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Abstract

The interactions between different brain regions can be modeled as a graph, called connectome,
whose nodes correspond to parcels from a predefined brain atlas. The edges of the graph encode the
strength of the axonal connectivity between regions of the atlas which can be estimated via diffusion
Magnetic Resonance Imaging (MRI) tractography. Herein, we aim at providing a novel perspective
on the problem of choosing a suitable atlas for structural connectivity studies by assessing how
robustly an atlas captures the network topology across different subjects in a homogeneous cohort.
We measure this robustness by assessing the alignability of the connectomes, namely the possibility to
retrieve graph matchings that provide highly similar graphs. We introduce two novel concepts. First,
the graph Jaccard index (GJI), a graph similarity measure based on the well-established Jaccard index
between sets; the GJI exhibits natural mathematical properties that are not satisfied by previous
approaches. Second, we devise WL-align, a new technique for aligning connectomes obtained by
adapting the Weisfeiler-Lehman (WL) graph-isomorphism test. We validated the GJI and WL-align
on data from the Human Connectome Project database, inferring a strategy for choosing a suitable
parcellation for structural connectivity studies. Code and data are publicly available.

Author Summary An important part of our current understanding of the structure of the human
brain relies on the concept of brain network, which is obtained by looking at how different brain regions
are connected with each other. In this paper we present a strategy for choosing a suitable parcellation
of the brain for structural connectivity studies by making use of the concepts of network alignment and
similarity. To do so, we design a novel similarity measure between weighted networks called graph Jaccard
index, and a new network alignment technique called WL-align. By assessing the possibility to retrieve
graph matchings that provide highly similar graphs, we show that morphology- and structure-based
atlases define brain networks which are more topologically robust across a wide range of resolutions.

Keywords brain network topology, structural connectome, graph alignment, graph Jaccard index,
Weisfeiler-Lehman, brain parcellation

1 Introduction

Due to the immense complexity of the brain, it is impossible to gain any insight into its global operation
without simplifying assumptions. One such assumption, which has been widely used by neuroscientists,
is that the brain, and in particular the cortical surface, can be divided into distinct and homogeneous
areas. Of course the definition of homogeneous areas greatly depends on one’s point of view, which has
led to a plethora of brain parcellations. For example, the cortical surface has been subdivided based on
its cytoarchitecture [5], gyri [11], functional organization [38], axonal connectivity [18], and combinations
of these and other features [20]. There is also significant evidence that cortical regions vary in shape,
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size, number, and location across subjects and even across individual tasks, making the existence of
a single canonical atlas unlikely. In addition to studying the characteristics of specific brain regions
defined by a parcellation, there has been a growing interest in their relationship and interactions, an
emerging field known as connectomics. In this context, the focus is shifted from understanding how
information is segregated in the brain to how it is integrated. For example, through diffusion Magnetic
Resonance Imaging (MRI) tractography, structural connections between brain areas can be recovered.
The result is a network whose nodes correspond to cortical regions and whose edge weights represent
the strength of the structural connectivity between pairs of regions. A similar network can also be
built from resting state functional MRI yielding a functional, rather than structural, network. These
brain networks, which encode the structural and functional connections of the brain, are referred to as
connectomes [43, 21]. Given functional or structural connectomes, their features can be compared across
subjects and populations to link network changes to pathology or to further increase our understanding
of its organization. An underlying assumption is that a correspondence exists between nodes of the
network across subjects, a condition which is usually satisfied by using a group parcellation [34, 18].
The drawback of this strategy is that it ignores any subject specific changes in cortical organization and
reduces the specificity of the results. An alternative approach is to construct a mapping between the
nodes of the network prior to the comparison, therefore allowing the use of subject specific atlases. To
our knowledge, this approach has never been investigated in the field of network neuroscience.

