
HAL Id: hal-03034059
https://hal.science/hal-03034059

Submitted on 1 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Providing Software Asset Management Compliance in
Green Deployment Algorithm

Noëlle Baillon-Bachoc, Eddy Caron, Arthur Chevalier, Anne-Lucie Vion

To cite this version:
Noëlle Baillon-Bachoc, Eddy Caron, Arthur Chevalier, Anne-Lucie Vion. Providing Software Asset
Management Compliance in Green Deployment Algorithm. SETCAC 2020 - Symposium on Emerging
Topics in Computing and Communications, Oct 2020, Chennai, India. pp.1-14. �hal-03034059�

https://hal.science/hal-03034059
https://hal.archives-ouvertes.fr

Providing Software Asset Management
Compliance in Green Deployment Algorithm

Noëlle Baillon-Bachoc1, Eddy Caron2, Arthur Chevalier1,2, and Anne-Lucie
Vion1

1 Orange S.A.
noelle.baillon@orange.com

annelucie.cosse@orange.com
2 Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP

F-69342, LYON Cedex 07, France
{firstname.surname}@ens-lyon.fr

Abstract. Today, the use of software is generally regulated by licenses,
whether they are free or paid and with or without access to their sources.
The world of licenses is very vast and unknown. Often only the public
version is known (a software purchase corresponds to a license). For en-
terprises, the reality is much more complex, especially for main software
publishers. Very few, if any, deployment algorithm takes Software As-
set Management (SAM) considerations into account when placing soft-
ware on Cloud architecture. This could have huge financial impact on
the company using theses software. In this article, we present the SAM
problem more deeply, then, after expressing our problem mathematically,
we present GreenSAM, our multi-parametric heuristic handling perfor-
mance and energy parameters as well as SAM considerations. We will
then show the use of this heuristic on two realistic situations, first with
an Oracle Database deployment and second with a larger scenario of
managing a small OpenStack platform deployment. In both cases, we
will compare GreenSAM with other heuristics to show how it handles
the performance/energy criteria and the SAM compliance.

Keywords: Licensing, Cloud, Software Asset Management, Ressources
Management, Deployment

1 Introduction

In contrast with public licensing, we have to license software by fulfilling what we
call a metric. A metric defines a way to calculate the number of licenses required
for software, so we can license it with x licenses under metric A or y licenses
under metric B. The price of licenses depends on the used metric. The metrics
of software licenses are defined contractually either by the general conditions of
sale found on the publisher’s website or by a contract between the customer and
the publisher. The general terms and conditions of sale available online can be
updated, but a license purchased before a change in the legal text must follow
the old version of the metric definition, so it is necessary to have a continuous

2 Arthur Chevalier et al.

monitoring of these metrics and the ability to identify and retrieve the legal
documents of each license when needed.

One problem stems from the fact that we can interpret the metrics definitions
in contracts in different ways and thus the customer is not in conformity because
of an unintended misunderstanding. A concrete and recent example of this is the
trial between SAP and Diageo [1], a company that uses SAP products. Because
of a lack of usage rights understanding due to legal uncertainty about licenses,
the company was fined £55 million ($75 million) for non-compliancy and more
recently a disagreement between SAP and AB InBev [2] where the latter was
facing a $600 million penalty. Most companies can’t afford or face such penalties.
Another telling number is the fact that 85% [3] of companies sanctioned for
counterfeiting were unknowingly non-compliant which shows the need for tools
to verify and ensure compliance automatically.

The Cloud also brings issues, there is no more obvious relation between soft-
ware and hardware. Without a border, every instance of an application may run
on every server and this dynamicity impact metrics. To solve this case, it is nec-
essary to recreate links between the resources used by software and the hardware
layer by any means and at the deepest levels. The problem is that monitoring
software usage in the Cloud is a difficult task, made easier by software inventory
tools provided by publishers. The problem arises when it is necessary to link
physical and software inventories while keeping track of when they were made
because a virtual machine or container can move much more easily in the Cloud
than in traditional architectures. These problems are critical as compliance is
expressed as ‘yes’ or ‘no’. A simple mistake can cause serious damages as seen
before. Then comes the problem of identifying the software itself. Indeed, the
discovery tools go back to the names of the executables and try to recognize
the associated products. Several techniques exist to improve this identification
as mentioned in the state of the art [4, 5] but it remains generally difficult. We
will focus on the management of these products here under the assumption that
the identification is total and accurate.

