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Abstract—Today, we can use our smartphones to drive from
Los Angeles to New York, yet we can not use them to find
our way around Charles de Gaulle Airport. GPS simply does
not work indoors and if outside areas are mapped very well,
the indoors of most buildings remain a mystery to our favorite
navigation apps. While the problem of indoor localization has
attracted a lot of attention, with several solutions with meter-
level accuracy emerging as research prototypes, the problem of
building accurate and detailed indoor maps has been overlooked.

We present InPReSS, a smartphone-based solution for dy-
namic indoor map construction without explicit user input. It
leverages the sensors available on off-the-shelf smartphones and
their ubiquity to construct floor plans as users go about their
daily lives. The InPReSS approach consists of four steps: 1.
Collecting readings from five sensors, tagged with their location,
from smartphones available in the target building, and divide the
floor plan into cells using a Voronoi diagram. 2. Clustering the
cells into rooms based on the sensor readings. 3. Identifying doors
and ways between adjacent rooms using the Voronoi diagram
and user movement traces. 4. Building a two-level graph of the
floor plan for navigation. Experiments with an Android prototype
in two different buildings show that InPReSS can build highly
accurate floor plans with minimum user input and negligible
impact on battery life.

I. INTRODUCTION

Someone named Carol enters a building, such as an airport

or a big office space. Late and lost, her smartphone receives

no GPS fix. She could use her favorite indoor localization

application [1], [2], [3] to localize herself indoors with meter-

level accuracy. There is only one issue: her application does

not have the building’s floor plan.

Whereas outdoor areas have already been mapped and

digitized by numerous applications such as Google Maps [4]

or Yahoo Maps [5], it is far more difficult to achieve the

same for indoor areas. Outdoor areas can be easily accessed

by motorized vehicles, drones or even satellites. Indoors, the

process is still heavily manual – Google Indoor Maps [6], for

example, has collected manually more than 10,000 indoor floor

plans of airports and shopping malls. To make matters worse,

indoor plans are less stable than outdoor plans. Buildings

are regularly reorganized, new rooms created, some doors are

blocked while others are added, furniture changes place, etc.

Each change could necessitate a new and expensive update

of the indoor plan. Ideally, indoor plans should be created

and updated dynamically, without any manual labor. Given

the number of people with smartphones inside every building,

leveraging the readings from the many sensors with which the

smartphones are equipped could provide a practical answer

to such a formidable challenge. Unfortunately, even if recent

works [7], [8], [9], [10], have started to introduce some

solutions, a lot more work remains to be done.

Extending indoors the navigation experience enabled by

GPS in most outdoors areas has been a popular research

topic in recent years. Simultaneous localization and mapping

(SLAM) [11], inspired by robotics, has been proposed to

solve the mapping issue. The SLAM techniques address jointly

the challenge of localization and mapping: while a robot

navigates a building using an Inertial Measurement Unit (IMU)

it mines its sensor readings so as to map its surroundings,

including the walls. The performance of a SLAM system

relies on two main parameters: the accuracy and predictability

of the robot movement and the robot’s ability to analyze

the surroundings by detecting obstacles with sonar or lasers

for example. Hence the difficulty to use SLAM on smart-

phones: First, the user movement is unpredictable and the

smartphone IMU units are inaccurate [12]. Second, off-the-

shelf smartphones are not equipped with laser or sonars to

identify walls and obstacles, crucial for indoor mapping. The

Wi-Fi transceivers, available on all smartphones, for example,

are not capable of detecting walls by themselves [13], [14].

WiFi-SLAM [7], graphSLAM [9] and [10] propose to use

Wi-Fi fingerprinting and crowdsourcing to evaluate building

plans. However, a heavy offline phase is necessary to collect

the fingerprints. JigSaw [15] bypasses the need for Wi-Fi by

using the smartphone camera to collect images from users

inside buildings to construct indoor floor plans. However, the

solution requires heavy image processing and, most important,

it requires active user participation – they have to hold their

smartphones in a specific position.

We propose InPReSS, a lightweight system that leverages

the smartphone sensors to reconstruct building floor plans

dynamically without any training or user action. InPReSS

breaks the problem into four parts: First, the entire floor1 of

a particular building is divided into cells, based on location

information from smartphones inside the building, using a

Voronoi diagram. Second, using ambiance sensor readings,

cells are clustered into rooms. Third, InPReSS identifies

the possible ways between the rooms by observing user

movements, completing the indoor plan. Finally, InPReSS

constructs a two-level graph for optimizing indoor navigation.