The construction of a mapping between network nodes corresponds to what is known in various
fields as network alignment or graph matching [1, 9, 39, 27, 2]. More recently, the graph matching
problem gained attention also in the field of neuroscience, being used in the contexts of the analysis of
connectome heterogeneity across subjects [44, 37] and system-level matching of structural and functional
connectomes [33]. Graph alignment solutions (called alignments) correspond to a permutation of the
labels of the nodes of a graph which maximizes its similarity to a second graph. There is no standard
way to measure the quality of its solutions [3]. This is also reflected in the neuroimaging literature,
where various measures of similarity between brain networks are used [44, 37, 8, 4, 33, 12, 50]. In the
context of connectomics, a graph alignment is a reordering of the labels of the nodes of a brain network
that maximizes its similarity with a second one while preserving the topology. Describing the brain
network through its connectivity (a.k.a. adjacency) matrix, permutations of the node labels correspond
to identical permutations of the rows and columns of the connectivity matrix. This problem is distinct
from the brain atlas correspondence and parcel matching problems [31, 17]. The main difference is
that in those problems the permutation acts only on the rows of the connectivity matrix as they find
correspondences between connectivity fingerprints that rely on external features. Conversely, graph
alignment does not rely on any external information and uses only information contained in the topology
of the graphs.

The complexity of finding the optimal alignment between two graphs using a näıve brute force strategy
is exponential in the number of nodes. It is therefore intractable even for the smallest of brain networks,
which typically have 50 cortical regions. Spectral methods are a popular approach to the alignment
problem [32, 13, 22], despite being subject to limitations [54]. Modern machine learning paradigms
exploit deep learning techniques for finding an alignment [30, 29, 23], however they make use of partially
available information about the alignment itself [30], or lack explainability and interpretability.

We first introduce the graph Jaccard index (GJI), a natural objective function for the network align-
ment problem. For a given alignment, the GJI rewards correct matches while simultaneously penalizing
mismatches, overcoming limitations of previous approaches [13].

We then propose a new graph alignment heuristic, the Weisfeiler-Lehman Alignment (WL-align),
based on a weighted variant of the Weisfeiler-Lehman algorithm for graph isomorphism [52]. WL-align is
amenable to concrete interpretability in terms of local network structure around each node (Figure 2) and
can be integrated with other heuristics. We compare WL-align against the Fast Approximate Quadratic
Programming for Graph Matching (FAQ) [51], another efficient brain-alignment heuristic which is solely
based on network structure.

2 Theory

A brain network is characterized as an edge-weighted graph G = (V,E), where each of the n nodes
represents a brain region and each weight wij encodes the strength of the connection between regions
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i and j. The graph G can always be considered as complete, given that an edge (i, j) 6∈ G can be
associated to a null weight wij = 0. The matrix that encodes in position (i, j) the weight of the edge
wij between nodes i and j is called adjacency matrix of G and is denoted as Adj(G). In the context
of connectomics [43, 21], the adjacency matrix is also known as connectivity matrix. In this work we
consider only networks with non-negative edge weights. For structural connectomes this does not impose
any special preprocessing, since they are usually constructed using streamline count, length, or weights
which are already non-negative. However, functional connectomes can contain negative entries because
they are typically based on the correlation of resting state functional MRI signals. A practical solution,
already used in other studies [12], is to threshold the connectomes, therefore replacing negative entries
by zeros.

2.1 Brain alignment

To compare two networks, it is of fundamental importance to establish a correspondence between the
nodes of the two graphs. Given two networks G1 = (V1, E1) and G2 = (V2, E2) of n1 and n2 nodes
respectively, it is possible to define an injective map m : V1 → V2 (whose existence is granted whenever
|V1| ≤ |V2|) that is called graph matching or network alignment. An edge (u, v) ∈ E1 is correctly matched
by m if (m(u),m(v)) ∈ E2 and both edges have the same weight. Notice that a graph matching that
matches all edges corresponds to an injective graph homomorphism. In the context of connectomics we
will refer to m also as a brain alignment. A simple representation of this function is that of a matching
matrix Pm of dimension n2 × n1 (with n2 ≥ n1) defined as

(Pm)ij =

{
1 if m(j) = i,

0 otherwise.
(1)

In the special case where n1 = n2, Pm is a permutation matrix. If m is an isomorphism between G1

and G2, then the transformation between the adjacency matrices of the two graphs is fully characterized
by the matching matrix and is given by

Adj(G1) = P ᵀ
m Adj(G2)Pm. (2)