We can see that the larger a Cloud is, the greater is the need for tools that
can track software usage, identify licenses used, verify compliance and manage
effective placement. This tool is part of a process called “Software Asset Man-
agement” (SAM) which must be able to carry out the actions described above
but also have some industrial objectives allowing to have a return on use and
therefore to conduct a supplier strategy or even carry out portfolio consolidations
but we will not focus on these aspects.

In addition, the functioning of metrics forces the user to measure the usage
of the Cloud in a very extensive and very precise way. The metric function takes
in resources ranging from simple physical resources (number of cores, number of
users) to much more complicated resources (number of indirect accesses). Each
metric will target one to several of these and to be able to manage all the metrics
of each application in the Cloud we need to know exactly how much material or
immaterial resources are being consumed as mentioned above.

GreenSAM 3

One extra problem is that the compliance verification is done retrospectively
(after the use so it is too late to take action) and take a lot of time: for a
large Cloud, it can take several months to check the compliance for all installed
software without appropriate tools. Besides, to reduce and optimize the license
consumption according to the needs, software asset managers should have in-
formation from all sides (machine management, human resources, accounting)
because of the lack of standardization of the metrics. Indeed, editors can use in
their metrics everything they want from physical attributes of servers to number
of employees in different teams.

Finally, there is a total lack of deployment algorithm considering compli-
ance and license cost. Only few papers showed an interest in SAM and often
with the wrong assumption of one license per software. Also, only considering
SAM during the deployment is not possible, as reducing the number of licenses
with a processor number based metric could lead to placing all the software on
a single processor server. Therefore, we need to use a multi-parametric heuris-
tic. In 2014, data centers in the U.S. consumed an estimated 70 billion kWh,
representing about 1.8% of total U.S. electricity consumption. Current study
results show data center electricity consumption increased by about 4% from
2010-2014, and is expected to continue increasing in the near future by with
the same rate. Based on current trend estimates, U.S. data centers are pro-
jected to consume approximately 73 billion kWh late 2020. To answer this trend
and Software Asset Management problem we introduce GreenSAM which is a
multi-parametric deployment heuristic taking into account Software Asset Man-
agement considerations as well as performance and energy. Performance and
energy are contradictory - forming the basis for multi-objective optimization.

This paper is organized as follows: We start by presenting the state of the art
of Software Asset Management and the very few papers talking about deploy-
ment algorithm with license considerations in Section 2. Then, in Section 3, we
describe the major advancement of this paper, the GreenSAM heuristic before
introducing two use cases for it in Sections 4 and 5. Finally, in Section 6, we
conclude and discuss future directions to enhance the GreenSAM heuristic.

2 Related work

Genesis of Software Asset Management was in 1999 when Holsing and Yen [6]
proposed a study leading to the first considerations on the model and identifica-
tion of software. In 2004, Ben-Menachem and Marliss [7] underscored the need
for investment and the creation of tools for such processes to ensure long-term
management of software assets. In 2011, McCarthy and Herger [8] offered a so-
lution to combine Information Technology (IT), processes and Software Asset
Management: this requires the ability to scan all the infrastructure, make a li-
cense inventory, implement contract management and to produce reports on the
state of readiness for compliance and verification. In 2014, Gocek et al. [9] de-
scribed the SAM as tools for discovering and collecting information on instances
of software used in monitored environments. Recently in 2017, Vion et al. [10]

4 Arthur Chevalier et al.

made a brief survey of the existing SAM tools, their benefits and proposed a SAM
model for a Cloud architecture. Moreover, in 2018, Chevalier et al. [11] proposed
an efficient and economical way of handling metrics in Cloud environments for
Oracle Database and showed that a deployment algorithm focused on software
licenses could save money. During the same year [12] proposed optimization of
the placement of virtual machines with many other parameters including license
costs and showed that handling both problems of mapping virtual machines to
physical machines and mapping applications to virtual machines leads to better
results than considering the two problems in isolation. Even so, the problem is
well formulated, it uses the fact that an application uses one license at most
as we see in his UML model and that the number of licenses does not rely on
underlying architecture which is an unrealistic view of the licenses. We need to
tackle this problem.