InPReSS faces several challenges, including how to use

1Building/floor contours are available from outdoor area surveys.



(a) Heatmap of the sound level in
a 480m building.

(b) Heatmap of the main Wi-Fi
RSS in a 480m building.

Figure 1. Sound level and Wi-Fi signal are similar in the same room.

readings from inherently inaccurate and inexpensive sensors to

identify walls and separations, and how to combine readings

from sensors as different as the barometer and the microphone.

In short, InPReSS addresses these challenges by introducing

a novel dissimilarity index and careful measurement-based

analysis.

In summary, our contribution can be summarized as follows:

∙ We introduce the first standalone system capable of build-

ing an indoor floor plan using only smartphone ambience

sensors.

∙ We propose a solution for indoor navigation based on a two-

level graph.

∙ We develop InPReSS on the Android OS and carry out

experiments on two different smartphones and two differ-

ent buildings. Experiments show that InPReSS is able to

construct highly accurate indoor floor plans.

The remainder of this paper is organized as follows. Sec-

tion II describes the room detection algorithm while in Sec-

tion III we introduce the mechanism for identifying ways

between the rooms. In Section IV we present the performance

evaluation. Finally, Section VI concludes the paper.

II. ROOM DETECTION

In this section, we present InPReSS’ approach for iden-

tifying the rooms inside a building. It is a constructive ap-

proach consisting of three steps: First, using the Voronoi [16]

diagrams, the indoor layout is divided into cells based on

sensor readings. Second, working with every sensor separately,

a preliminary decision is made as to where the walls are

based on the difference in the readings of the particular

sensor between adjacent Voronoi cells. Finally, an approach

is introduced to combine the per-sensor decisions so as to

generate a final placement for the walls. In the following, we

describe each step in detail.

A. First-Level Area Separation

InPReSS’ room detection module is based on a simple

observation: when Carol enters a room, her senses can detect

differences in color, sound level, temperature, etc. Modern

smartphones come equipped with several sensors: barometer,

light-meter, magnetometer, microphone, Wi-Fi receiver, etc.

Therefore, it is reasonable to ask whether properly mining

the readings from these sensors can lead to automatic room

detection by smartphones.

To verify this intuition, we conduct experiments in an office

building with 11 rooms of different sizes and total area of

480m2. A user carrying a LG Google Nexus 5 smartphone

walks around the building, making sure to enter every room,

while an application is collecting sensor readings at regular

intervals. At the end of the experiment, we get the following

readings from 80 different locations, which we also call seeds,

tagged with their coordinates:

1) the measured pressure;

2) the measured luminosity;

3) the calculated magnetic power - calculated from the three

axis magnetic field from the magnetometer;

4) the sound level - calculated from the microphone input;

5) the Wi-Fi main signal strength - we take only the main

RSS levels linked with the SSID.

We store these values in a database S:

S = (si,k)k∈J1;5K,i∈J1;80K

where pi = (xi, yi, zi) is the position of location i, and si,k
is the value of the sensor k at this location.

We take as input the building footprint, which can be

obtained from external mapping systems such as Google Maps

[4], and use Voronoi diagrams [16] to partition it into cells

based on the distance to the 80 seeds.

Figure 1(a) shows the sound levels computed from the

microphone readings at the 80 locations. Each Voronoi cell is

given a color corresponding to its seed value and is projected

on the building’s blueprint. The data shows that there is some

correlation between sound levels and rooms, however, it is

not perfect. For example, the blueprint shows one big room

on the right side of the building while the sound levels would

indicate two different rooms. To overcome the limitations of

a single sensor, we propose to combine it with another, such

as the Wi-Fi. Figure 1(b) shows the voronoi cells, constructed

using the Wi-Fi received signal strengths (RSS) at the 80 seeds,

projected on the building’s blueprint. Here, we see that the

RSS levels in the big room at the right corner are very similar,

indicating a single room, which matches the ground truth.

Based on this experiment, we can reach two conclusions:

First, there is a correlation between sensor readings and room

separations inside buildings. However, one needs a systematic

approach to turn readings from various sensors into a building

blueprint. We address this challenge in § II-B.

Second, readings from several sensors are necessary for

constructing correct building blueprints. However, an approach

for combining conclusions based on sensors as different as the

barometer and the Wi-Fi receiver is necessary. We address this

challenge in § II-C.

B. Identifying Walls Part I: Using a Single Sensor

To identify a physical separation between two rooms, i.e.

a wall, we measure the dissimilarity between neighboring

Voronoi cells. However, the main challenge is quantifying this

dissimilarity, also referred to as distance. In a colored graph,

it corresponds to the scale and the thresholds for coloring the



(a) Colored map of the light level
in a 480m building, low thresh-
olds.