2.2 Quality of brain alignments

Once a brain alignment is identified, its quality can be assessed by evaluating the (dis)similarity of the
two resulting networks. On a lexical note, we remark how the concept of similarity between networks
used throughout this work fits well the standard concept of matrix similarity in the particular case where
the change of basis matrix is a permutation matrix. In the following, the similarity measures are defined
for equal-sized networks, as typically encountered in connectomics. Classical metrics for this task are
based on the comparison of the adjacency matrices of the two graphs by means of Pearson’s correlation
coefficient, `p distance, or Frobenius distance [51]. The norm-based distances estimate the dissimilarity
between two graphs G1 and G2 by computing the distance between their adjacency matrices as follows

dt(G1, G2) = ‖Adj(G1)−Adj(G2)‖t (3)

where t indicates the type of norm (p for `p norms and F for Frobenius norm). Note that higher
distance corresponds to lower similarity. Another similarity measure that has been widely adopted
in neuroimaging and brain connectivity is correlation; among the many definitions of correlation, we
consider

C(G1, G2) =
〈 ~Adj(G1), ~Adj(G2)〉

‖ ~Adj(G1)‖2 · ‖ ~Adj(G2)‖2
(4)

where the numerator is the scalar product between the vectorizations of the adjacency matrices of the
two graphs and the denominator is the product of their norms. This similarity measure is also known as
cosine similarity, since it corresponds to the cosine of the angle between the two vectors. Other distances
based on geometrical [49] and homological [8] properties of the networks have been proposed. All such
measures capture some aspects of the similarity between two graphs, but none of them satisfies all the
following requirements:
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• arising as a natural generalization of other similarity measures for less structured data, e.g., for
sets of values without a network structure;

• being applicable to the algorithmic graph isomorphism and induced subgraph isomorphism prob-
lems, as fundamental special cases of the problem of measuring the similarity between two graphs;

• being simple enough so that its value can be easily interpreted;

• giving a straightforward notion of metric in the considered space.

We therefore propose a new measure obtained by generalizing the Jaccard similarity index, a similarity
metric widely adopted in data mining, so that algorithmic problems such as induced subgraph isomor-
phism can be retrieved as special cases. Moreover, while our proposed measure assigns a clear meaning
to the correspondence between two edges in two given graphs, it also depends on the global network
structure.

2.2.1 Weighted graph Jaccard similarity index

The Jaccard similarity index was originally proposed in the context of set theory to measure the similarity
between two sets A and B. It is computed as the ratio between the size of their intersection and the size
of their union, that is

J(A,B) =
|A ∩B|
|A ∪B|

. (5)

An example of what is measured by the Jaccard index on sets is given in the top panel of Figure 1.
Notice that J(A,B) is defined in the [0, 1] range and the extreme values are attained either when the
intersection of the two sets is empty (i.e., A ∩ B = ∅ =⇒ J(A,B) = 0) or when the two sets are equal
(i.e., A = B =⇒ J(A,B) = 1). Both the sets need to be non-empty.

The Jaccard similarity index has also been generalized to non-negative real vectors and, in this more
general setting, is also known as Ruzicka similarity. In detail, given two vectors x, y ∈ Rd such that
xi ≥ 0 and yi ≥ 0, their weighted Jaccard similarity index can be computed as

J(x, y) =

∑d
i=1 min(xi, yi)∑d
i=1 max(xi, yi)

. (6)

Note that the Jaccard similarity index between two sets follows as a special case whenever the vectors
x, y are binary and their dimension d is equal to the size of the union of the two sets.

