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Markerless 3D Human Pose Tracking in the
Wild with fusion of Multiple Depth Cameras:
Comparative Experimental Study with Kinect 2
and 3.

Jessica Colombel, David Daney, Vincent Bonnet, and François Charpillet

Abstract Human-robot interaction requires a robust estimate of human motion in
real-time. This work presents a fusion algorithm for joint center positions tracking
from multiple depth cameras to improve human motion analysis accuracy. The main
contribution is the proposed algorithm based on body tracking measurements fusion
with an extended Kalman filter and anthropomorphic constraints, independent of
sensors. As an illustration of the use of this algorithm, this paper presents the direct
comparison of joint center positions estimated with a reference stereophotogram-
metric system and the ones estimated with the new Kinect 3 (Azure Kinect) sensor
and its older version the Kinect 2 (Kinect forWindows). The experiment wasmade in
two parts, one for each model of Kinect, by comparing raw and merging body track-
ing data of two sided Kinect with the proposed algorithm. The proposed approach
improves body tracker data for Kinect 3 which has not the same characteristics as
Kinect 2. This study shows also the importance of defining good heuristics to merge
data depending on how the body tracking works. Thus, with proper heuristics, the
joint center position estimates are improved by at least 14.6%. Finally, we propose
an additional comparison between Kinect 2 and Kinect 3 exhibiting the pros and
cons of the two sensors.
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1 Introduction

Human movement observation is necessary in robotics as for other applications to
analyze human behaviours or to control assistance systems. When the perceptive
system is used in situ (e.g., at home or at work) the usability of the system is almost
as important as the minimum metrological performance to ensure the validity of the
results obtained.

Nowadays stereophotogrammetric systems such as Vicon, Qualysis or Optitrack
systems are used as golden standard for position tracking for laboratory experiments.
However, these systems are too expensive and difficult to install on site. Furthermore,
thesemay be constraining for the observed human because of themarkers’ placement.
These constraints prevent the natural observation of humans in their environments
such as home or work and do not permit to handle real life situations.

The emergence of wearable sensors or depth cameras capable of measuring hu-
man movement has extended the scope of investigation for personal monitoring
outside the laboratory. Numerous algorithms based on Machine Learning for vision
have obtained appealing results on human motion observation [1, 2]. Nevertheless,
the accuracy obtained and the reliability of skeleton tracker results are not always
satisfactory for biomechanical analysis or to ensure safe interactions with assistance
robots. However, the use of several devices and fusion techniques can deeply im-
prove such systems with a good compromise between quality, usability and cost. In
particular, it is interesting to favour data redundancy for visual systems that suffer
from occlusions [3].

In this context a Kalman filter based on a human model is proposed to merge
and filter skeleton data from multiple sensors in real time. The Kalman filter is well
known for the fusion of data from sensors, even from different types of sensors (i.e.
depth camera and wearable sensors as IMU) [4]. Especially for data from depth
sensors, this type of algorithm can be also used with anthropometric constraints
and a dynamical model for human motion to compensate for the lack of a model
in the body tracking software [5]. One objective of this paper is to evaluate if this
approach remains useful and meaningful for the body tracking software Kinect 3
(Azure Kinect). Technical improvements over the body tracking software Kinect
2 are expected and are promising given the improvements observed between the
first two generations of Kinect and the technical characteristics of both Kinect (See
Table 1) [6, 7].

In this paper we are comparing results of the proposed fusion algorithm on one
experiment in two parts: one with Kinect 2 and the other with Kinect 3 body trackers
(see Figure 1), with the Qualisys system as reference for the ground truth. The main
contributions of this paper are:

• a skeleton fusion algorithm based on an Extended Kalman Filter (EKF) with
human model independent of sensors;

• a comparison of skeleton tracking of Kinect 2 and Kinect 3 faced to a reference
system.
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Kinect 2 Kinect 3 Azure
NFOV NFOV binned WFOV WFOV binned

Depth Camera (pixel) 512×424 640x576 320x288 1024x1024 512x512
FPS 30 30 15 30

Min depth distance (m) 0.5 0.5 0.25
Max depth distance (m) 4.5 3.86 5.46 2.21 2.88
Horizontal FOV (degree) 70 75 120
Vertical Fov (degree) 60 65 120
Skeleton joint define 25 26 (SDK v.9.2)

Table 1: Table of technical characteristics of Kinect 2 and 3.