(b) Colored map of the light level
in a 480m building, high thresh-
olds.

Figure 2. Sound level and Wi-Fi signal are similar in the same room.
Thresholds of a colored graph can change the choice of rooms separation.

Sensor Name Distance dk(i, j)

Pressure Euclidean ∣s(i,1) − s(j,1))∣
Luminosity Logarithmic ∣log(s(i,2)/s(j,2))∣
Magnetic Euclidean ∣s(i,3) − s(j,3)∣
Sound Square ∣sqrt(s(i,4))− sqrt(s(j,4))∣
Wi-Fi Euclidean ∣s(i,5))− s(j,5)∣

Table I
DISTANCE USED FOR EACH SENSOR.

graph. To illustrate the importance of selecting the proper

threshold values, Fig. 2 shows the colored maps for two

different threshold levels. Let us consider two rooms, labeled

1 and 2 in the figure. In Fig. 2(a) room 1 is identified by the

same color (dark green) but not in Fig. 2(b). It is the opposite

case for room 2: it is properly identified in Fig. 2(b) but not

in Fig. 2(a).

To overcome the sensitivity to the threshold value, we study

the distribution of the different sensors. Figure 3(a) shows the

Cumulative Distribution Function (CDF) of the light levels

measured at the 80 seeds. The luminosity is concentrated at

small values corresponding to places where there is no strong

light source, with only a few high values measured. The high

light values correspond to seeds located just under a light

source. As a consequence, if the dissimilarity between two

seeds is only calculated by the absolute difference between

the two values, it will lead to erroneous room splitting. For

example, two seeds, one right under a light source and one

nearby will have very different values even though they are

located in the same room. To avoid such scenarios, the light

values distribution has to be “flattened", so that the bigger

the absolute values are the smaller the impact their relative

differences will have on the room splitting decision. In the case

of light, we choose to use the logarithm function as shown in

Figure 3(b). As a result, the CDF of the light level is pseudo-

linear. Figure 3(c) shows a colored map of the building using

this logarithmic scale. Rooms 1 and 2 are correctly identified.

Table I presents the distances chosen for each sensor. Eu-

clidean distance is used for pressure, magnetic field and Wi-Fi

since the values are uniformly distributed. Square root distance

is used for sound since sound levels are concentrated at low

values.

C. Identifying Walls Part II: Combining Multiple Sensors

Despite the single sensor distance selection approach in-

troduced above, only one sensor is not enough to perfectly

determine the room separations, as demonstrated in Fig. 3(c).

(a) CDF of light level.

(b) CDF of light level in logarithmic abscissa scale.

(c) Colored map of the light level in a 480m
building, using logarithmic scale.

Figure 3. Light level is particularly concentrated in small values. Some very
high values are caused by the presence of a nearby lamp. To get the best
map using luminosity, it is necessary to smooth the small values and instead
consolidate larger. For that, we can use a logarithm.

To leverage the smartphone’s five senses, one solution is

to use a classical classification algorithm, such as K-means

[17], hierarchical clustering [18] or expectation-maximization

(EM) [19]. K-means has the disadvantage of having to decide

in advance the value of K, the number of classes. Here it

would mean knowing the exact number of rooms, information

InPReSS obviously does not have. Hierarchical clustering and

expectation-maximization do not take into account the fact

that seeds have physical coordinates — yet, two physically

distant seeds cannot belong to the same room. Therefore, we

decided against using a cluster-based algorithm and instead

used a dissimilarity threshold to detect walls between Voronoi

cells. For each seed, we calculate the dissimilarity between this

seed and its neighbors. If the value is greater than a threshold

we assume that there is a separation (a wall) at the intersection

of the two Voronoi cells.

Finally, to combine the input from all 5 sensors, we intro-

duce the dissimilarity index between cell i and j, D(i, j) as



Figure 4. ROC curve of the detector. 0.8 is chosen as the best compromise
threshold - in red dot.

(a) Section of the floor plan as
generated at the end of § II.

(b) Same floor plan section as repre-
sented in memory.

