | The spatial behaviour of artisanal fishers: Implications for fisheries management and development[END_REF][START_REF] Metcalfe | Addressing Uncertainty in Marine Resource Management; Combining Community Engagement and Tracking Technology to Characterize Human Behavior[END_REF]. Such difference in maximum travel distance might reflect the relative wealth of Australians and the investment by recreational fishers in faster and more sea-worthy vessels as fishing platforms (CRC 2017(CRC , 2018)).

Poaching risk was better predicted when drivers related to fishers' spatial preference (i.e.

accessibility and attractiveness) interacted with Fishing capacity (Fig. 3). The combined effects of attractiveness, accessibility and fishing capacity in driving fishing pressure generally [START_REF] Daw | Spatial distribution of effort by artisanal fishers: Exploring economic factors affecting the lobster fisheries of the Corn Islands, Nicaragua[END_REF][START_REF] Castro-Sanguino C | Detecting conservation benefits of marine reserves on remote reefs of the northern GBR[END_REF][START_REF] Thiault | Combining participatory and socioeconomic approaches to map fishing effort in small-scale fisheries[END_REF][START_REF] Metcalfe | Addressing Uncertainty in Marine Resource Management; Combining Community Engagement and Tracking Technology to Characterize Human Behavior[END_REF][START_REF] Harborne | Modelling and mapping regional-scale patterns of fishing impact and fish stocks to support coral-reef management in Micronesia[END_REF], and poaching risk specifically [START_REF] Diogo | Catch me if you can: Non-compliance of limpet protection in the Azores[END_REF][START_REF] Weekers | Risky facilities : Analysis of illegal recreational fishing in the Great Barrier Reef[END_REF] have been showed elsewhere. However, the fact that poaching-specific predictors (e.g. distance to the nearest boundary) are more marginal compared to fishing capacity suggests that most incidents may be due to fishers' negligence rather than driven by opportunistic or intentional motivations. This is particularly XXXX given the fishers' positive perception of the current zoning [START_REF] Sutton | Recreational fishers' attitudes towards the 2004 rezoning of the Great Barrier Reef Marine Park[END_REF] Our findings provide the preliminary indication that the patrol strategies applied in this case may have been sub-optimal, as patrolling effort only partially matches with the identified spatial patterns of poaching risk. Designing more cost-effective enforcement strategies may require redistributing partly patrol effort where enforcement gaps are likely to occur (i.e.

higher poaching risk and lower patrol effort). No-take MPAs that may benefit from increased effort are often adjacent to shore. Thus, land-based compliance officers might be deployed more frequently in these areas. Systematic resource allocation methods (e.g., Marxan) could also be used to achieve an optimum deployment of patrol vessels, aiding the design of costeffective enforcement strategies [START_REF] Plumptre | Efficiently targeting resources to deter illegal activities in protected areas[END_REF].

The benefit of our approach provides a nuanced and precise understanding of the interactions among various risk factors related to recreational poaching, allowing one to reliably and accurately predict poaching risk and examine where patrols may be preferentially allocated. The relatively low sample size, however, means that we were not able to incorporate the temporal dimension and identify when such patrols should be deployed. Future applications based on multiple times and long periods would provide more dynamic predictions. Weather effects would for instance enable an improved contextual understanding and help to better predict poacher behavior on a day-to-day basis [START_REF] Critchlow | Spatiotemporal trends of illegal activities from ranger-collected data in a Ugandan national park[END_REF], while longer temporal changes could help determining the deterrence effects of patrols [START_REF] Dobson | Detecting deterrence from patrol data[END_REF], both of which will aid patrol strategy decisions and improve patrol efficiency as a whole. It also important to never forget to invest in all activities that also help promote compliance, such as information or participation to decision-making. Areas in greatest risk of poaching exposure with low surveillance effort are shown in maroon; they correspond with areas potentially requiring more patrolling given their predicted level of poaching risk. These include 1-Sisters-Stephens Reef; 2-Gardens Beach; 3-Feather Reef; 8-MNP-17-1070.
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 1 Figure 1: Location of the Cairns Management Region (CMR) within the Great Barrier Reef Marine Park, Australia.

Figure 2 :

 2 Figure 2: Predictors of recreational incident occurrence in no-take zones. The left panel shows the relative influence (and 95% confidence intervals) of the predictor variables. The right panel shows partial dependency plots with 95% confidence intervals for the four most influential variables. The graphs show the effect of a given predictor on the probability of incident occurrence while holding all other predictor variables constant at their mean.
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 3 Figure 3: Pairwise interaction plots of the four strongest interactions between variables predicting poaching risk. The left panels indicate the median fitted function calculated on 1,000 bootstrap replicates. The right panel indicates error around this fitted function, measured as the difference between the 0.95 and 0.05 quantiles calculated on the same bootstrap replicates. All interactions were significant (p<0.01).