On the other hand, to identify software several works were first carried out
in 2014, Han et al. [5] proposed a way to identify open-source software. Cho
et al. [4] proposed a technique on proprietary software to reduce counterfeiting
through a birthmark technique located in the executable. A data discovery agent
could use this birthmark to correctly identify the software. Then in 2018 Vion
et al. [13] proposed another way to identify the software following a purchase by
relying on ISO 19770 -3 and -4 [14] standards to correctly recognize the software
and the associated rights.

As many IT services and analyses use the Cloud and are dependent on large
infrastructures that can be local or remote [15], more and more questions are be-
ing asked about the huge energy consumption of these infrastructures to supply
and cool computing machines [16]. Research has been conducted to reduce these
consumptions [17] and heuristics have been proposed such as GreenPerf [18]
for example which introduces a performance and power consumption ratio to
improve energy efficiency or energy-efficient framework dedicated to Cloud [19].
In the context of 5G, very recent research shows that it is possible to reduce
consumption [20, 21]. The field of multi-parameter optimizations is very wide
and many researches are based on Pareto fronts in fields ranging from sensor
networks [22, 23] to virtual machine deployment [24].

3 GreenSAM: Energy and Software Asset Management

The GreenSAM heuristic aims at ensuring compliance during deployment of
applications while saving energy and keeping a sufficient level of performance.
This heuristic takes as input the set of servers we can deploy on and for each
servers, its attributes which we describe later. First, GreenSAM will remove
servers that will causes loss of compliance because of contractual rules. Then,
it will compute the Pareto front based on the servers’ attributes (here energy,
performance, and license number) to eliminate non Pareto efficient ones giving
us a subset. Then we compute scores for each server in this subset based on a
formula optimizing the parameters described in Subsection 3.2. We finally deploy
the software on the server with the best score. If two server get the same score,

GreenSAM 5

then we choose at random. We can see in Fig. 1 the flow of the deployment
algorithm using the GreenSAM heuristic.

These different steps are described in the following subsections:

3.1 Servers attributes

As performance and energy as huge research domains and evolve quickly, Green-
SAM is based on agnostic parameters. It means that every parameter we input
into GreenSAM are scores given by the user. The goal is to be able to compare
servers based on these scores. If the user wants to use cutting-edge computing
method for energy consumption, he will not have to use another heuristic each
time and GreenSAM will not have to understand this cutting edge method.
This way, we can enhance the accuracy of GreenSAM by enhancing the method
to compute scores we give to it. Therefore, GreenSAM manipulate parameters

Removal	of	non-compliant	server

Pareto	front	on	the	remaining	servers

GreenSAM	heuristic	on	the	pareto	subset

Set	of	servers Set	of	metrics

server	to	deploy	on

Fig. 1. Flow of deployment algorithm using GreenSAM heuristic. The first step re-
moves the servers that cause a non-compliance situation if the software is deployed on
them. Then, in second step, we apply a Pareto front to the remaining servers to keep
only the Pareto optimal servers. Finally, to choose one in the Pareto subset, we apply
the GreenSAM heuristic and take the best server.

6 Arthur Chevalier et al.

without units but is able to compare servers by normalizing the attributes. Hav-
ing two servers with 50 and 30 energy consumption will have the same order
relation than two servers having 100 and 60 energy consumption.

