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Abstract

In this contribution, a probabilistic micromechanics damage framework is presented to predict the 

macroscopic stress-strain response and progressive damage in unidirectional glass-reinforced 

thermoplastic polymer composites. Motivated by different failure modes observed experimentally, 

the damage mechanism in the vicinity of the fibers (namely, the interphase) is characterized by 

initiating and growing voids. The mechanisms can be formulated through a Weibull probabilistic 

density function. In contrast, the ductile progressive degradation of matrix initial stiffness is 

analyzed via the continuum damage theory. To accommodate different damage mechanisms in the 

matrix and the interphase, a three-phase Mori-Tanaka (MT) method and transformation field 

analysis approach (TFA) are established within a unified framework that allows simulation of both 

ductile and discrete damages in different phases. Moreover, the rate-dependent viscoelastic and 

viscoplastic response of the polymer matrix phase is modelled through a phenomenological model 

consisting of four Kelvin-Voigt branches and a viscoplastic branch under the thermodynamics 

framework. The reliability and efficiency of the modified mean-field damage model, based on 

TFA and Mori-Tanaka scheme, are assessed by comparing the simulated stress-strain response 

against full-field Abaqus simulations under both unidirectional and multiaxial nonproportional 
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loading paths at different loading rates. The developed model provides an efficient alternative to 

the finite-element based full-field homogenization schemes or other mean-field micromechanics 

techniques that may be compared, as well as a framework for a potential extension of the theory 

for simulating damage evolution in composites with random reinforcement orientations. 

Keywords: Evolving Damage; Probabilistic Density Function; Mori-Tanaka Homogenization; 

Transformation Field Analysis; Viscoelastic-Viscoplastic Behavior; Interphase

1. Introduction

Polymeric matrix composites are known to exhibit substantial rate-dependent inelastic stress-strain 

behavior and accordingly have been simulated by viscoelastic and viscoplastic constitutive models. 

The inelastic behavior is typically more pronounced in the presence of micro-damage, which 

significantly affects the macroscopic stress-strain response and the subsequent load-bearing 

capability of the polymeric matrix composites under transverse tensile, transverse shear, and axial 

shear loading conditions. 

Relative to the monolithic polymers, simulating damage initiation and evolution in fiber-

reinforced composites is a more challenging problem due to the myriad damage mechanisms and 

modes, as well as their complex nature that may be activated at different scales. Hence the nature 

of inelastic response at the homogenized level in polymeric composites is not always well-

understood. Figure 1 illustrates the micrograph of a glass/polyamide composite (PA66/GF30) 

exhibiting damage accumulation in the matrix surrounding the reinforcement (coating) and at the 

interface as studied by Arif et al. (2014) as well as by Horst and Spoormaker (1997). It is clear that 

at least two different damage modes can be identified. Specifically, in the vicinity of the stiff fiber 

phase, the damage is catastrophic with little energy dissipation and is characterized by the 

occurrence and the coalescence of voids or defects. From a mechanics point of view, the 
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appearance of the discrete damage in the near-fiber region is induced by a sudden release of strain 

energy by debonding at the fiber/matrix interface and propagating by coalescence due to the high 

stress concentrations or the manufacturing defects appeared in this region. Away from the fibers, 

however, the matrix failure occurs in a rather slowly progressing manner with higher energy 

dissipation. Conversely to the interphase, no visible cracks occur in the polymer matrix. Therefore, 

progressive stiffness degradation is the primary manifestation of this type of ductile damage.

Figure 1 Micrograph of glass/polyamide (PA66/GF30) composites with interfacial damage induced by void growth 
and coalescence

The potential benefits that may be obtained from the use of composites have led to reviving 

interest in developing accurate and efficient micromechanical models in order to understand the 

overall response and underlying failure mechanisms of composite materials from a constituent 

phase (or microstructure) level. In the past two decades, a large body of work has already been 

done in the literature to address the above issues, which in general consists of two major categories. 

The first group of approaches that study the damage and microcracking in heterogeneous materials 

utilizes the full-field analysis approaches, such as finite-element (Häussler-Combe et al., 2020; 

Park et al., 2016) and finite-volume numerical techniques (Chen and Pindera, 2020; Chen et al., 

2018; Tu and Chen, 2020a, b). The full-field approach admits arbitrarily shaped microstructures. 
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The stress and displacement fields in the analysis domain involving complex geometries, material 

properties, and boundary conditions can be accurately determined. A major disadvantage of the 

numerical techniques is the fact that they require substantial effort during the problem definition 

stage, namely, the mesh discretization of the analysis domain, and may not be easily employed in 

the parametric studies aimed at understanding the property-structure relationships. Another 

complication associated with damage simulation encountered in the numerical approaches is the 

convergence and numerical issues due to the singular stress fields in the vicinity of the cracks and 

fiber ends. Extensive mesh refinement may be required to ensure the equilibrium of stress in the 

affected region. An alternative approach to the classical finite-element homogenization is the Fast 

Fourier Transforms (FFT) (Lahellec and Suquet, 2007; Moulinec and Suquet, 1998). The FFT 

method avoids mesh discretization and does not require the formation of a stiffness matrix. This 

approach, however, requires a large number of iterations to obtain convergence in the case of 

elastic-perfectly plastic matrix reinforced by stiff inclusion (Moulinec and Suquet, 1998). The 

elasticity-based locally-exact homogenization technique proposed by Wang and Pindera (2016) is 

a promising exception, but has been only employed thus far in the prediction of the interfacial 

separation process in unidirectional composites with elastic constituent phases (Wang et al., 2019).

The second group of approaches is based on classical or mean-field homogenization 

methods. Relative to the full-field analysis approaches, these approaches are more computationally 

affordable and are semi-analytical. The preparation of the input data is extremely simple and fast, 

without resorting to computationally demanding discretization of the analysis domain. Simulating 

interphase with arbitrary thickness is achieved without experiencing convergence issues common 

to the finite-element approach (Despringre et al., 2016). Many classical or mean-field approaches 

are found in the literature aimed at understanding the interfacial damage behavior in composite 
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materials, cf., Matous (2003), Lee and Pyo (2008), Pyo and Lee (2010),  Lim et al. (2020),  Dinzart 

and Sabar (2017), Shu and Stanciulescu (2020), and Zhou and Huang (2020). However, to the 

authors’ best knowledge, thus far, there has been no reported work that is devoted to addressing 

both ductile and discrete types of damages in mean-field micromechanics-based models in the 

open literature.