2 Human model and fusion methods

2.1 Joint center positions estimates

Both Kinect sensors provide skeleton estimate through the estimate of the 3D Joint
Center Positions (JCPs). Kinect 2 estimates 25 JCPs including 3 joints for each hand,
while Kinect 3 estimates the 26 JCPs including 5 joints for the head and 1 for each
clavicle. Moreover, the joint center positions located on the spine are also different
for each body tracker (namely the SpineChest and SpineNaval for Kinect 3 versus
SpineShoulder and SpineMid for Kinect 2). Since both Kinects have different JCP
estimates, we have selected 15 of them, called retained JCPs, located on the arms
(except hands), legs and neck to be compared and analyzed. Figure 2a shows both
skeleton models and the retained JCPs for the comparison. Other remaining joints
were not considered in this analysis. The same 15 JCPs were also estimated using
a reference stereophotogrammetric system and a set of 39 retroreflective-markers.
These markers were set to match the Plug-In Gait full body template popularized by
Vicon for the placement of retrofelective-markers [8]. Additional markers located on
the lateral side of the knees, ankles and elbows were integrated to this template (see
Figure 2b). Doing so reference JCPs were calculated using regression equations. For
the elbows, wrists, knees and ankles it consisted to calculate the average position

Fig. 1 Pictures of the last two
generations of Kinect : (Top)
Kinect v2, (Bottom) Kinect
Azure
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between medial and lateral markers. The hip JCPs were estimated using the Bell’s
regression equation [9] based on the four pelvis markers. The shoulders JCPs were
estimated by assuming an offset under the acromion markers along the vertical axis
defined by the trunk segment [10]. Fig. 2b shows the location of the considered
retroreflective markers and the estimated reference JCPs.

(a) (b)

Fig. 2: Location of (a) joint center positions of the Kinect 2 (yellow), and of the
Kinect 3 (light blue). The green circles represent the 15 retained JCPs that stand
for common JCPs to compare. (b) Retroreflective markers used for the reference
stereophotogrammetric system (dark blue) and the estimated reference joint center
position (green)
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2.2 Extended Kalman Filter

The proposed EKF is based on a biomechanical model representing the human
locomotor system. It is used to relate the JCPs estimated by the Kinect with the joint
kinematics trough a kinematics model having fixed segment lengths. This kinematics
model, composed of #\ = 31 revolute joints (�) and #! = 12 segments, was defined
according to the recommendations of the International Society of Biomechanics
[11, 12]. Modified Denavit-Hartenberg convention [13] was used to calculate the
forward kinematics model that allows to express the position of each of the #� = 18
estimated JCPs as a function of the joint angles � ∈ R#\ and of segment lengths
L ∈ R#; . This forward kinematics model is used as the measurement model ℎ in
the proposed Kalman filter. The EKF estimates the state vector X: = [� L]) while
tracking the measurement vector Z ∈ R3#� composed of #� 3D coordinates of
JCPs provided by each Kinect’s skeleton data. The state and measurement vectors
are modelled as follows at time ::

X: = 5 (X:−1) + w:−1,

Z: = ℎ(X: ) + v: , (1)

where 5 is the state model, w: represents system noise defined by ?(w) ∼ N (0,Q)
withQ the model covariance noise matrix, and v: represents themeasurements noise
defined by ?(v) ∼ N (0,R) with R the measurement covariance noise matrix.

The proposed state model 5 is approximated by a linear form and denoted F.
It assumes that between two consecutive samples joint angles and segment lengths
are constants, which is suitable for slow motion. Moreover, the Jacobian matrix H:

defined by mℎ
mX: is used as the local linearization of the measurement model.

Thus, the equations of the extended Kalman filter are written as follows, with, at
each time : the prediction phase first:

X: = F X:−1 (2)
P: = F P:−1 F) +Q (3)

and then the update phase :

K: = P: H) (H: P: H): + R)−1 (4)
X: = X: +K: (Z: − ℎ(X: )) (5)
P: = (I −K: H: ) P: (6)

with P: the error co-variance matrix, K: the Kalman’s gain matrix and I the
identity matrix with the good size.
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2.3 Sensors data fusion