Figure 4 :

 4 Figure 4: Predicted relative probability of incident occurrence within the no-take MPAs of the Cairns Management Region of the Great Barrier Reef Marine Park, and associated level of patrol monitoring effort. Numbers indicate poaching hotspots within no-take zones: 1-Tongue Reef; 2-Low Isles Reef; 3-Michaelmas Reef; 4-Upolu Reef; 5-Green Island Reef; 6-Wide Bay; 7-Scott Reef; 8-MNP-17-1070; 9-Normanby-Mabel Reef; 10-Feather Reef; 11-Sisters-Stephens Reef; 12-Gardens Beach.

Figure 5 :

 5 Figure 5: Congruence and mismatch between patrol effort and poaching risk. Bi-plot represent MPA averages. Areas in yellow and blue respectively indicate where patrol distribution matches with poaching risk. Areas in greatest risk of poaching exposure with low surveillance effort are shown in maroon; they correspond with
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 1 Figures Figure 1: Location of the Cairns Management Region (CMR) within the Great Barrier Reef Marine Park, Australia.

Figure 2 :

 2 Figure 2: Predictors of poaching risk in no-take zones according to the final BRT model. The top-left plot shows the relative influence of the predictor variables used to model the occurrence of poaching incidents. The other plots show partial dependency plots with 95% confidence intervals for the four most influential variables. The graphs show the effect of a given predictor on the probability of incident occurrence while holding all otherpredictor variables constant at their mean.
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 3 Figure 3: Pairwise interaction plots of the four strongest interactions between variables predicting poaching risk. The left panels indicate the median fitted function calculated on 1,000 bootstrap replicates. The right panel indicates error around this fitted function, measured as the difference between the 0.95 and 0.05 quantiles calculated on the same bootstrap replicates. All interactions were significant (p<0.01).
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 4 Figure 4: Predicted relative probability of incident occurrence within the no-take MPAs of the Cairns Management Region, and associated level of patrol monitoring effort. Numbers indicate poaching hotspots within no-take zones: 1-Tongue Reef; 2-Low Isles Reef; 3-Michaelmas Reef; 4-Upolu Reef; 5-Green Island Reef; 6-Wide Bay; 7-Scott Reef; 8-MNP-17-1070; 9-Normanby-Mabel Reef; 10-Feather Reef; 11-Sisters-Stephens Reef; 12-Gardens Beach.

Figure 5 :

 5 Figure 5: Identifying potential mismatch between patrol effort and poaching risk. Bi-plot represent MPA averages. Areas in yellow and blue respectively indicate where patrol distribution matches with poaching risk.

Table 1 |

 1 Predictors used to predict poaching in no-take zones of the Cairns Management Area.

	Name	Description

Using this set of predictors, we were able to capture some previously unexplored potential risk factors in the GBRMP, although we acknowledge that poaching risk can have other dimensions such as individual determinants owned by offenders, weather, or time of the day/week/year

[START_REF] Bergseth | Discerning the culture of compliance through recreational fi sher ' s perceptions of poaching[END_REF] Bergseth et al. 2017;[START_REF] Oyanedel | Illegal fishing and territorial user rights in Chile[END_REF][START_REF] Weekers | Risky facilities : Analysis of illegal recreational fishing in the Great Barrier Reef[END_REF][START_REF] Weekers | Conservation Criminology: Modelling Offender Target Selection for Illegal Fishing in Marine Protected Areas[END_REF]

) that we were not able to incorporate here.

  and their negative attitude towards poaching activities in general (Bergseth & Roscher 2017) XXXXX .

	The critical roles of fishing capacity (determined by the number and location of registered
	recreational boats) and accessibility (determined by the number and location of boat ramps)
	indicate potential benefits associated with increased integration of new and updated data,
	for example, in coordination with the Queensland Department of Transport and Main Roads
	(TMR). Although the number of boats registered cannot be capped, TMR registration data,
	regulatory conditions, and planning schemes (e.g. for development and maintenance of
	recreational access points) represent potentially valuable points of opportunity around
	which to foster collaborative monitoring and management. [It is also worth noting that the
	main predictor of poaching risk in our case (i.e. Fishing capacity) is largely influenced by boat
	ownership, which is in turn driven by the broader external economic context (e.g.
	Queensland's resources boom and associated Fly-In-Fly-Out workforce patterns; Queesnland
	Government, 2015).]
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