Herein, the modified three-phase Mori-Tanaka TFA approach recently developed by the 

present authors (Barral et al., 2020; Chatzigeorgiou and Meraghni, 2019), which was limited to 

modelling the inelastic response of composites with undamaged phases, is further extended to 

naturally track the evolution of different local damage modes as observed experimentally in Figure 

1. In addition to the polymer matrix ductile damage, the developed model accounts for the discrete 

damage induced by the interphase progressive degradation resulting from the fiber-matrix 

debonding. The modified Mori-Tanaka model consists of three distinct phases, that is, the fiber, 

matrix, and interphase. The introduction of the interphase shell has two objectives.  First, it allows 

us to address the excessive overestimation of the macroscopic stress-strain response using the 

classical Mori-Tanaka approach through an inelastic correction tensor, as demonstrated by Barral 

et al. (2020). This differs from the linear comparison composite approach developed by Lahellec 

and Suquet (2007) which requires solving a nonlinear system of equations for identifying the 

properties of the comparison composites. More importantly, it enables simulating different failure 

modes in the near-fiber interphase and the matrix area by choosing different damage models. The 

new approach makes use of a phenomenological viscoelastic-viscoplastic-damage model, 

developed under the thermodynamics framework by Praud et al. (2017a), to simulate the inelastic 

dissipations at the polymer matrix phase. The latter is combined with the Weibull probabilistic 

function to simulate the initiation and the coalescence of micro-cracks in the vicinity of the 



6

reinforcement (referred as the interphase). The model is then extensively validated against the full-

field finite-element analysis (FEA) approach using the Abaqus code, which provides a gold 

standard considered as a reference solution. The comparison is conducted at different loading rates 

under unidirectional transverse normal, transverse shear, and axial shear loading conditions, as 

well as more complex nonproportional multiaxial loading conditions. These numerical results 

demonstrate a good level of accordance between the mean-field Mori-Tanaka TFA and finite-

element approaches, suggesting that the proposed method is can capture the complex viscoelastic 

and viscoplastic deformation mechanisms in polymer composites. The main contribution of the 

present work includes:

 The first time that two different damage modes (discrete damage in the vicinity of 

the fibers and continuum damage in the polymer matrix region) in composites are 

analyzed and their effects are predicted using a modified Mori-Tanaka TFA 

approach.

 A comparable finite-element model with the same damage models is implemented 

in Abaqus via the user material subroutine to verify the modified Mori-Tanaka TFA 

damage framework.

 Demonstration that the modified Mori-Tanaka TFA approach is capable to capture 

and predict the complex viscoelastic-viscoplastic-damage behavior under various 

loading conditions generated by the full-field finite-element analysis.

The remainder of the present work is organized as follows: Section 2 introduces the 

theoretical framework of the probabilistic Mori-Tanaka TFA approach accounting for the 

evolutionary interfacial debonding and the progressive ductile damage of the matrix region. 

Section 3 illustrates the numerical implementation and the related iterative strategy used in the 
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modified Mori-Tanaka scheme. Section 4 demonstrates the effect of Weibull parameters on the 

interfacial damage growth. The capability of the proposed damage framework for simulating the 

inelastic response of unidirectional thermoplastic/glass composites is validated in Section 5 vis-à-

vis the finite-element results under various loading paths. Discussion and future development of 

the proposed method is presented in Section 6. Section 7 presents the pertinent conclusions. 

2. Theoretical Framework

2.1 Mori-Tanaka based TFA Framework Accounting for the Interphase: A Brief Overview 

and New Developments

The details of the Mori-Tanaka based TFA framework accounting for the interphase layer, in the 

absence of damage, can be found in the papers by Chatizigeorgiou and Meraghni (2019) and Barral 

et al. (2020). Herein, a brief exposition is given to follow the employed methodology in accurately 

predicting the inelastic response of unidirectional composites.

Like all other micromechanics models, the central problem of the Mori-Tanaka scheme 

(Mori and Tanaka, 1973) is to determine the strain concentration fourth-order tensor  that rA

relates the average strain in the  phase  to the applied macroscopic strain  (prescribed 𝑟th rε ε

strain) in the form:

 (2):r rε A ε

In the case of nonlinear constituent phases, the total macroscopic strain is decomposed into 

elastic  and inelastic  contributions as follows:eε inε

 (3)e in ε ε ε
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In the TFA method, proposed by Dvorak (1992) and Dvorak and Benveniste (1992), the 

averaged phase strain is expressed as a function of the applied macroscopic strain and the inelastic 

strains from all phases as:

 (4)
1

: :
N

in in
r r rp p

p

  ε A ε A ε

where  represents the fourth-order inelastic concentration tensor. In the classical Mori-Tanaka in
rpA

approach, the elastic and inelastic strain concentration tensors  and are calculated by rA in
rA

embedding a single fiber in the matrix phase and applying the far-field boundary conditions (Mori 

and Tanaka, 1973). Herein, to account for the void creation and growth in the interphase (coating 

layer), the modified Mori-Tanaka approach recently developed by Chatizigeorgiou and Meraghni 

(2019) is adopted. The composite is modelled by three distinct phases, that is, the matrix phase 

(denoted by subscript 0), the interphase (denoted by subscript 2), and the inclusion (denoted by 

subscript 1). The ratio between fiber  and interphase  volume contents is defined as:𝑐1 𝑐2

 (5)1

1 2

c
c c

 


  

Figure 2 A three-phase Mori-Tanaka model with interphase containing voids. 
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For a three-phase composite, Eq. (4) can be rewritten as:

 (6)0 0 1 1 2 2: : : :in in in in in in
r r r r r   ε A ε A ε A ε A ε

where    The elastic concentration tensor  is given by:𝑟 = 0, 1, 2. rA

  (7)  1
0 0 0 1 1 2 2 1 1 0 2 2 0,      : ,      :c c c

    A T T T A T A A T A

where  denotes the elastic interaction tensor which is expressed for the three phases by:rT

 (8)  1
0 1 10 20 12 2 12 1,     (1 ) : ,     :      T I T N N N T N T

 is the fourth-order identity tensor and  is the Kronecker delta.  / 2ijkl ik jl il jkI      𝛿𝑖𝑗

The inelastic concentration tensors  are calculated by (Chatzigeorgiou and Meraghni, in
rpA

2019):

 (9)
00 0 1 10 2 20 01 0 1 11 2 21 02 0 1 12 2 22

10 1 00 10 11 1 01 11 12 1 02 12

20 2

: ,     : ,   : ,

: ,                  : ,               : ,
:

in in in in in in in in in

in in in in in in in in in

in

c c c c c c                  
     



A A T T A A T T A A T T

A T A T A T A T A T A T
A T A00 20 21 2 01 21 22 1 02 22,                  : ,               :in in in in in in in in    T A T A T A T A T

where  denotes the inelastic interaction tensor which is given by:in
rpT

 (10)

 
 

10 1 0 0 11 1 0 20 2 1

12 1 0 20 2 2 20 12 10

21 12 11 2 1 22 12 12 2 2

: : ,                            : (1 ) : : ,

(1 ) : : : , ,

: ,                      :

in in

in in in

in in in in

 



    

   

   

T T P T T P N P

T T P N P T N T

T N T P T N T P

 


 

where  is the matrix volume fraction.  ,  and  are the secant moduli of the matrix, fiber, 𝑐0 0 1 2
and interphase phases, respectively. Moreover,

 (11)

 
 
 

10 0 1 0

20 0 2 0

12 2 1 2

: ,

: ,

:

  

  

  

N I P

N I P

N I P

 
 
 

 (12)
 
 

1
0 0 0

1
2 2 2

: ,

:









P S

P S

 
 
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where and  are the Eshelby tensors (Eshelby, 1957) which depend on the properties  0S   2S 

of the matrix and the interphase, and the geometry of the fiber, respectively. In the case of infinitely 

long cylindrical fibers embedded in an isotropic matrix, an explicit expression for the Eshelby 

tensor may be found in the literature (Mura, 1987). Otherwise, the Eshelby tensor must be 

evaluated numerically using the technique developed by Gavazzi and Lagoudas (1990).