Our adaptation of the concept of Jaccard similarity index to weighted graphs is based on the identi-
fication of the nodes of the two graphs. Given two brain networks G1 and G2 with adjacency matrices
Adj(G1) = A and Adj(G2) = B, the weighted graph Jaccard similarity index (GJI) of G1 and G2 is

J (G1, G2) =

∑
(i,j)∈E min (Ai,j , Bi,j)∑
(i,j)∈E max (Ai,j , Bi,j)

(7)

where E is the set of all possible pairs of nodes. For the sake of the present work, we remark that we
can think of B as having been previously aligned to A via Equation 2. Alternatively, the weighted graph
Jaccard similarity index is defined as the weighted Jaccard index of the vectorizations of the graphs’
adjacency matrices. Notice that J(G1, G2) is not well defined when both G1 and G2 are empty (i.e.,
E1 = E2 = ∅). Whenever Adj(G1) = Adj(G2), the min and the max in Equation (7) coincide and
J(G1, G2) = 1. On the contrary, if G1 and G2 do not have any edge in common (i.e., E1 ∩ E2 = ∅),
the numerator of Equation (7) will be equal to zero and J(G1, G2) = 0. A remarkable property of the
weighted Jaccard similarity index is that it induces a metric in the space where it is defined. As a matter
of fact, the function dJ(x, y) = 1− J(x, y) ∈ [0, 1] respects the three properties of metrics:

1. Identity: dJ(x, y) = 0 if and only if x = y;

2. Symmetry: dJ(x, y) = dJ(y, x);

3. Triangle inequality: dJ(x, y) ≤ dJ(x, z) + dJ(z, y).
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The first two properties trivially follow from the definition of J , while the third follows as a particular
case of what is presented in [6, Lemma 1]. An example of how the GJI acts on two graphs is given in
the bottom panel of Figure 1.

We have so far formally established the notion of network alignment (Equation (1)), and the presented
graph Jaccard index as a principled way to measure the quality of an alignment (Equation (7)). We are
thus ready, in the next section, to describe our variant of the Weisfeiler-Lehman heuristic and to show
how to employ it to construct a network alignment.

2.3 Weisfeiler-Lehman network alignment

In this work we propose a brain alignment technique that allows to define the graph matching m between
two brain networks G1 and G2 with a three-step procedure:

1. For each node u in both graphs, define a vector Hu called signature.

2. Define a complete bipartite graph where on one side there are the nodes of the first graph and on the
other side there are the nodes of the second graph; the euclidean distance between two signatures
becomes the weight of each edge of the bipartite graph.

3. The graph matching is given by the solution of the minimum weight bipartite matching problem,
also known as assignment problem, on the bipartite graph previously defined.

The novelty element of this brain alignment algorithm is given by the definition of the node signa-
ture, which is determined with an algorithm inspired by the Weisfeiler-Lehman (WL) method for graph
isomorphism testing [52]. For this reason, WL-align is the name we propose for our brain alignment
algorithm.

Node signature The signature that we associate to each node of the two graphs describes the local
connectivity pattern of the node. It relies on the concept of volume of a node, which is defined as the
sum of the weights of the edges incident to the node itself, namely

vol(v) =
∑
u∈V

wuv (8)

where V is the set of nodes in the graph, v is the node of which we compute the volume vol(v) and wuv

is the weight of the edge connecting nodes u and v. The algorithm that defines the signature of node u
considers the subnetwork G′ induced by the nodes that are reachable from u in at most ` hops. At each
of these hops, G′ retains only the k nodes with highest contribution, weighted according to a function of
the path that connects them to u. In detail, such a contribution is computed via the following function

f(v0, . . . , vh) :=

{
vol(v0) if π = (v0),
w(v0,v1)
vol(v0)

· f(v1, . . . , vh) otherwise
(9)

where w(u, v) is just a more verbose notation for the edge weight wuv. The subnetwork G′ is a complete
k-ary tree of depth ` which can be obtained from a breadth-first search (BFS) starting from u, and

has a total of d =
∑`

i=0 k
i nodes. For this reason the parameters k and ` are respectively called width

and depth. The entries of the signature Hu ∈ Rd are then computed starting from u and following
the BFS by recursively, estimating the contribution of each edge to the volume of the considered node
via Equation (9). A formal description of the algorithm for computing the signature Hu is given in
Algorithm 1, while a graphical intuition is illustrated in Figure 2.