In our case, the energy consumption is computed with the number of active
cores on the server. The SAM score is given by the price of the licenses we would
have to possess if we place the software on one particular server. Finally, we used
a modular performance indicator. For example, the performance of a distributed
high-performance computing application will be affected by the network speed
but also by the parallel power of the machine (heterogeneous architecture or not,
for example). Storage service in the Cloud will be efficient if many people can
access it at the same time and if it has enough storage (more or less fast). We
define different performance classes in GreenSAM to describe the performance
calculation of each product if we want to have a precise index of whether or not
a product is performing in a given environment. A product is therefore defined
by its metrics, and its performance calculation function (performance class).

3.2 Multi-objective optimization

Any optimization problem will have design parameters whose best possible val-
ues from the viewpoint of the objectives are sought to be attained in the opti-
mization process. The optimization task here is to map a set of software onto
available resources, here servers. The three objective functions are defined with
the following variables:

n The number of servers noted s
m The number of applications noted a
As The attributes of a server s
fa The formula for the metric of the application a that takes into account at-

tributes of servers
Es The energy consumed by the server s for the first installation. When we

deploy an application a on a server already containing one then Es = 0.
PIa The performance class of the application a. It is a function waiting for

attributes of a server to give performance score. If the application a is not
installed on the server s then PIa(As) = 0.

Minimize energy consumption The total energy consumption ‘ET ’ of our
deployment is then expressed as:

ET =

n∑
s=1

Es × (¬(∃ a ∈ [1..m]/a ∈ s)) (1)

Maximizing performance To avoid putting all applications on the same
server we added operational constraints. Each application will require at least 2
cores not used so PIa(As) = 0 if a doesn’t fit on s. The overall performance PT

is expressed as:

GreenSAM 7

PT =

n∑
s=1

m∑
a=1

PIa(As) (2)

Minimizing software cost This objective function will stop the process if the
metric computation brings a non-compliant state. The total license consumption
LT is expressed as:

LT =

n∑
s=1

m∑
a=1

fa(As) (3)

In most cases, machines that bring performance will have higher energy con-
sumption, implying that objectives PT and ET are contradictory - forming the
basis for multi-objective optimization.

We first compute the three criteria each time we deploy a product because the
results per server may vary between each deployment, indeed the performance
indicator can vary because of the past deployment as well as the license cost
(for example the metric depends on the number of instance of the product on
the server) which provide the Cloud dynamic state. Then we filter servers that
are not compliant with the current product metrics (for example there can be
constraints with country or language). Afterwards, we apply a Pareto front to
this dataset to have a subset of potentially good servers. We still have to choose
one of the “best servers” given by the Pareto front and so we implemented a
function to give a score to each server of the subset. This score function will
simply divide normalized performance score by the sum of normalized license
and energy points. We add one to the denominator to avoid being in a case of a
server having no energy and license consumption breaking the division. Finally,
GreenSAM will return the first server of the sorted subset to deploy the software
on it before starting again for the next product to deploy.

Note that in the case of the deployment of multiple products, we may not
have the optimal deployment because of local optimization. GreenSAM goal is
to optimize a unique deployment but could be enhanced later to handle multiple
deployment at once.

4 Oracle Database Enterprise Edition Use Case

For both use cases, we use two datasets. The first one is a set of about 5000
servers coming from Orange™ Cloud (Orange™ is the first historical French multi-
national telecommunications corporation). This dataset allows us to express the
efficiency of the Pareto front reducing these 5000 servers to subsets of tens of
potential servers. The next datasets if used to compare GreenSAM with other
heuristics described later in this Section. For each comparison between the four
heuristics, we generated hundred datasets of 200 servers with random but real-
istic attributes. We then compute the average results of the four heuristics on
these hundred datasets to make a fair comparison on many Cloud architectures.

8 Arthur Chevalier et al.

In this use case, we deploy 10 Oracle databases in a new Cloud to allow
development projects to use them. From the benefit of [11], we can prove that
in our use case, it’s better to focus on the processor metric which is defined as
follows: To deploy a database d on a server s with cs cores, a corefactor cos and
inside a cluster Cls then the number of licenses you need to have to install the
database on t is the following:

L =
∑n

s=1 cs × cos × (s ∈ Clt)× (¬(∃ a ∈ Clt))
where a is a previously installed database

(4)

meaning you have to sum all the cores of the cluster in which the server t is,
except if there is already a database somewhere in this cluster.