In the present work, the elastic moduli of the undamaged matrix and interphase are assumed 

to be identical, denoted by , with the viscoelastic and viscoplastic responses modelled using the 0C

same constitutive law. Moreover, it is important to note that the classical Mori-Tanaka scheme 

significantly overestimates the nonlinear response, namely elastoplastic or viscoelatoplastic 

response, hence the post-yield stress-strain response, as it is based on the average matrix stress 

assumption. To compensate for the overestimation of the nonlinear response and the apparent 

nonuniform strain concentration observed in the full-field homogenization technique, a correction 

tensor  originally proposed by Barral et al. (2020) is introduced to represent the difference Y

between matrix and interphase inelastic strains:

 (13)2 0:in inε Y ε

For a unidirectional fiber-reinforced composite with fiber oriented in  direction, the 𝑥3

correction tensor takes the following form:

 (14)

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

N

N

ST

SL

SL









 
 
 
 

  
 
 
 
  

Y
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where , , and  reflect the inelastic strain concentration components associated with N ST SL

transverse tensile, transverse shear, and axial shear loading modes, respectively.  

In the case that the fiber is linearly elastic and undamageable, the total phase strains are 

obtained by substituting Eq. (13) into Eq. (6):

 (15)

 0 0 0 1 1 0 2 0 0

1 1 0 1 0 0

2 0 0 0

: : : ( ) ( ) : ( ) :

: : ( ) :
( ) : ( ) :

   

 

  

ε A ε A T S S I Y ε

ε T ε T S ε
ε ε S I Y ε

 




in

in

in

c c

where the inelastic strain  is evaluated incrementally using an appropriate phase constitutive 0
inε

law described in the sequel. 

It should be noted that the original three-phase Mori-Tanaka TFA framework developed 

by Chatizigeorgiou and Meraghni (2019) and Barral et al. (2020) was limited to modelling the 

inelastic response of composites with undamaged phases. Herein, this approach is further extended 

for simulating progressive damage in composite materials with viscoelastic-viscoplastic phases. 

The ductile damage in the matrix and the discrete damage in the interphase of the three-phase 

Mori-Tanaka TFA approach are implemented through the stiffness degradation of the 

corresponding phases. Therefore, the stiffness tensors  and  (respectively for the matrix and 0 2

interphase) in the calculation of matrices associated with the interaction tensors, Eq. (10), are the 

secant moduli taking into account the damage status. In fact, the stiffness tensors  and  are 0 2

estimated using a mechanism-driven evolution law and differ from the initial elastic stiffness 

tensors that are so far used in the papers by Chatizigeorgiou and Meraghni (2019) and Barral et al. 

(2020). Specifically, in the former case, the matrix stiffness tensor is updated by the ductile damage 

variable, driven by the viscoplastic mechanism, whereas the interphase stiffness tensor evolves 
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according to a damage variable related to the microcrack density that follows the Weibull 

probabilistic function. 

2.2 Interfacial Damage with Void Initiation, Accumulation and Probabilistic Evolution

Motivated by the experimental observations in Figure 1, the damage initiation and evolution in the 

vicinity of the fibers (interphase) are modelled by the initiation and the accumulation of ellipsoidal 

voids in the interphase layer. The overall stiffness reduction in this layer is characterized by a 

fourth-order tensor which gradually degrades the initial stiffness tensor  of the interphase  cD 0C

layer. The determination of   is obtained as a function of void volume fraction  (also  cD c

referred as the microcrack density) by assuming the scale separation between the voids and the 

homogenized interphase medium. One can recall that for a two-phase porous composite, the 

overall stiffness is given by (Praud et al., 2017b; Praud et al., 2020):

 (16)       2 0 01 :c c c m c      C D C A

where  is the strain concentration tensor of the net matrix surrounding the voids. In the  m cA

above equation, the voids are taken into account by assigning zero stiffness to the void inclusion 

phase. Using the classical Mori-Tanaka approach, the concentration tensor  is calculated  m cA

directly from the following formula (Praud et al., 2017b; Praud et al., 2020):

 (17)    1
: 1m c m c m c c  


    Α T T T

where ,   and is the Eshelby tensor depending on the stiffness m T I   1
0c


   T I S C  0S C

tensor of the net matrix material surrounding the voids and the ellipsoidal geometry of the voids. 

Substituting Eq. (17) into Eq. (16) produces the following equation for the overall stiffness tensor 

of the damaged interphase (Praud et al., 2017b):
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 (18)     2 0 0 0 : :c c c c m c      C D C C T A

hence, . It is important to point out that the damage in the interphase is    0 : :c c c m c  D C T A

assumed to be isotropic. Although the tensors ,   and  do not have major symmetry,  0S C cT mA

the stiffness reduction tensor  always does.  cD

Progressive interfacial damage, characterized by void initiation and accumulation, may 

occur under increasing deformation and significantly degrades the overall stress-strain response of 

the composite. The use of the statistical failure criterion can be justified by scaling concepts and 

reliability approaches (Hitchon and Phillips, 1978; Wisnom, 1991). Therefore, the evolutionary 

microcracks in the interphase region are modelled as a two-parameter Weibull probabilistic density 

function (Weihull, 1951) that is commonly used in the micromechanics-based model to 

characterize various types of damage mechanisms in composite materials (Despringre et al., 2016; 

Lee and Pyo, 2008; Meraghni et al., 2002; Praud et al., 2017b). The cumulative probability 

function of void volume fraction is then expressed in the following form:

 (19)2
max 1 exp

eff
a

c
c


 

 


               

where  denotes the void volume fraction (or microcrack density) in the interphase.  and  are c c 

the Weibull parameters that control how rapid interphase microcrack may grow.  denotes the a

damage threshold activating the microcrack initiation in the interphase.  indicates the 

Macaulay bracket.  indicates the effective stress in the homogenized interphase medium.  2
eff max

represents the saturation limit of the microcrack density, hence  during the entire loading maxc 
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history. For the sake of simplicity,  is prescribed as 0 MPa in the following calculations. Under a

such circumstance, damage can be activated at low stresses, but with very low probability.

It is worth noticing that the employed Weibull probability function is subjected to the 

condition  since the damage evolution is irreversible. In addition, the von Mises failure 0c 

criterion is utilized for void initiation whose evolution follows a Weibull-like cumulative 

probabilistic law. The latter provides a physical-based background for the interfacial decohesion 

modelling in composites since it is convenient for such a statistical damage mechanism, and it is 

commonly adopted in micromechanics. The choice of the von Mises failure criterion is motivated 

by the fact that only two parameters need to be identified. In fact, the formalism of the Weibull 

function can be easily applied for other types of criteria. The readers are referred to works dealing 

with interface debonding, among them the study of Lee and Pyo (2008) that incorporates the 

hydrostatic pressure or studies that adopt a Coulomb based criterion (Desrumaux et al., 2000), or 

even a quadratic criterion based on interfacial normal and tangential stresses (Jendli et al., 2009). 