Bipartite graph Once a signature is computed for each node of the two graphs, we define a weighted
complete bipartite graph Gm = ((V1∪V2), (V1×V2)). The nodes on the left, i.e., V1, represent the nodes
of the first graph, while the nodes on the right, i.e., V2, represent the nodes of the second graph. The
edge-weights encode the distance between the signatures of pairs of nodes belonging to different graphs,
i.e., each edge (u, v) with u ∈ V1 and v ∈ V2 is weighted according to a function b : V1 × V2 → R defined
as the euclidean distance between the signatures of the two endpoints b(u, v) = ‖Hu −Hv‖2. Figure 3
shows a simple example of the defined bipartite graph.
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Figure 1: Top panel. The two sets contoured by the circles have a non-empty intersection marked by
the black dots. The Jaccard similarity index between the two sets is the result of the ratio between the
number of elements in the intersection and the number of elements in the union of the two sets. The
resulting Jaccard index is equal to J = 3/33 ≈ 0.09. Bottom panel. This figure shows an example of how
to compute the GJI between two compatible graphs X and Y . For each pair of nodes i, j ∈ {A,B,C,D},
one computes the minimum and maximum between Xi,j and Yi,j . These two quantities will be used to
define the numerator and the denominator of the GJI defined in Equation (7). As shown in the min
(yellow) and max (green) graphs, edges that are not in a graph are associated to a null weight. The
GJI is then computed as the ratio between the sum of the minimal weights and the sum of the maximal
weights.
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Algorithm 1 WL-align signature

Input: graph G; node u; width k; depth `
Output: signature Hu

1: Hu ← empty list . append right
2: Q← empty queue . FIFO data-structure; pop left (get and remove); append right
3: Q← append π = (u) . π is the zero-length, single-node path
4: while Q is not empty do
5: π = (u, . . . , vh)← pop path from Q
6: Hu ← append f(π)
7: if h < ` then . h is the length of π
8: πz ← (u, . . . , vh, z), ∀z ∈ V . if (vh, z) /∈ E then w(vh, z) = 0 =⇒ f(πz) = 0
9: z1, . . . , zn ← nodes s.t. f(πz1) ≥ . . . ≥ f(πzn) . ties broken uniformly at random

10: Q← append the k paths πz1 , . . . , πzk .

11: return Hu

Assignment problem The final step towards finding the wanted matching with WL-align is the
resolution of the assignment problem corresponding to the bipartite graph Gm defined in the previous
paragraph. The matching can be found by selecting a minimum-weight graph matching, namely a subset
of edges of the bipartite graph such that every node has degree 1 and the sum of the weights of all edges
of the subset is minimal. In formal terms, given the two sets V1 and V2 and the weighting function b
that define Gm, the problem asks to find a bijection m : V1 → V2, i.e., the matching, that minimizes the
function

∑
u∈V1

b(u,m(u)). This assignment problem is efficiently solved by the Hungarian algorithm
[24, 28].

3 Methods

We processed the data of 100 unrelated subjects from the Human Connectome Project (HCP) database
and obtained the structural brain networks via dMRI-based tractography. For each of the 100 subjects
we considered 23 parcellations (Desikan, Glasser, Gallardo at 11 different resolutions, Schaefer at 10
different resolutions), obtaining a total of 2300 weighted graphs. For each parcellation, we retrieved a
network alignment between each of the 5050 pairs of subjects using WL-align, which is the novel technique
introduced in this work, and the state-of-the-art competitor FAQ for a total of 232300 alignments. The
quality of the obtained alignments was then assessed using four network similarity measures.

3.1 Data and preprocessing

To build the structural brain networks, we considered the preprocessed data of the HCP database (U100
subject group) [47, 55, 19]. For each subject, a five-tissue-type image [41] was obtained using the
Freesurfer pipeline [14] invoked through Mrtrix3 [45]. A response function was estimated for the white
matter, gray matter, and cerebrospinal fluid using a maximal spherial harmonic order of 8 for all tissues
[26]. The fiber orientation distribution functions (fODFs) were then computed using the multi-shell
multi-tissue constrained spherical deconvolution algorithm [26]. Finally, the fODFs were used as input
for probabilistic anatomically constrained tractography performed with the iFOD2 algorithm [41] seeding
from the gray matter - white matter interface and obtaining a total of five million streamlines per subject.