This upstream calculation avoids the deployment algorithm having to com-
pute each metric of each product before making the Pareto front.

As we have only one product to deploy ten times the only performance indi-
cator is defined as follows: We must have a minimum of 2 cores to be eligible and
the performance score is the number of cores divided by the number of already
installed databases on it.

We can see in Fig. 2 the Pareto front on the first deployment. In subsequent
deployments, it is always interesting to deploy databases on the same server
until this server no longer has enough cores available. Finally, in Fig. 3 we can
see that the front of the Pareto only has a few servers left until the end of the
deployment. In Fig. 4, we compared the result of this algorithm with three others
on different sizes of Cloud:

Fig. 2. 17 servers (in red) as a part of the Pareto front on the 5000 servers used for
this simulation.

GreenSAM 9

Fig. 3. Only four servers are part of the Pareto front at the end of the 5th deployment.
Then until the end, there will be as many. In the end, 8 different servers will be used.

0 25 50 75 100 125 150 175 200
0

25

50

75

Pe
rfo

rm
an

ce
 sc

or
e

25 50 75 100 125 150 175 200
0

25

50

75

En
er

gy
 sc

or
e PerfEnergy

LicPerf
RatLic
GreenSAM

25 50 75 100 125 150 175 200
Number of servers

0

250

500

750

Lic
en

se
s n

um
be

r

Fig. 4. GreenSAM is a lot better in performance and license criteria even though
it loses around 30% of performance. RatLic is close but does not achieve the same
performance and LicPerf is terrible in terms of energy as PerfEnergy.

10 Arthur Chevalier et al.

– PerfEnergy: The first is an algorithm that promotes performance first,
followed by energy.

– LicPerf: The second one focuses on the number of licenses and then on
performance.

– RatLic: The last one focuses on the ratio performance by energy and then
license consumption.

We can see in the results that GreenSAM is pretty good and succeeds in
minimizing energy but at the price of performance. In the next section, we use
GreenSAM in a more complex deployment that is an OpenStack environment.

Fig. 5. Top: Second deployment of the CEPH product.
Bottom: Second deployment of compute product. The license dimension has no impact
here as the metric demands one license per installation.

GreenSAM 11

5 OpenStack Use Case

In this case we will deploy a minimal OpenStack platform with the metrics of
the RedHat editor. The purpose of this deployment is to have a lead node (called
director), ten compute nodes and twenty CEPH nodes. Each node has its metrics
and performance class defined as follows:

Director It must be located in a cluster with as many servers as possible to be
able to deploy as many compute and CEPH nodes as desired. The number
of machines in the parent cluster will, therefore, be the performance index.

Compute It needs a lot of cores but must be deployed on single servers. A
machine that has too many VMs cannot be reused. The performance index
is the number of cores.

CEPH It requires a lot of memory. The performance index is the amount of
memory available. We cannot reuse a server already used for another appli-
cation.

For the volume of licenses, you need one license for the lead node, one license
per compute node and one license per 500 memory slots for CEPH nodes. We
can see in Fig. 5 the Pareto front of the CEPH and compute products.

Finally, in Fig. 6, we can see the comparison between GreenSAM and three
other algorithms. GreenSAM still saves energy while keeping the number of li-
censes required low at the price of performance, which remains acceptable unlike
the LicPerf or RatLic algorithm. It demonstrates that going only for the perfor-
mance in the Cloud can lead to spending more money on software or disastrous

60 80 100 120 140 160 180
120

140

160

180

Pe
rfo

rm
an

ce
 sc

or
e

60 80 100 120 140 160 180
80

100
120
140

En
er

gy
 sc

or
e PerfEnergy

LicPerf
RatLic
GreenSAM

60 80 100 120 140 160 180
Number of servers

400

600

Lic
en

se
s n

um
be

r

Fig. 6. This shows that GreenSAM still manages to get good results on a multi-
products deployment. RatLic is saving more energy but fails at reducing license con-
sumption and saving performance. LicPerf is very good at license criteria but still
terrible at saving energy and performance.