These advanced models may describe better the material behavior but require additional 

parameters that may be difficult to identify experimentally, especially when combined with 

micromechanical analyses. Since the objective of this contribution is to investigate the progressive 

void creation in heterogeneous materials, the failure criterion has been kept simple in the modified 

Mori-Tanaka TFA approach.

3. Numerical Implementation

3.1 Constitutive Model

The inelastic phase strains  appearing in the right-hand side of Eq. (15) are evaluated using the 0
inε

viscoelastic and viscoplastic (VE-VP) constitutive model, developed by Praud et al. (2017a), for 
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semi-crystalline polymers under the infinitesimal deformation assumption and isothermal 

conditions. Figure 3 illustrates the rheological model comprised of  Kelvin-Voigt viscoelastic 𝑁

branches and a viscoplastic branch placed in series. Moreover, different from the discrete damage 

in interphase, the damage in the matrix phase of the three-phase Mori-Tanaka model is ductile and 

characterized through continuum damage theory based on the well-known principle of effective 

stress introduced by Lemaitre and Chaboche (1994). For the isotropic damage, the definition of 

effective stress is given by:

 (20)
1 d



σσ

where  denotes the ductile damage variable represented as a scalar quantity that characterizes the 𝑑

state of damage and transforms the homogenized stress  into the effective stress . The subscript σ σ

0 representing the matrix phase is omitted for the sake of simplicity. 

Figure 3 Rheological scheme of the VE-VP-d

Under the thermodynamics framework, the matrix medium state laws are given by a Helmholtz 

potential:

 (21)
   

   

1 1

0
1

1, , , , : 1 :
2
1                               : 1 :
2

N N

vi vp vi vp e vi vp
i i

N r

vi vi vi
i

r d d

d R d



 

 



           
   

  

 

 

ε ε ε ε ε ε C ε ε ε

ε C ε



16

where  (representing the stiffness tensors ) and  are the elastic stiffness tensor and the eC 0C viC

viscoelastic stiffness tensor of the  branch, respectively. The associated thermodynamic 𝑖th

variables are expressed by derivation of the potential with respect to their corresponding state 

variables, which are summarized in Table 1, where  are the fourth-order viscous tensors,  viV viσ

are the viscoelastic stresses, dev( ) designates the deviatoric stresses, eq( ) is the equivalent von 𝛔 𝛔

Mises stress.

Table 1 Summary of the constitutive relations for the VE-VP-d matrix phase

State variables Associated variables Evolution law
Observable state variable

Total strain 𝛆
 




σ
ε

-

Internal state variable

Viscoelastic strain 𝛆𝑣𝑖  vi
vi

 
 


σ

ε  1 :vi vi vi
ε V σ

Viscoplastic strain 𝛆𝑝  σ
εp

 
 


 

 
3 ( )
2 1 ( )p

dev
p

d eq



σε

σ
 

Accumulated plastic strain 𝑝  ( )R p
p
 


  p  

Accumulated damage 𝑑 Y
d
 

 
  

1
1

Y
d

d S



     
 

3.2 Iterative Strategy

The inelastic strains are evaluated using the radial return mapping technique (Chatzigeorgiou et 

al., 2018; Simo and Hughes, 1998). The backward Euler time implicit numerical scheme states 

that the value of a given quantity  can be expressed as the previous converged value  plus an 𝐱 𝐱(𝑛)

increment  resulting from the imposed value : . Such an implicit Δ𝐱(𝑛 + 1) 𝐱(𝑛 + 1) = 𝐱(𝑛) + Δ𝐱(𝑛 + 1)

relation is solved iteratively based on the Newton-Raphson method, as detailed in the reference 
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book by Simo and Hughes (1998). The current value is updated for each constitutive law correction 

iteration  by:  until  converges. 𝑘 𝐱(𝑛 + 1)(𝑘 + 1) = 𝐱(𝑛 + 1)(𝑘) +𝛿𝐱(𝑛 + 1)(𝑘) 𝐱(𝑛 + 1)

Herein, the local strain in the  phase in Eq. (6) is then rewritten as:𝑟th

 (22)      1 ( ) 1 ( 1)( )

0
: :

N
n k n n in in n k

r r rp p
r

  



   ε A ε ε A ε

where . The alternative approach for calculating the viscoelastic response is to ( 1)(0) ( )in n in n
p p

 ε ε

solve the transformed viscoelastic function in the Laplace domain using the correspondence 

principle (Lévesque et al., 2007). But this approach depends on the accuracy and efficiency of the 

chosen Laplace inversion scheme. 

3.3 Homogenized Constitutive Equation

The modified Mori-Tanaka TFA approach developed herein makes use of the secant stiffness 

matrix approach to compute the homogenized stress-strain response. Figure 4 illustrates the 

flowchart of the computational algorithm of the modified Mori-Tanaka TFA simulation. The 

macroscopic constitutive equation can be expressed as:

 (23)* in σ C ε σ

where   is the initial homogenized stiffness matrix of the three-phase composite given by:*C

 (24)*
0 0 0 1 1 1 2 2 2: : :c c c  C C A C A C A

where , , and  ( = ),  are the undamaged (elastic) stiffness tensors of the matrix, 0C 1C 2C 2C 0C

fiber, and interphase phases, respectively. It should be noted that the calculation of  is *C

performed just once, regardless of the amount of damage and inelastic strains. For a given applied 

macroscopic strain , the inelastic stress  needs to be solved iteratively because it ε in  σ C ε σ

depends implicitly on the inelastic strains and the accumulated damage, that is, , , , and  0
inε 2

inε d
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. The convergence of  is achieved till either the difference between two successive iterations c inσ

is within a specified tolerance or the iterations reach a prescribed maximum number. The 

homogenized stress  used in the calculation of  is obtained directly by adding up all the σ inσ

average phase stresses as follows:

 (25)0 0 1 1 2 2c c c  σ σ σ σ

where 

 (26)
     

     

0 0 0 0 0 0 0

1 1 1 1 1

2 2 2 0 0 2 0

: 1 :

: :

: : : :

in in

in in
c

d



    

 

      

σ ε ε C ε ε

σ ε C ε

σ ε Y ε C D ε Y ε




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Figure 4  Flowchart of the computational algorithm in modified Mori-Tanaka TFA simulation 

It is worth mentioning that the secant stiffness matrix approach adopted herein is 

advantageous compared to the tangent moduli approach typically employed in the full-field 

analysis approaches such as the finite-element technique in several aspects. It eliminates the 

development of the fourth-order tangent operator that must be updated at each iteration of every 

load step which involves a lot of computational efforts. Secondly, in the case of simulating 

composite materials where the large property contrast between the constituent phases produces 
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large stress and deformation gradients, the tangent stiffness matrix approach may encounter 

convergence issues and numerical instabilities, especially in the presence of nonlinear constituent 

phases and microcracks. This problem, however, is not observed in the secant stiffness matrix 

approach. 