3.1.1 Parcellations

The four parcellations considered in this work subdivide the cerebral cortex following different charac-
teristics of the brain. The Desikan [11] parcellation is based on the manual segmentation of a template
of the brain cortex that takes into account the morphological consistencies of healthy human brains.
For each subject, it was obtained directly from the HCP database (aparc+aseg.nii.gz ) together with
the cortical surface in fslr32k space. The Glasser parcellation [20] follows a multi-modal approach that
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Figure 2: The graph on the left is the one that serves as an example for explaining the algorithm for
computing the signature Hu of node u with k = 2 and ` = 2. The first entry of Hu is Hu[1] = vol(u),
which is obtained by considering all the edges touching node u contoured by the purple circle in panel
1. The focus moves then to the two neighbors that create a path with highest f , namely v1 and
v2, which are marked by the blue and green circles in panel 2. They are considered in decreasing
order (w.r.t. the volume) and the corresponding entries are computed with Equation (9). For instance,
the second entry of Hu is equal to Hu[2] = vol(v1) · a1/vol(u). The third entry is computed in an
analogous way as Hu[3] = vol(v2) · a2/vol(u). This concludes the definition of the first 1 + k entries
of Hu. The following entries are defined by considering first the blue and then the green subnetwork
in panel 3. The fourth entry is equal to Hu[4] = vol(u) · (a1/ vol(v1)) · (a1/ vol(u)) and the fifth is
Hu[5] = vol(w1) · (b1/ vol(v1) · (a1/ vol(u)). Analogously, the sixth and the last entry will be Hu[6] =
vol(w4) · (b4/ vol(v2)) · (a2/ vol(u)) and Hu[7] = vol(w5) · (b5/ vol(v2)) · (a2/ vol(u)).

Figure 3: The red and blue nodes in the two rows represent the two graphs G1 = (V1, E1) and
G2 = (V2, E2) being aligned. The displayed complete bipartite graph is the one constructed in the
second step of the WL-align algorithm. Each edge has weight equal to the euclidean distance between
the signatures of the nodes that it connects. For instance, the weight associated to the edge connecting
nodes u ∈ V1 and v ∈ V2 is ‖Hu −Hv‖2, where Hu and Hv are the signatures of nodes u and v defined
in the first step of the WL-align algorithm.
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considers cortical architecture, function, connectivity, and topography. Its projection onto the fslr32k
space was obtained from the BALSA repository [48]. The Gallardo parcellation [18] is based on the
segmentation of the structural connectivity profiles associated to each point of the cortical surface and
the Schaefer parcellation [38] is based on the analysis of the co-activation patterns of the brain by means
of the analysis of resting-state functional connectivity. The Gallardo and the Schaefer parcellations were
computed with a granularity of 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 parcels. The
Gallardo parcellation was computed also with a granularity of 50 parcels. We extracted the 11 Gallardo
atlases from the extrinsic connectivity parcellation of Gallardo et al. [18]. The used Schaefer atlas [38]
was downloaded from the repository of the CBIG laboratory [56] for the seven-networks parcellation
[57]. The use of multi-resolution parcellations reflects the multi-scale nature of the brain network and
allows to inspect how the atlas resolution affects the similarity and the alignment of brain networks.

3.1.2 Connectomes

For each subject and parcellation an in-house software was used for counting the number of streamlines
connecting each pair of regions. The obtained quantity was encoded as the weight of the edge connecting
the two parcels in the brain network. All the edge weights were then divided by the sum of all the
weights in the graph. A total of 23 connectomes of different sizes was obtained for each subject. Given
the limitations of dMRI-based tractography, self-connections were excluded from the connectomes, i.e.,
the diagonal of the adjacency matrix is set to zero. Because of the high resolution of some parcellations,
some regions turned out to be isolated (i.e., not connected to any other region). In order to have
a connected graph, which is a requirement of the WL-align algorithm, we artificially connected these
isolated (i.e., zero-volume) nodes to the others by adding small-weighted edges connecting each of these
nodes to all the other nodes in the graph. This weight was set to 1 (before normalization), which from
the point of view of tractography is equivalent to the existence of one single streamline connecting the
region to the others. The obtained graphs are undirected and weighted.