12 Arthur Chevalier et al.

scenarios like Diageo [1] and shows the need to have algorithms like GreenSAM
that take into account software licensing.

6 Conclusion

This paper introduces GreenSAM , a multi-objective heuristic for deploying ser-
vices in the Cloud that guarantees license compliance while reducing energy con-
sumption but maintaining reasonable performance. This heuristic gets very good
results on two use cases with two significant datasets (one simulated and one
real) and compared to three others heuristics. In both experiments, GreenSAM
achieved reducing energy and license consumption while maintaining acceptable
performance and keeping full compliance by filtering bad servers. Compared to
the prior State-Of-The-Art, we are now able to deploy automatically and while
respecting compliance different products on a Cloud architecture all the while
optimizing energy and performance.

This heuristic allows in the case of a 5G tool deployment to ensure good
power consumption and software compliance and therefore could be used in net-
work orchestrators such as ONAP [25] for 5G to manage the SAM part of the
deployment while allowing energy savings in a technology that will be massively
used. This use would remain very dependent on the execution time of the de-
ployment calculation because they are done at high speed in the context of the
virtualized network. To conclude, this heuristic offers a solution to manage an IT
environment and the metrics associated with the products, even with complex
licensing rules.

For the enhancement of GreenSAM , new approaches can be considered. In-
deed, the implementation of a better heuristic function for sorting could allow
choosing a better server from the subset of servers on the Pareto front. This
cost function would be composed of the attributes that we want to optimize
and would give a better score for each server to obtain a unique one. Another
way would be to specify the objectives to have a finer deployment in our Cloud
and add parameters to allow us to have a performance index closer to reality. It
would be equally interesting to compare performance drop on each performance
category to see the impact of software classes and improving the algorithm.

In addition, we could add more parameters to this heuristic to have a more
realistic deployment. With the concept of agnostic parameters, we could modify
the score function of GreenSAM to add networking or security considerations.
Pushing further, it would be interesting to see if it is possible and profitable to
make parameters fully generic. Allowing the user to add any parameter only giv-
ing attributes scores. Finally, we could study the problem of multiple deployment
at once with the GreenSAM heuristic to avoid making only local optimisations.

Bibliography

[1] England, (Technology WHC, Court) C (2017) SAP UK Ltd v. Diageo
Great Britain Ltd [2017] ewhc 189 (tcc). URL http://www.bailii.org/

ew/cases/EWHC/TCC/2017/189.html

[2] Sayer P (2018) SAP settles licensing dispute with AB In-
Bev. URL https://www.itworld.com/article/3264435/

sap-settles-licensing-dispute-with-ab-inbev.html

[3] Flexera (2014) Flexera software and IDC research survey report: Soft-
ware license audits and costs & risks to enterprises. URL http://learn.

flexerasoftware.com/slo-wp-key-trends-audits-cost-risk

[4] Kim D, et al (2014) A birthmark-based method for intellectual software as-
set management. In: Lee S, et al (eds) The 8th International Conference
on Ubiquitous Information Management and Communication, ICUIMC
’14, Siem Reap, Cambodia - January 09 - 11, 2014, ACM, pp 39:1–39:6,
DOI 10.1145/2557977.2558062, URL http://dl.acm.org/citation.cfm?

id=2557977

[5] Han Y, et al (2014) A new detection scheme of software copyright infringe-
ment using software birthmark on windows systems. Comput Sci Inf Syst
11(3):1055–1069, DOI 10.2298/CSIS130918064H

[6] Holsing NF, et al (1999) Software Asset Management: Analysis, devel-
opment and implementation. Information Resources Management Journal
12(3):14, DOI 10.4018/irmj.1999070102