Figure 5. When a user transitions between two rooms sharing a wall, InPReSS
knows there is a door but no indoor localization system is accurate enough
to tell the door location. InPReSS identifies the door location by comparing
the dissimilarity index of neighboring Voronoi cells. Cells 5 (room A) and
9 (room B) have the lowest index and it is where InPReSS places the door
connecting the two rooms.

follows:

D(i, j) =
5∑

k=1

�k(i, j) (1)

where �k(i, j) is the normalized distance dk(i, j).
This index also represents the 5-dimension Euclidean dis-

tance between seeds i and j using distances dk(i, j). To

determine the best threshold, we use a measurement-based

approach. In two different buildings, we take measurements

at 100 connecting pairs of seed points. 50 seeds are located

in different rooms - constituting the true dissimilarity - while

the other 50 seeds are located in same rooms - constituting the

false dissimilarity. Figure 4 shows the ROC (receiver operating

characteristic) curve of the 5 sensor detectors. The red dot

depicts the point (0.8) chosen by InPReSS – it maximizes

the true dissimilarity rate (84%) while minimizing the false

positive rate (10%).

III. COMPLETING THE FLOOR PLAN

In this section, we describe how InPReSS identifies doors

inside a building, completing the floor plan, and how the

data is represented so that it can be used by a navigation

application.

(a) Input map. (b) Connected graph extracted
from the building plan obtained
in previous section.

Figure 6. The path identification block aims to define what is the nature of
the edges between the vertices : open door, closed door or wall.

(a) Floor-level graph. (b) Zooming in on room B to
show its room-level graph.

Figure 7. To facilitate navigation, InPReSS introduces a two-level graph.

A. Door Identification

With the rooms identified in § II, identifying where doors

are is the last step for completing the floor plan for navigation

purposes. To detect if there is a door between two rooms

sharing a wall and, if that is the case, the location of the

door, we rely on the movement of users running InPReSS.

When a user is detected as moving from one room to another,

InPreSS concludes that there is a room between these two

rooms. However, most available indoor localization solutions

offer only meter-level accuracy, not enough to place a door

with accuracy. To address this problem, we make use of

the Voronoi diagram separation of the floor plan and sensor

readings collected in § II. All the adjacent Voronoi cells

between the two rooms are compared using the dissimilarity

index (Eq. 1) – the border between the two Voroni cells with

the lowest index is transformed into a door. Fig. 5 illustrates

the approach.

B. Floor Plan Representation

Navigating indoors requires user location in real time and

an accurate floor plan, the main goal for InPReSS. Once

these two requirements are fulfilled, the assumption is that

one can simply use a shortest-path algorithm to reach their

destination. However, in buildings with many alternative paths,

it is preferable to minimize the numbers of rooms one crosses

while at the same time using the shortest euclidian distance for

crossing a particular room. To satisfy these two requirements,

INPReSS introduces a two-level navigation graph. The floor-

level graph (Fig. 7(a)) has a vertex for every room with an edge

connecting two vertices if INPReSS has a identified a door



Figure 8. Blueprint of the first test building.

(a) K-means with k = 13. (b) K-means with k = 12.

(c) Hierarchical clustering. (d) InPReSS.

Figure 9. Floor plans of the test building computed using K-means, hierar-
chical clustering and InPReSS. There are 12 rooms on this floor. InPReSS is
the only one to identify all the indoor walls accurately.

between the respective rooms. The room-level graph (Fig. 7(b))

is based on the first-level area separation described in § II-A.

For a user located, say, in room B (Fig. 7) and wanting

to get to room F, InPReSS first uses the floor-level graph

to find a path minimizing the number of rooms – in this

case, the path B, G, F. To cross each room, say room B to

reach G, InPReSS relies on the room-level graph. For example,

assuming the user’s initial location is in cell 12 (Fig. 7(b)),

to reach room G InPReSS proposes a path crossing cells

(12, 11, 6, 5, 15, 16, 17).

IV. PERFORMANCE EVALUATION

We implemented InPReSS as an Android application. Sen-

sors values are collected through the SensorEvent native

Android API with a 1 s period. The application automatically

sends the collected values to the InPReSS server (via Wi-

Fi or cellular network, depending on availability). The server

merges the data to compute: a) the floor plan of the building

in user-friendly format; b) the two-layer navigation graph. A

user can point to a particular destination on the map using

the smartphone’s screen. This triggers a request sent to the

InPReSS server, which computes the best path and forwards

it to the user’s phone.

(a) Blueprint of the second test
building.

(b) Trajectory of the user in red and
the estimated walls in blue (dash
blue for doors).

Figure 10. After one user trajectory, 5 rooms are correctly identified

The performance evaluation is divided into two parts: In

the first part, we evaluate InPReSS’ capability to accurately

identify rooms in a controlled experiment where we have

seeds from every room in the building. In the second part,

we evaluate InPReSS in a real-deployment kind of setting.