There are two methods for merging multiple sensors with Kalman as a function of
the type of fused variables [14]. They are called state-vector fusion for the merge of
the state vector X and measurement fusion for the measurement vector Z. Accord-
ing to Gan et al [15], these two methods are functionally equivalent when the ℎB
measurement models of sensor B are identical for each sensors to merge. However
state-vector fusion requires to augment the measurement vector while measurement
fusion merges observation before filtering data with the Kalman filter. Thus for
state-vector fusion the computational cost grows with the number of sensors. As the
proposed algorithm tends to operate in real time with a variable number of sensors
and the measurement model ℎB are identical for all sensors, the measurement fusion
was chosen. Thus the proposed method weights the measurements at each time :
without increasing the matrix sizes as follows:

Z: =

"∑
9=1

R−1
: 9


−1

"∑
9=1

R−1
: 9Z: 9 (7)

H: =


"∑
9=1

R−1
: 9


−1

"∑
9=1

R−1
: 9H: 9 (8)

R: =

"∑
9=1

R−1
: 9


−1

(9)

with Z:B the measurement vector, R:B is the covariance matrix of the measurement
noise and H:B the Jacobian of the measurement model of sensor B at time : , and "
the number of sensors, here the number of Kinects.

2.3.1 Heuristics

The fusion of multiple sensors can be done without the knowledge of sensor con-
fidence index. However, in the literature, several heuristics were used to weigh the
measurements for merging multiple Kinect 1 or Kinect 2, such as point continuity
with respect to velocity [16], segment length stability [3] or placement with re-
spect to Kinect [17]. These heuristics are based on technical specifications of the
manufacturer depending on the sensors.

So as to improve the fusion result, we propose a new set of heuristics inspired
by those cited above that represents a confidence index in each sensor. Even though
we merge several Kinect 2 on one side and several Kinect 3 on the other, they are
based on the characteristics of the Kinect 2 only. These heuristics result in weights
F ∈]0.1]. Two of them are related to the placement of the body in relation to the
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sensor:

F3I =


0.1 if 3I < 1.5
1 if 1.5 ≤ 3I < 3.5
0.5 if 3.5 ≤ 3I < 4.5
0.1 else.

(10)

F \H =
−2
c
· \H + 1 (11)

with 3I the depth distance of the spine base from the sensor andwith \H the rotation of
the body from the Kinect. The two following weights represent the confidence given
in the sensor for the global body tracking trust (number of joints tracked over the
total number of joints observed by the body tracking) and the time synchronisation
to merge only closer frames (observations from different sensors must be close in
time to be synchronized):

FB:4;4C>= =
# 9C

#)
(12)

FC8<4 =
−0.75
Δ<0G)

· Δ) + 1 (13)

with # 9C and #) respectively the number of joints seen and the total number of joints
of the camera as well as Δ<0G) and Δ) the maximum time between two accepted
frames and the time between two frames, respectively. The number of joints seen are
known thanks to the tracking state variable given by the body tracker to know if the
joint is measured or estimated. These values are then used to weight the RB matrix
of each sensor B.

2.4 Calibration

Calibration of visual sensors is specially of importance when merging data coming
from multiple sensors. In this study, solely the skeleton data coming from several
Kinect sensors are merged. Skeleton data consist in a labelled point cloud represent-
ing the whole body at each time. The objective of the calibration process is to align
these point clouds. Haralick et al. [18] proposed a method to estimate a transforma-
tion matrix from 2 paired sets of 9 = 1, . . . , # 3D points: Z1 = [z)1,1, . . . , z

)
1,# ]

)

and Z2 = [z)2,1, . . . , z
)
2,# ]

) , with dim(zB, 9 ) = 3 × 1, B = 1, 2.
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Let D = 1
#∑
9=1
F9

#∑
9=1
F 9 (z2, 9 − z̄2) (z1, 9 − z̄1)) (14)

with z̄1 =

#∑
9=1
F9z1, 9

#∑
9=1
F9

and z̄2 =

#∑
9=1
F9z2, 9

#∑
9=1
F9

Then {U, S,V} = SVD(D) (15)
such that D = U.S.V)

C = U. ©­«
1 0 0
0 1 0
0 0 det(*.+) )

ª®¬ .V) (16)

t = z̄1 − Cz̄2 (17)

where ZB=1,2 are the measurement vectors composed of # 3D JCPs for each sensors
B = 1, 2 and F: are weights of point : (0 or 1 based on the tracking state variable
given by the body tracking SDK). The rotation matrix C and the translation vector t
represent the positioning of the sensors B = 2 with respect to B = 1.