4. Sensitivity Study

In this section, the modified Mori-Tanaka TFA framework developed in this work is employed to 

describe the load/unload nonlinear stress-strain response of unidirectional composites with 

evolving damage. The material system investigated herein is a glass/polyamide (PA66) composite, 

whose constituent phase material properties which are taken from Praud et al. (2020)  are listed in 

Table 2. The large property mismatch between the glass fiber and thermoplastic matrix phase 

yields large deformation and stress gradients in the vicinity of the fibers (interphase), hence 

providing a demanding test of the correctness and robustness of damage framework. While the 

glass fiber is taken as linearly-elastic, the polyamide matrix exhibits ductile damage coupled to 

viscoelastic-viscoplastic behavior. The latter is modelled through four viscoelastic Kelvin-Voigt 

branches and a viscoplastic branch, which captures a wide range of strain rates while keeping a 

reasonable computation amount. The glass fiber volume fraction and the ratio of the fiber and 

interphase volume are fixed at  and , respectively as detailed by Barral et al. 𝑐1 = 20% 𝜑 = 57%

(2020). In practice, the volume fraction of the interphase can be identified upon securing the 

micrograph of the cross section of coated reinforcements exhibiting discrete damage in the vicinity 

of the reinforcements. The values of the three components of the inelastic correction tensor 

 are assumed to be constant (invariant of the loading path and the strain level) and  , ,N ST SL  Y

are identified through the optimization strategy detailed by Barral et al. (2020) by calibrating with 

the reference full-field homogenization results over all the volume fraction range under various 
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loading conditions. The correction tensor previously identified for the thermoplastic matrix 

reinforced by glass fiber by Barral et al. (2020) is directly utilized herein. Last but not least, since 

the observed damage mechanism in the matrix phase away from the fiber is ductile, the following 

damage saturation function  is employed at the matrix phase such that the damage coefficient  d

 will not exceed its limit: 𝑑

 (27) 
 

2

2

1

( ) 1

0

ini

ini
ini ult

ult ini

ult

d d

d d
d d d d

d d

d d





    


 

where  and  denote the initial and ultimate damage saturation limits, respectively, which, 𝑑𝑖𝑛𝑖 𝑑𝑢𝑙𝑡

in practice, are estimated in a simple tensile experiment of a monolithic polyamide specimen. In 

the present work, the damage saturation limits , and  are utilized such that the 𝑑𝑖𝑛𝑖 = 0.45 𝑑𝑢𝑙𝑡 = 0.6

finite-element simulation for comparison with the Mori-Tanaka TFA approach described in 

Section 5 will not run into numerical and convergence problems. 

Table 2 Material Properties used in the calculation (Barral et al., 2020; Praud et al., 2020)

Fiber Interphase Matrix
E 72.4 GPa 2731 MPa 2731 MPa
𝜐 0.22 0.3 0.3

 1vE 8766 MPa 8766 MPa
 1v 1395 MPa s 1395 MPa s
 2vE 13754 MPa 13754 MPa
 2v 165601 MPa s 165601 MPa s
 3vE 15010 MPa 15010 MPa
 3v 457955 MPa s 457955 MPa s
 4vE 11634 MPa 11634 MPa
 4v 1307516 MPa s 1307516 MPa s
 0R 4.86 MPa 4.86 MPa
 K 1304.33 MPa 1304.33 MPa

 n 0.674 0.674
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 H 47.35 MPa s 47.35 MPa s
 m 0.068 0.068

 S 21.607
  -1.105
 N 2.5

S T 2.64
SL 3.7

max 0.5-1* 
 0.2-3* 

 c 20-80 MPa* 

*interval range of variation for the sensitivity analysis

To demonstrate the modelling capabilities of the proposed probabilistic damage 

micromechanical framework based on Weibull function, the effect of Weibull parameters on the 

nonlinear stress-strain response of the glass/polyamide composites is first examined and discussed. 

Figure 5 illustrates the load/unload response of the glass/polyamide composite and evolution of 

porosity volume fraction as a function of time in the interphase layer, at two different critical 

stresses   and  and for various Weibull exponents , , , . 30MPac  60MPac  𝜅 = 0.2 0.8 2 and 3

The saturation limit for the interfacial void volume fraction (or microcrack density)  is max 0.5 

employed for all cases. The composite is subjected to strain-controlled uniaxial transverse stress 

loading ( 0) with a strain rate of .  𝜎11 ≠ 1 × 10 ―3/s

As observed, in the case of , the effect of the Weibull exponent on the stress-30 MPac 

strain behavior is negligible but is more pronounced on the evolution of interfacial defect volume 

fraction (or the microcrack density). At low Weibull exponent cases, the interfacial damage 

reaches rapidly the saturation limit. However, in the case of high Weibull exponent, for instance, 

, the overall stress-strain response and the evolution of microcrack volume fraction are 𝜅 = 3

characterized by abrupt jumps not observed for low  cases. The large jumps are directly related 𝜅
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to the occurrence of abrupt microcracks initiation due to the sudden release of strain energy. In the 

case of , increasing the Weibull exponent promotes an apparent stiffer overall stress-60 MPac 

strain response, as the formation of new voids is partially constraint at large critical stress cases. 

No abrupt jump is observed in the stress-strain response nor the evolution of microcrack volume 

fraction at this critical stress level.

(a)  30 MPac 

(b)  60 MPac 

Figure 5 Effect of Weibull parameters  and  on the homogenized stress-strain response of  a composite subjected c 

to transverse tensile loading for void saturation limit of .max 0.5 
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Figure 6 presents the load/unload stress-strain response and the evolution of interfacial  

defect volume fraction when the void saturation limit is increased to  while other max 0.8 

parameters have been kept the same. Hence, the differences between Figures 5 and 6 are due to 

the differences in the interfacial damage saturation limit.  It is clear that increasing the damage 

saturation limit  accelerates the formation (initiation) and the density of the interfacial voids. max

A cursory examination of Figures 5 and 6 reveals that the composite with higher interfacial damage 

saturation limit is softer as more damage is allowed to develop in the interphase layer and the 

influence of Weibull parameters on the stress-strain response of the composite is more drastic. 

More abrupt jumps are also observed in the stress-strain response and evolution of void volume 

fraction (Figure 6). 