A. Part I: Controlled Experiment

We evaluate the performance of the room detection algo-

rithm following the experimental setting described in § II-A.

InPReSS is compared to k-means and hierarchical clustering.

Figure 9 shows the final floor plans obtained with all three

approaches for the building whose blueprint is shown in Fig. 8.

Figure 9(a) and Fig. 9(b) have been computed using k-means

with k set to 13 and 12, respectively. As there are 12 rooms

on the particular floor, these are the best-case values for k.

Nevertheless, k-means fails to identify the correct number

of rooms. This is due to the fact that the cells’ physical

proximity is not taken into account. The same phenomenon

is observed with hierarchical clustering in Fig. 9(c). The fact

that the number of rooms is not required by this method

improves the quality of the classification. However, there are

still some errors. Figure 9(d) shows that InPReSS does not

compute a colored map because there are no clusters created.

It computes a real plan, based on the contours of the Voronoi

cells. The only difference with the ground truth is the number

of doors InPReSS identifies. As this an office space, some

doors stay open all day, including while running the tests,

leading InPReSS to think there is no door at all but just an

opening. Note, however, that this is not a source of error for

navigation – as long as the opening is real, whether a door is

present or not, one can navigate without issues.

B. Part II: Real life setting experiment

Method: Unlike in the previous experiments where we had

80 seeds distributed across all the rooms of the floor, now

we evaluate InPReSS in conditions similar to what one would

expect in real-life usage. We give a volunteer an LG Google

Nexus 5 phone and ask her to follow a particular trajectory in

the building, as shown in Fig. 10(a). InPReSS, running on the

volunteer’s phone, estimates the floor plan in real time. Once

the first volunteer has reached her destination, a second user

is asked to follow a second trajectory. InPReSS creates a new

estimation of the floor plan.



(a) Trajectory of the second user in
red.

(b) Estimated walls in red.

Figure 11. After the second trajectory, InPReSS has correctly identified all
indoor walls but one.

Results: The first user follows the trajectory shown in

Fig. 10(b). The rooms the user visited are correctly identi-

fied by InPReSS, including the 3 doors she went through.

Nevertheless, there still remain “hidden” rooms. The second

user follows another trajectory, shown in Fig. 11(a), using

her own smartphone, a Samsung Galaxy S5. Note that the

sensor readings from the two different users are not merged

by InPReSS. The points collected by the two users do not

necessarily match – the time of day may have changed, the

sensor hardware may be different, etc. Thus, InPReSS analyzes

the two trajectories separately and then merges the two floor

plans by superposition. Figure 11(b) shows that after the

second user trajectory, InPReSS has identified the floor plan

with remarkable accuracy.

V. RELATED WORK

Most research on indoor floor plan construction is based

on the SLAM (Simultaneous Localization And Mapping), a

classical problem in robotics area [11]. [20], [15] propose to

use intensive image processing to reconstruct the indoor floor

plan. Even if this technique provides higher quality floor plans,

it requires high-quality images from the smartphones, difficult

to obtain without asking active participation from the user. Wi-

Fi has been proposed to overcome this limitation since it is

available in almost every building and most indoor localization

solutions use it. Although WiFi-SLAM [7], graphSLAM [9]

and [10] can construct indoor floor plans, the Wi-Fi alone

is too unstable to work standalone without recalibration or

fingerprinting. [21] proposes to use motion sensors with a

dead-reckoning approach, however, the approach is severely

limited by the high errors of the low-end accelerometers

found on smartphones. To avoid recalibration due to the high

accumulation of errors, iFrame [8] combines dead-reckoning

with Wi-Fi and Bluetooth RSS analysis. Despite a significant

improvement in the accuracy of the floor plan construction,

iFrame, however, requires enabling Wi-Fi Direct, limiting the

utilization of the smartphone by the user.

InPReSS decouples the simultaneous localization and map-

ping (SLAM) problem, focusing on the latter. Ambience

sensors are used to collect data from previous user trajectories

in the building to estimate the indoor floor plan for future

users.

VI. CONCLUSIONS

We presented InPReSS, a light-weight, smartphone-based

solution for dynamic indoor plan construction. It leverages the

advanced hardware of modern smartphones and their ubiquity

to construct floor plans on the fly as users go about their

daily business. Its key contribution is a novel approach for

identifying rooms by combining readings from five different

sensors. We developed InPReSS on the Android OS and

through experiments in two different building showed that it

can build highly accurate floor plans with minimum user input

and negligible impact on battery life.
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