A singular value decomposition (Eq. 15) is used to solve this orthogonal Pro-
crustes problem (Eq. 16 ). To identify the 6 parameters of the transformation matrix
in a robust way, the information provided by the point clouds is cumulated on several
frames. The identification continues until the updating of the parameters converges
to constant values. Unlike Kinect 2 which has a tracking state variable to give a
quality index on each joint, Kinect 3 does not have this type of confidence index.
Thus, we propose to use a median type method to select points for correspondence.
For each frame, distance between each joint to the spine base are calculated for both
sensor and compared. The 50% of points with a fewer error distance between sensor
are taken (F 9 = 1).

Once all the transformation matrices between cameras are calculated, the fused
body can be express in a common base. This method is useful when it is needed to
estimate the absolute position of the human body in the environment.

It should be noted that, to facilitate the correspondence between the three systems
(multiple Kinect 2 and Kinect 3 and reference systems) and avoid error due to
calibration, the common base chosen for this work is the skeleton itself. The base is
defined by the spine base as the origin, the hip right-hip left axis for the x-axis, the
spine axis for the y-axis and the z-axis orthogonal to the other two axes. To insure
an orthonormal base, the Gram-Schmidt method was used.
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3 Experiments and results

3.1 Experimental setup and protocol

Four tasks requiring whole body motions were considered in this study: squat with
lateral extensions of arms, stepping in position with both legs, body tilt, and waving
arms. Each task was performed with ten consecutive repetitions for each movement.
All trials started and finished in a resting position: standing, arms along the body.
These tasks were chosen to cover most degrees of freedom for arms, legs and trunk.

Whole-body motion was simultaneously collected by a reference stereopho-
togrammetric system consisting of 8 infrared cameras (Qualisys, 39 markers, 30Hz)
and by three Microsoft Kinect 2 (SDK, 30Hz) and three Kinect Azure (NFOV, SDK
v. 9.2, 30Hz). The Kinect sensors were located in a triangle fashion with two Kinects
in front (0°) of the participant, two on his right side (80°) and two on his left (-80°)
side. Fig. 3 shows an overview of the experimental setup. Each Kinect was connected
to aWindows 10 computer and all data were streamed on a ROS-based software to be
elaborated on-line. Kinect 3 were synchronized with 3.5 mm audio cables in a daisy
chain configuration. Due to interference between Kinect 3 and the reference system,
the master cable has been split to trigger the reference system with the signal of the
Kinect 3 master. Moreover, Kinect 3 body tracking SDK is badly disturbed by the
motion capture retro-reflective markers. To minimise theses disturbances miniature
markers of 2.5mm of diameter were used.

3.2 Performance analysis

Kinect 2 has shown satisfactory results when the human body is facing the sensor
without occlusion. Thus, to highlight the contribution of the proposed fusion al-
gorithm, only the side sensors were considered (-80°and 80°), with heuristics and
without heuristics, now referred to as Fusion H and Fusion !H, respectively. This was
done for both versions of the Kinect sensor. The ability of the proposed fusion algo-
rithm was then assessed by calculating the accuracy through the Euclidean distance
between filtered JCPs and those obtained from the reference stereophotogrammetric
system (see section II.A). The accuracy of the raw data gathered from the three
sensor positions was also investigated for both Kinects. This was done to better un-
derstand the limitations of their specific body tracking software. Moreover, the mean
and standard deviation of segment lengths were calculated on the raw and filtered
data to attest to the consideration of anthropomorphic constraints by reducing the
variability on segment lengths.
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Fig. 3: (a) Schematic top view of the experimental setup: black circle is the human
placement, black camera represents a Kinect 2 and blue camera a Kinect 3. (b)
Panorama showing the location of the Kinect sensors facing the subject.

3.3 Results

Joint center position estimate accuracy assessment

First, the accuracy of the JCP estimates is evaluated by calculating the Euclidean
distance between the JCPs obtained from the reference system and the JCPs estimated
with theKinect sensors. This accuracy is an absolute error in position. Table 2 reports
mean and standard deviation distance for each joint. This is calculated for both types
of Kinects when using raw data with different sensor’s positions (0°, -80° and 80°)
and when using merged data with and without heuristics.