(a) 30 MPac 
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(b) 60 MPac 

Figure 6 Effect of Weibull parameters  and  on the homogenized stress-strain response of  a composite subjected c 

to transverse tensile loading for void saturation limit of .max 0.8 

It should be pointed out that even in the case with the sudden formation of interfacial voids 

characterized by the abrupt decrease in the stress-strain response, the modified Mori-Tanaka 

damage framework can complete the analysis and does not encounter any numerical issue, which 

is not the case in the finite-element analysis. Figure 7 describes the global iteration number as a 

function of load step for different Weibull exponents  in the case of   and , 𝜅 30 MPac  max 0.5 

to obtain the converged response for .  In these computations, two criteria are utilized to inσ

terminate the iterative process: (a) the difference between two successive iterations should be 

within a specified tolerance, namely: ; or (b) the iterations reach the prescribed maximum 1 × 10 ―6

number 100. It is seen that in the case of , the convergence is achieved with as few 𝜅 = 0.2 and 0.8

as 17 maximum iterations. Increasing the Weibull exponent to  requires at most 33 iterations 𝜅 = 2

to ensure global convergence.  In the case where there is abrupt jump in the stress-strain curve, 

case of , a significantly larger number of iterations is required compared to the cases where 𝜅 = 3
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 has a low value ranging between 0.2 and 0.8. It should be mentioned that at step 65 of the case 𝜅

of , the iterations reach the allowable number 100 for the given tolerance . It has 𝜅 = 3 1 × 10 ―6

been verified that the homogenized stress-strain response and evolution of void volume fractions 

are not altered when the allowable iteration number is increased to 200 while the error generated 

at each step is kept within the tolerance.

Figure 7 Comparison of the global iteration number as a function of load step for different  in the case of 𝜅

 and .30 MPac  max 0.5 
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5 Numerical Results

In order to assess the correctness of the modified Mori-Tanaka TFA damage framework in 

simulating progressive damage in heterogeneous materials, the present mean-field predictions are 

compared with the full-field finite-element homogenization simulations in Abaqus which is a gold 

standard. Further assessment and experimental validation of the proposed framework will be 

performed elsewhere in our future studies. To this end, the constitutive law implemented into the 

Abaqus code for the polymer matrix phase is exactly the same as that employed in the modified 

Mori-Tanaka TFA approach. The inelastic behavior is characterized by the viscoelastic-

viscoplastic with ductile damage model; hence it is not repeated in this section. The reader can 

refer to the work by Praud et al. (2017a) for the numerical details of the implementation using a 

UserMATerial subroutine (UMAT). In the interphase layer, a viscoelastic-viscoplastic model with 

micromechanics-based damage described in the following is developed to characterize the 

nonlinear behavior and the damage in the interphase layer.

5.1 Micromechanics-based Damage in Interphase: Finite-Element Implementation

For the sake of simplicity, the subscript 2 indicated for the interphase is omitted since this section 

is totally devoted to the interphase layer. The macroscopic stress    accounting for damage is 𝛔

taken into account through the formula:

 (28)     1 : in
c c    σ σ ε ε

where   is the stress in the net matrix phase, and  0 : in σ C ε ε

where  (29)
   

   
   
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(in Eq. 27) is the overall stiffness tensor of the interphase given by Eq. (16).  is the  c  m cA

concentration tensor of the net material given by Eq. (17). The void volume fraction is directly 

given in terms of the homogenized von Mises stress through the Weibull probabilistic function, 

Eq. (19). The net polymer matrix is modelled as a viscoelastic-viscoplastic medium, represented 

by four Kevin-Voigt viscoelastic branches and a viscoplastic branch.  The inelastic strain  is inε

obtained iteratively using the radial return mapping technique described in Section 3.2.

The interphase and polymer matrix nonlinear constitutive models are implemented in 

Abaqus through two user material subroutines. The global finite-element solver requires the 

tangent moduli  at each integration point which describe the current rate of change of stress t

with a change in total strain. The tangent moduli for the polymer matrix phase 0
t  have already 

been developed by Praud et al. (2017a) using the convex cutting plane and the radial mapping 

algorithm. For the interphase material, the following form of tangent moduli is obtained using the 

linearization scheme introduced by Praud et al. (2017a):

 (30)   2 01 : :t
c m in  C A I 

where 

 (31)  1
: : :in in m in m


    I E I A E A

The expression for the matrix  that relates the  to  :inE ε inε

 (32):in
in ε E ε

is provided in the paper by Praud et al. (2017a). It should be noted that at the present stage of the 

research, we focus on the comparison of implementing the interphase constitutive model in two 

computational approaches. The validity of the proposed interphase constitutive model to reproduce 
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the experimental response of composites with randomly oriented fibers will be conducted in our 

future studies.

5.2 Unidirectional Loading 

Figure 8 shows the three-phase finite-element unit cell model used for comparison with the 

modified Mori-Tanaka TFA approach, which is discretized into 11951 C3D10 elements. Periodic 

boundary conditions were applied on opposite faces of the unit cell, the details of which can be 

found in the paper by  Praud et al. (2020). To avoid duplication, the Weibull parameters are fixed 

as: , , and the interfacial void saturation limit is set as: . The choice 30 MPac  𝜅 = 0.8 max 0.5 

of the aforementioned parameters is motivated by the fact that the actual macroscopic stress-strain 

response of the glass-reinforced thermoplastic polyamide composite is ductile, with an added 

advantage that the Abaqus simulation will not run into numerical problems since these parameters 

are capable of generating smooth stress-strain response with gradual growth of interfacial 

microcracks as it is commonly expected for this polymer composite and observed in the Mori-

Tanaka TFA simulations. 

Figure 8 Finite-element unit cell discretization of a three-phase composite used for comparison with the modified 
Mori-Tanaka approach
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Comparison of the load/unload stress-strain response is conducted at strain rates 1 × 10 ―3

  and  for three different loading modes, namely, transverse tensile, transverse shear, /s 5 × 10 ―2/s 

and axial shear loading, respectively, as presented in Figure 9. 

Under transverse tensile loading by , the modified Mori-Tanaka TFA and the 𝜎11 ≠ 0

reference solution obtained through full-field numerical homogenization predict approximately the 

same response at both loading rates during the entire loading range, providing good support and 

assessment for the proposed modified Mori-Tanaka TFA damage framework. Under transverse 

shear loading by  and axial shear loading by , the Mori-Tanaka predictions correlate 𝜎12 ≠ 0 𝜎13 ≠ 0

with the reference simulations in the early loading stage but exhibit a slight difference at larger 

applied strains, especially in the higher strain rate case . For all the loading cases, 5 × 10 ―2/s

increasing the loading rate promotes stiffer stress-strain response, indicating the proposed method 

is able to capture properly the rate effect.