3.2 Intra-cohort variability

In order to assess the variability between the brain networks of the subjects in the studied cohort, for each
subject we measured the similarity between the connectomes of each pair of subjects with three different
similarity metrics: the weighted graph Jaccard index (Equation (7)), the Frobenius norm (Equation (3))
and the correlation (Equation (4)).

3.3 Network alignments

In order to assess the ability of WL-align to retrieve the wanted alignment map, we prepared the dataset
in a way that allows to test the quality of the alignment against a known ground truth. In practice, for
each parcellation p, we randomly permuted the node labels of the connectomes of all subjects keeping
track of the permutation maps. These permutation maps allow to compute the ground truth matching
m∗ between each pair of brain networks computed with the same parcellation.

For the same set of brains, we also computed two graph matchings. The first is mWL, which is
computed with the proposed WL-align technique. The width and depth parameters of the WL-align
algorithm were fixed to k = blog2 nc, where n is the number of nodes in the considered network (i.e.,
one hemisphere), and ` = 2. We limited the width for efficiency reasons (the size of the signature has
size bigger than k`, as described in the previous section) and the depth since further increasing it does
not lead to substantial gain w.r.t. the quality of the alignments (the deeper the nodes in the search, the
smaller the contribution of the nodes to the signature, as described in Equation (9)).

The second is mFAQ, which is computed with the Fast Approximate Quadratic Programming for
Graph Matching (FAQ) algorithm [51], which is the state-of-the-art technique for network alignment.
FAQ works in three main steps: i) arbitrarily choose a starting bi-stochastic matrix, which acts as
a relaxed permutation matrix that aligns the two networks; ii) find a local solution to the Relaxed
Quadratic Assignment Problem (rQAP), a dual version of the graph matching problem; iii) project back
onto the set of permutation matrices. The solution found by FAQ transforms the adjacency matrix of
the first graph into one with approximately minimal Frobenius distance from the adjacency matrix of
the second graph. Notice that optimality with respect to the Frobenius distance might not correspond
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to absolute optimality. We used the implementation of FAQ available in the graspologic package [7]
(https://graspologic.readthedocs.io/), setting the number of random initializations to 30.

Both WL-align and FAQ were run separately on each hemisphere of the brain and the two resulting
partial alignments were then combined into a single one. The motivation for this choice is that the correct
hemisphere can always be assigned to a cortical region, and this property is independent from any influ-
ence potentially caused by the registration of the template atlas onto the subject-specific cortical mesh,
while other properties, e.g., the location of a region, would be. Moreover, by studying single-hemisphere
alignments we bypass the issue concerning the high degree of left-right similarity that characterizes the
brain, which could drive the solution towards sub-optimal alignments that are hardly distinguishable
without external criteria such as the localization or geometry of the brain regions. Notice that this
choice concerns the design of the experiment, not the setup of the graph matching algorithm, which
could still be obtained using the full brain network, hence including the inter-hemispheric connections.

3.4 Quality of alignments

Given two networks G1 = (V1, E1) and G2 = (V2, E2) defined on the same parcellation and given a
matching m between them, we consider the following metrics to evaluate the quality of the matching m.

• Node Matching ratio (NMr): the fraction of nodes that have been correctly matched by m with
respect to the ground truth matching m∗ (known a priori), namely

NMr(m) =
| {u ∈ V1 : m(u) = m∗(u)} |

|V1|
. (10)

The NMr metric is defined in the [0, 1] range and higher values correspond to better alignments.

• Graph Jaccard index J : as defined in Equation (7), namely

J(m) = J(m(G1), G2) (11)

where, with an abuse of notation, we write m(G1) to denote the relabeling of the nodes obtained
by applying the matching m on the nodes of G1. Recall that the graph Jaccard index is defined in
the [0, 1] range and higher values correspond to better alignment.

• J-ratio (Jr): the ratio between the graph Jaccard index J(m) obtained by m and the graph Jaccard
index J(m∗) obtained by the ground truth matching m∗, namely

Jr(m) =
J(m)

J(m∗)
. (12)

When the ground truth matching m∗ is also an optimal matching, the denominator J(m∗) acts as
a normalization factor, which takes into account how complex it is to retrieve the matching m∗ in
terms of Jaccard similarity; under such assumption of ground-truth optimality, the Jr metric takes
value in the [0, 1] range, where higher values correspond to better alignment.