As expected for Kinect 2, the Fusion H shows a better accuracy with a slightly
shorter average distance (106 ± 41mm) than Fusion !H (114 ± 36mm). Fusion H
improves on average of 14.6% for left (-80) and 28.9% for right (80) Kinect 2 results.
When Fusion !H is used the improvement is of 8.0% and 23.4% for the left and right
sensor, respectively. Globally, fusion algorithms tend to improve each joint accuracy
and seem to be slightly equivalent. However the left elbow and wrist present a
large difference between Fusion H and Fusion !H with both 121mm for Fusion H,
and 201 and 183mm for Fusion !H, respectively. For these two joints, the results
are particularly different between the right and left sensors, more than twice the
mean and standard deviation. The difference on these two joints leads to the global
difference between placements. It can be explain by the fact that the motion was not
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exactly symmetrical and the self-occlusion affected more these joints for the right
sensor than the other.

Unlike its previous version, Kinect 3 shows better results when using Fusion !H
(84 ± 36mm) than when using Fusion H (99 ± 206mm). Both side Kinect 3 results
are improved by Fusion !H with 21.4% and 16.8% for the left and right Kinect 3,
respectively. The improvement of raw data by Fusion H are less good with 7.6%
for the left sensor and only 2.2% for the right sensor. Finally, the accuracy of the
feet position obtained when Fusion H algorithm is used decreases greatly. This can
be observed with the very high standard deviations of the feet (1187 mm and 1259
mm).

Segment length variation

There is a consensus in the community stating that the body tracking of Kinect 2
is not anthropometry-based, resulting in segment length variations. Thus, numer-
ous researchers tried to prevent segment length variations to improve human body
tracking [19, 20]. The proposed Extended Kalman Filter used the process matrix
covariance Q to force the length converge to a constant value. Fig. 4 represents
the dispersion over all trials of the segment length. It shows that segment lengths
of Kinect 2 have greater dispersion and more outliers than Kinect 3 for raw data.
Moreover it illustrates the constraints on segment length achieved with the proposed
Kalman filter. The segment length stability improves significantly with the Kalman
filter. This is visible on the comparison between raw and filtered data for the right
lower leg. There is also a strong reduction of the outliers. Table 3 confirmed these
observations with an average standard deviation obtained for Kinect 2 of 19mm
instead of 8mm or 9mm when filtering.

It is interesting to notice that the Kalman filter also slightly improves the accuracy
of the average absolute error of segment length estimate (37mm for raw data instead
of 35mm for Fusion H). On the contrary, results obtained with the Kinect 3 show
that Fusion !H degrades length estimate with an absolute error of 20mm instead of
17mm without filtering. Finally, Fusion H has terrible results on standard deviation,
particularly for feet.

Additional results

These experimentations with both sensors raised some additional results that high-
lighted the different characteristics between Kinect 3 and Kinect 2. As mentionned
in section 3.2 and confirmed by the results in Table 2, the central Kinect 2 shows
much higher accuracy than those located on the side (82 ± 36mm versus 124 ± 54
and 149±71mm). It is interesting to note that the Kinect 3 presents opposite results.
The accuracy is lower for the central Kinect (121± 85mm) than for the ones located
on the side (107 ± 59 and 101 ± 53mm).
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Table 3: Segment length estimation obtained by Kinect 2 and Kinect 3 for raw data
(independently of the placement) and filtered data from fusion algorithm with (Fu-
sion H) and without heuristics (Fusion !H) comparing to segment length reference.
Accuracy as absolute error of segment length of interest has been reported as Mean
± Standard Deviation [mm] over all the analyzed trials.

Joint name Kinect 2 Kinect 3
raw Fusion H Fusion !H raw Fusion H Fusion !H

Clavicle R 13 ± 15 9 ± 4 8± 4 5 ± 4 10 ± 36 3± 2
Upper Arm R 33± 18 53 ± 8 58 ± 9 9± 7 19 ± 25 19 ± 5
Arm R 14 ± 12 7± 6 9 ± 7 8± 6 20 ± 24 23 ± 8
Clavicle L 16 ± 19 9 ± 4 8± 4 8 ± 5 10 ± 35 3± 2
Upper Arm L 31± 16 52 ± 8 57 ± 9 10± 8 18 ± 25 18 ± 5
Arm L 14 ± 14 7± 6 9 ± 7 9± 7 20 ± 24 23 ± 8
Hip R 18 ± 10 4 ± 2 3± 2 21± 3 40 ± 73 23 ± 1
Upper Leg R 85 ± 35 83± 11 87 ± 12 42± 15 66 ± 67 57 ± 5
Lower Leg R 41 ± 34 30± 14 31 ± 11 22 ± 12 31 ± 84 9± 3
Foot R 53± 13 59 ± 14 62 ± 10 5± 4 100 ± 4275 9 ± 4
Hip L 25 ± 10 4 ± 2 3± 2 30 ± 3 40 ± 73 23± 1
Upper Leg L 94 ± 31 82± 11 86 ± 12 40± 15 66 ± 67 56 ± 5
Lower Leg L 24± 22 29 ± 14 30 ± 10 20 ± 12 32 ± 84 10± 3
Foot L 53± 14 57 ± 9 62 ± 9 15 ± 7 108 ± 4650 7± 4