It must be noted that the observed maximum difference of 6.7% and 7.6% noticed 

respectively for transverse and axial shear loading conditions can be attributed to the fact that the 

inelastic strain correction tensor , taken directly from Barral et al. (2020), is identified based on Y

a different unit cell configuration, namely, in a hexagonal arrangement. Particularly, as discussed 

by Khatam et al. (2009), the hexagonal unit cell loses transverse isotropy in the nonlinear region 

of the stress-strain overall response, hence it is discarded in the present work. While the 

transversely isotropic relations between the transverse Young’s moduli and transverse shear 

modulus no longer exist, the square unit cell yields isotropic response under transverse tensile 

loading in the plane perpendicular to the fiber direction, which is what one expects for the 

statistical homogeneous medium. As a result, in the identification procedure, the elements   1,1Y

and  of the  correction tensors associated with transverse tension are found equal due to  2,2Y Y
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the symmetry of the response in square array. In contrast, the hexagonal unit cell will produce 

different stress-strain responses    and  under transverse tensile loading, which 11 11  22 22 

contradicts with the expected outcome. Nonetheless, the overall agreement between the mean-field 

predictions and full-field simulations is still promising for the possible use of the developed 

approach to simulate the progressive damage in composite structures given their reduced 

computational costs.
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Figure 9 Comparison of homogenized load/unload stress-strain response generated by modified Mori-Tanaka TFA 
(MT-TFA) approach and full-field homogenization using finite-element analysis under uniaxial transverse tensile 𝜎11

, transverse shear , and axial shear loading  at two strain rates, respectively. It is noted that the ≠ 0 𝜎12 ≠ 0 𝜎13 ≠ 0
strain rates under the shear loading refer to the engineering strain rates. 

Figure 10 illustrates the evolution of interphase microcrack density  and matrix ductile c

damage  as a function of applied strains during the loading stage, under three different loading d

modes. It is observed that for the interphase discrete damage, increasing the loading rate promotes 

a significant increase in microcrack density at the same load level. At the beginning of deformation, 

the accumulation of interphase microcracks is rather rapid, indicating the interphase failure is 

catastrophic. The rate of microcrack or void accumulation decreases gradually with the increase 

of applied strain. At higher applied strains, the interphase microcrack density ceases to grow and 

tends to a constant value because the continuum formation of microcracks is suppressed due to the 

local fracture in the affected region. In contrast, in the event of matrix ductile damage, the effect 

of loading rate on damage accumulation is less dramatic. Increasing strain rate produces a slight 

decrease in ductile damage accumulation. Additionally, the ductile damage increases with applied 

strain in a quasi-linear fashion after the onset of the matrix ductile damage. Figure 10 also 

demonstrates that the damage evolution in considered composites material system is induced by 
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interfacial debonding in the vicinity of the reinforcements and followed by propagating through 

the matrix.
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Figure 10 Evolution of interphase microcrack density  and matrix ductile damage  generated by the MT-TFA c d

approach as a function of applied strains during the loading stage.
 

5.2 Nonproportional Multiaxial Loading

The reliability of the modified Mori-Tanaka TFA damage framework is further demonstrated by 

comparison with the finite-element simulations carried out for nonproportional multiaxial loading 

paths. The complex loading path is first conducted under the in-plane tensile-tensile loading: at 

stage 1, , a strain-controlled uniaxial transverse tension by   is applied, where  𝑡 = 0 ― 𝑡0 𝜎11 ≠ 0

 increases linearly up to a maximum strain of . At stage 2, , while the  𝜀11 𝜀11 = 5% 𝑡 = 𝑡0 ― 2𝑡0 𝜀11

is kept constant , the composite is under the strain-controlled biaxial loading by both  𝜀11 = 5% 𝜎11

 and  until . At stage 3, , both  and  are ≠ 0 𝜎22 ≠ 0 𝜀22 = 2.5% 𝑡 = 2𝑡0 ― 3𝑡0 𝜀11 = 5% 𝜀22 = 2.5%

held constant. Stage 4, , is the stress-controlled unloading, where both  and  𝑡 = 3𝑡0 ― 4𝑡0 𝜎11 𝜎22

decrease linearly to 0 MPa. 

The combined inplane tensile-tensile loading is performed at two different loading speeds 

that correspond to  and  Figures 11 (a) and 12 (a) illustrate the comparison of 𝑡0 = 50s 𝑡0 = 4s.

macroscopic normal strains , , and  as a function of time generated by the modified Mori-𝜀11 𝜀22 𝜀33

Tanaka TFA damage approach and the FEA numerical simulations. The correlations between the 
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two computational approaches are remarkable. Figures 11 (b) and 12 (b) describe the 

corresponding homogenized stress responses    and  as a function of time. The difference 𝜎11 𝜎22

between the modified Mori-Tanaka and the reference solution is negligible. The modified Mori-

Tanaka TFA approach captures sufficiently well the long-term stress relaxation which is 

characterized by the continuous decrease of   and  at stage 3 when both  and  are held 𝜎11 𝜎22 𝜀11 𝜀22

constant.

(a) strain VS time (b) stress VS time

Figure 11 Comparison of homogenized strain and stress response as a function of time generated by Mori-Tanaka and 
Abaqus under combined nonproportional in-plane tensile-tensile loading. At the first stage , the composite 𝑡 = 0 ― 50s
is under the strain-controlled transverse tensile loading by  up to a maximum strain of . At the second  𝜎11 ≠ 0 𝜀11 = 5%
stage , while the  is kept constant, the composite is under the strain-controlled biaxial loading by 𝑡 = 50 ― 100s 𝜀11  𝜎11

 and  up to a maximum strain of . The fourth stage  is stress-controlled ≠ 0  𝜎22 ≠ 0 𝜀22 = 2.5% 𝑡 = 150 ― 200s
unloading.
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(a) strain VS time (b) stress VS time

Figure 12 Comparison of homogenized strain and stress response generated by Mori-Tanaka and Abaqus under 
combined nonproportional in-plane tensile-tensile loading. At the first stage , the composite is under the 𝑡 = 0 ― 1s
strain-controlled transverse tensile loading by  up to a maximum strain of . At the second stage  𝜎11 ≠ 0 𝜀11 ≠ 5%

, while the  is kept constant, the composite is under the strain-controlled biaxial loading by  and 𝑡 = 1 ― 2s 𝜀11 𝜎11 ≠ 0 
 up to a maximum strain of . The fourth stage  is stress-controlled unloading.𝜎22 ≠ 0 𝜀22 = 2.5% 𝑡 = 3 ― 4s

 The assessment of the modelling capability of the modified Mori-Tanaka TFA approach 

under combined nonproportional transverse tensile-transverse/axial shear loading conditions is 

further tested. Figure 13 shows the strain-controlled loading path applied to the same composite 

material system as the previous one. At stage 1, , the composite is subjected to uniaxial 𝑡 = 0 ― 𝑡0

transverse tensile loading by . During this stage, the  increases to 5% at a constant speed 𝜎11 ≠ 0 𝜀11

whereas  (or )  has been kept zero. At stage 2, , the transverse shear strain  𝜀12 𝜀13 𝑡 = 𝑡0 ― 2𝑡0 𝜀12

(or axial shear strain )  is applied until  (or ) while the  remains at 𝜀13 𝜀12 = 2.5% 𝜀13 = 2.5% 𝜀11 𝜀11

5%. Stage 3, , is the stress relaxation stage due to the viscoelastic effect, where = 𝑡 = 2𝑡0 ― 3𝑡0

 and (or )  are held constant. At stage 4,  , the composite is under the strain-𝜀11 𝜀12 𝜀13 𝑡 = 3𝑡0 ― 4𝑡0

controlled unloading process. Both  and (or )  return to zeros.𝜀11 𝜀12 𝜀13
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Figure 13 Illustration of strain-controlled combined nonproportional transverse tensile-transverse/axial shear 
loading/unloading. 