[7] Ben-Menachem M, et al (2004) Inventorying information technology sys-
tems: supporting the ”paradigm of change”. IEEE Software 21(5):34–43,
DOI 10.1109/MS.2004.1331300

[8] McCarthy MA, et al (2011) Managing software assets in a global enterprise.
In: 2011 IEEE International Conference on Services Computing, pp 560–
567, DOI 10.1109/SCC.2011.119

[9] Gocek P, et al (2017) Obtaining software asset insight by analyzing collected
metrics using analytic services. URL https://www.google.com/patents/

US9652812, uS Patent 9,652,812

[10] Vion A, et al (2017) Software License Optimization and Cloud Computing.
CLOUD COMPUTING 2017 p 125

[11] Baillon N, et al (2018) Towards economic and compliant deployment of
licenses in a Cloud architecture. In: Workshop: Cloud Management and
Operations, In conjunction with IEEE International Conference on Cloud
Computing (IEEE CLOUD 2018), San Francisco, USA, URL https://hal.

inria.fr/hal-01808751, hal-01808751

[12] Mann ZA (2018) Resource optimization across the cloud stack. IEEE
Transactions on Parallel and Distributed Systems 29(1):169–182, DOI
10.1109/TPDS.2017.2744627

14 Arthur Chevalier et al.

[13] Vion A (2018) Software Asset Management and Cloud Computing. Phd,
Université Grenoble Alpes, URL https://tel.archives-ouvertes.fr/

tel-01901991

[14] Wikipedia (2019) ISO 19770 wikipedia. URL {https://www.iso.org/

standard/68531.html}

[15] Foster I, et al (2001) Computational grids. In: Palma JMLM, Dongarra
J, Hernández V (eds) Vector and Parallel Processing — VECPAR 2000,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp 3–37

[16] Dongarra J, et al (2011) The international exascale software project
roadmap. The International Journal of High Performance Computing Ap-
plications 25(1):3–60, DOI 10.1177/1094342010391989

[17] Berl A, et al (2010) Energy-efficient cloud computing. The Computer Jour-
nal 53(7):1045–1051, DOI 10.1093/comjnl/bxp080

[18] Balouek-Thomert D, et al (2015) Energy-aware server provisioning by in-
troducing middleware-level dynamic green scheduling. In: 2015 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshop, pp
855–862, DOI 10.1109/IPDPSW.2015.121, URL https://hal.inria.fr/

hal-01196908

[19] Orgerie AC, et al (2009) When Clouds become Green: the Green
Open Cloud Architecture. In: PARCO, URL https://hal.inria.fr/

ensl-00484321v1

[20] Zhang K, et al (2016) Energy-efficient offloading for mobile edge computing
in 5G heterogeneous networks. IEEE Access 4:5896–5907, DOI 10.1109/
ACCESS.2016.2597169

[21] Zappone A, et al (2015) Energy-efficient power control: A look at 5G wireless
technologies. CoRR abs/1503.04609, URL http://arxiv.org/abs/1503.

04609

[22] Sengupta S, et al (2013) Multi-objective node deployment in wsns: In
search of an optimal trade-off among coverage, lifetime, energy consump-
tion, and connectivity. Engineering Applications of Artificial Intelligence
26(1):405 – 416, DOI 10.1016/j.engappai.2012.05.018, URL http://www.

sciencedirect.com/science/article/pii/S0952197612001248

[23] Khalesian M, et al (2016) Wireless sensors deployment optimization us-
ing a constrained pareto-based multi-objective evolutionary approach. En-
gineering Applications of Artificial Intelligence 53:126 – 139, DOI 10.1016/
j.engappai.2016.03.004, URL http://www.sciencedirect.com/science/

article/pii/S095219761630063X

[24] Xu B, et al (2015) Dynamic deployment of virtual machines in cloud
computing using multi-objective optimization. Soft Computing 19(8):2265–
2273, DOI 10.1007/s00500-014-1406-6

[25] Linux Foundation (2019) ONAP: Open Network Automation Platform.
URL {https://onap.org}