Total 37 ± 19 35± 8 37 ± 9 17± 8 41 ± 691 20 ± 4
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Fig. 4: Boxplot representing the dispersion of length on all trials for Kinect 2 and
Kinect 3 with raw data and filtered data. Raw Kinect 2 is dark red, Fusion H Kinect
2 is orange, Fusion !H Kinect 2 is yellow, raw Kinect 3 is blue, Fusion H Kinect 3 is
light blue and Fusion !H Kinect 3 teal.
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4 Discussion and limits

The proposed fusion algorithms show improved accuracy on both Kinect 2 and
Kinect 3. The differences due to the choice of heuristics were expected since the
two Kinects do not present the same technical characteristics, e.g. the field of view
and the depth resolution. Moreover, Kinect 2 was designed to view people facing
the sensor for video games, but Kinect 3 is presented as an industrial sensor with a
body tracking algorithm designed for multiple purposes, including back and front
recognition. Several other differences as directly-included time synchronization for
Kinect 3 and the absence of a tracking state variable for each joint makes at least
two of the heuristics unnecessary. It can be concluded that the proposed algorithm
improves body tracking but can still be enhanced by using sensor specific heuristics.

As expected, thanks to the use of the Kalman filter and anthropomorphic con-
straints, the length estimates vary less, although their estimationmay be less accurate.
The proposed approach is really interesting for Kinect 2 but seems to be less use-
ful for Kinect 3. Unlike Kinect 2, Kinect 3 promises to provide an anatomically
consistent skeleton tracking.

Despite these improvements on Kinect 3, it does not appear to greatly improve the
accuracy of skeletal observation. The results obtained with the central Kinect 3 are
quite surprising given that they are particularly poor compared to the ones obtained
with the side sensors. However, even if the body tracker improves, the fusion will still
be necessary to counter the effect of occlusion. These experiments gave additional
results on the newKinect 3 such as interference with stereophotogrammetric systems
and reflective markers. The use of miniature markers of 2.5mm of diameter reduces
the effect of interference with the Kinect 3. In addition, the synchronization between
the sensors constrains the Qualisys system to work at 30Hz instead of 300Hz.
Naembadi et al. studied this question with Kinect 2, but Kinect 3 seems to be much
more sensitive to interference [21]. Another point to highlight is the computational
cost for running Kinect 3. It requires a good GPU (NVIDIA GEFORCE GTX 1070
or better) to work at 30Hz. These results could question the portability of the sensor
for embedded systems. It is interesting to notice that, if the portability of the system
is critical and that the visual system as depth camera is not adapted to the application
(i.e. the person had to be observed when moving in large area), other approach can
be used [22].

5 Conclusion

This paper has presented a fusion algorithm based on an Extended Kalman Filter for
merging skeleton data obtained from multiple depth cameras. The fusion algorithm
was tested with the new Kinect 3 and with the Kinect 2 with regard to a reference
provided by a stereophotogrammetric system. The results showed that this algorithm
is robust to a change of body tracker software and overall improves joint center
positions estimate. When the proposed fusion algorithm is used, the JCP estimate
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accuracy improved by at least 14.6%. The results prove that with or without fusion
heuristics, the algorithm improves accuracy for each type of sensor. As shown for
Kinect 2, a good definition of the heuristics allows even better results. However,
the heuristics chosen to improve the fusion algorithm of multiple Kinect 2 are not
suitable when using Kinect 3 sensors. This is due to differences between both sensors
such as time synchronization, the lack of tracking confidence index number in Kinect
3 or to the fact that Kinect 3 is able to recognize back-front positioning. In addition
to this last point, which is very important for usability, the improvement of segment
length estimates is the main improvement obtained when the proposed algorithm is
applied to Kinect 3 rather than Kinect 2. These two improvements open the door to a
better observation of humans in their environment with the possibility of observing
them at 360°.
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