Figures 14 (a) and 15 (a) show the comparison of transverse tensile stress  and 𝜎11

transverse shear stress  as a function of time generated by the modified Mori-Tanaka TFA 𝜎12

approach and the Abaqus at strain rates  and , respectively. 𝜀11 = 1 × 10 ―3/s 𝜀12 = 2.5 × 10 ―4/s

The comparison of the corresponding normal strains   and  due to Poisson’s effect is 𝜀22 𝜀33

presented in Figures 14 (b) and 15 (b). The modified Mori-Tanaka approach gives satisfactory 

results for both strain rates.
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(a) stress VS time (b) strain VS time

Figure 14 Comparison of homogenized stress and Poisson's (strain) response generated by Mori-Tanaka and Abaqus 
under combined nonproportional transverse tensile  -transverse shear   loading at the strain rates 𝜎11 ≠ 0 𝜎12 ≠ 0 𝜀11

 and .= 1 × 10 ―3/s 𝜀12 = 2.5 × 10 ―4/s

(a) stress VS time (b) strain VS time

Figure 15 Comparison of homogenized stress and Poisson's (strain) response generated by Mori-Tanaka and Abaqus 
under combined nonproportional transverse tensile   - transverse shear   loading at the strain rates  𝜎11 ≠ 0  𝜎12 ≠ 0 𝜀11

 and .= 5 × 10 ―2/s 𝜀12 = 2.5 × 10 ―2/s
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Figures 16 (a) and 17 (a) show the comparison of transverse tensile stress  and axial 𝜎11

shear stress  as a function of time generated by the modified Mori-Tanaka TFA approach and 𝜎13

the FEA homogenization (reference solution) at strain rates  and 𝜀11 = 1 × 10 ―3/s 𝜀13 = 2.5 ×

, respectively. The comparison of the corresponding normal strains   and  due to 10 ―4/s 𝜀22 𝜀33

Poisson’s effect is presented in Figures 16 (b) and 17 (b). Once again, the difference between the 

two computational approaches is very small, indicating that the modified Mori-Takana approach 

is robust and capable of mimicking progressive damage evolution in composites generated via the 

full-field FE analysis approach under complex loading conditions.

(a) stress VS time (b) strain VS time

Figure 16 Comparison of homogenized stress and Poisson's (strain) response generated by Mori-Tanaka and Abaqus 
under combined nonproportional transverse tensile   - axial shear   loading at the strain rates  𝜎11 ≠ 0  𝜎13 ≠ 0 𝜀11

 and .= 1 × 10 ―3/s 𝜀13 = 2.5 × 10 ―4/s
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(a) stress VS time (b) strain VS time

Figure 17 Comparison of homogenized stress and Poisson's (strain) response generated by Mori-Tanaka and Abaqus 
under combined nonproportional transverse tensile  - transverse shear   loading at the strain rates 𝜎11 ≠ 0 𝜎13 ≠ 0 𝜀11

 and .= 5 × 10 ―2/s 𝜀13 = 2.5 × 10 ―2/s

6. Discussion and Future Work

This paper, for the first time, presents a mean-field homogenization method, based on the modified 

Mori-Tanaka method and TFA technique, for simulating hybrid damage mechanisms in polymeric 

composites. In general, the modified Mori-Tanaka TFA approach provides satisfactory results 

when compared with the full-field approach predictions under various loading paths. Relative to 

the numerical techniques such as finite-element analysis, the main strengths of this model are 

three-fold. First, the modified Mori-Tanaka TFA approach avoids the computationally demanding 

mesh discretization required by the finite-element unit cell analysis. The construction of the input 

data file is extremely simple and fast. Second, the convergence of the proposed method, formulated 

based on the secant stiffness matrix approach, is rather rapid even with very demanding Weibull 

parameters, without experiencing the convergence and numerical issues common to the finite-

element homogenization technique. Third, the execution time of the present method is negligible 
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when compared with the finite-element approach. To run a nonproportional loading case such as 

Figure 17, the Mori-Tanaka TFA approach implemented in an uncompiled MATLAB environment 

consumes about 115 seconds while the Abaqus consumes about 200 minutes, producing a 

substantial reduction of execution time by 90%. Therefore, the present method may be easily 

employed in the parametric studies aimed at understanding property-structure relationships.

To make the full use of the potential offered by the proposed mean-field damage framework, 

the current work will be extended in three different directions. First of all, further assessment and 

experimental validation of the proposed framework are needed to justify the choice of the proposed 

constitutive laws. Particularly, the present damage framework employs the von Mises type failure 

stress in the Weibull probabilistic function, indicating the interphase failure will not occur under 

the hydrostatic stress state. More advanced failure criteria may be explored such as using J2 -I1 

based criterion (Ghorbel, 2008) that takes into account the effect of hydrostatic pressure commonly 

admitted for the polymer matrix. Secondly, to increase the applicability to a wider class of 

materials and structures, the extension of the current Mori-Tanaka model for simulating 

composites with random or oriented reinforcements is an important task for future development. 

Simulating three-dimensional microstructures is a challenging issue in finite-element analysis as 

it requires a great deal of computing power and can be incredibly slow. Thirdly, identification of 

the physically realistic parameters associated with the Weibull law for debonding initiation and 

evolution based on experimental data is vital for the accurate characterization of the macroscopic 

composite response. To address this need, the MT-TFA damage framework can be implemented 

into an optimization algorithm, such as particle swarm optimization (Chen and Wang, 2019). 
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7. Summary and Conclusion

The challenge in simulating progressive damage in polymer matrix composites is that both ductile 

and discrete types of damage may appear at different regions in the matrix, as observed in the 

experiment (Arif et al., 2014). To address the above issues, the modified Mori-Tanaka TFA 

approach has been proposed by incorporating an additional interphase layer to accommodate 

different damage mechanisms in the vicinity of the fibers and in the matrix. Specifically, the 

damage mechanism in the interphase layer is represented by growing voids modelled using the 

Weibull probabilistic density function while at the matrix region, the ductile damage is 

characterized by progressive stiffness degradation modelled using continuum damage theory. 

Moreover, the rate-dependent resin response is modelled as viscoelastic-viscoplastic, represented 

by four Kelvin-Voigt branches and a viscoplastic branch under the thermodynamics framework. 

Parametric studies were conducted extensively and aimed at demonstrating the effect of 

Weibull parameters on the homogenized stress-strain response and interfacial crack initiation and 

accumulation in unidirectional thermoplastic matrix composites. Physically realistic Weibull 

parameters are obtained that yield smooth stress-strain curve as expected for a thermoplastic matrix 

composite. Furthermore, these parameters ensure convergent response for comparison with the 

finite-element results with the fewest iterations. In addition, the modified Mori-Tanaka TFA 

damage framework is validated vis-à-vis finite-element simulations based on Abaqus which 

provides a gold standard (reference solution).  Good agreement between the two approaches is 

observed for various loading paths, providing good support for the proposed damage framework.
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