• Frobenius norm (FRO): the Frobenius norm of the difference between the adjacency matrices of
m(G1) and G2, namely

FRO(m) = ‖Adj(m(G1))−Adj(G2)‖F (13)

where, as also done for J , we write m(G1) to denote the relabeling of the nodes obtained by
applying the matching m on the nodes of G1. The FRO metric is defined in the [0, 2] range (since
the adjacency matrices both have norm 1) and lower values correspond to better alignment.

For each considered parcellation p and for each network alignment algorithm of interest x (either
WL-align or FAQ), we report the average similarity metric, computed among all pairs of brains in the
parcellation. For example, considering NMr as similarity metric, we compute

NMrxp =
1

|P|
∑

(G1,G2)∈P

NMr(m) (14)
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where P is the set of all pairs of brains with parcellation p and m is the matching found by algorithm x
for the input pair of graphs G1, G2. Analogously, this is done for all similarity metrics.

A further qualitative assessment of the accuracy of the alignments obtained with WL-align was
performed by projecting the matching ratio of each node onto the cortical surface of a randomly picked
subject, obtaining a visual indication of the localization of the regions that have been more or less
frequently correctly matched. Projecting this information directly on the cortical surface provides insights
into the spatial organization of the errors and of the correct matches.

3.5 Statistical analysis

In order to understand the differences between the alignments obtained with WL-align and FAQ, statisti-
cal analyses were performed with an alpha of 0.05 in all experiments. A separate analysis was performed
for each of the four similarity metrics presented in the previous section. First, for each atlas and pair of
subjects we computed an alignment with WL-align and FAQ. For each atlas, we compared the distribu-
tions of the values of the similarity metric computed on the alignments obtained with the two techniques
using the non-parametric paired-samples Wilcoxon signed-rank test [53].

4 Results

4.1 Experiments

We processed the data of 100 unrelated subjects from the HCP database obtaining the structural brain
networks as detailed in the Methods section. For each of the 100 subjects we considered 23 parcellations
(Desikan, Glasser, Gallardo x 11, Schaefer x 10), obtaining 2300 weighted graphs. For each parcellation,
we retrieved a network alignment between each pair of subjects using WL-align and FAQ. The ability
of WL-align to retrieve the correct brain-alignment map was quantitatively evaluated by means of four
similarity measures. First, a novel measure of similarity between brain networks called graph Jaccard
Index was introduced in the Theory section as an adaptation of the concept of Jaccard index between sets.
While behaving in a way which is similar to the commonly used correlation index defined in Equation (4),
the graph Jaccard index has the property of defining a metric in the space of connectomes. This is a
remarkable property in the context of modern data science, as many standard machine learning techniques
can be applied only in metric spaces. The second considered similarity measure is the aforementioned
correlation index defined in Equation (4), also known as cosine similarity. The third similarity measure
is the Frobenius distance defined in Equation (3), which actually is a dissimilarity measure, therefore
connectomes showing higher Frobenius distance are less similar and vice-versa. The node matching ratio
defined in Equation (10) is the last considered similarity measure.

4.2 Comparison between similarity measures

Each employed similarity metric answers a specific question. The node matching ratio corresponds to
what the expression suggests, namely it counts how many nodes were correctly matched and normalizes
the result by the number of nodes in the graph. The other similarity measures have less intuitive
definitions. For this reason, and in order to assess the intra-cohort similarity of the connectomes, we
measured how much the connectomes of the subjects in the considered datasets are similar to each other
with respect to each metric and each parcellation. We recall that the dataset contains only healthy
unrelated subjects which do not exhibit any family structure [55]. This allows to compare how the
within-group similarity reacts to the change in resolution and type of the used parcellation. For each
parcellation, Figure 4 shows how similar the subjects are with respect to the graph Jaccard index, the
Frobenius norm, and correlation. In particular, the figure reports for each parcellation the average
similarity across all the pairs of subjects, which can be computed from the ground truth matching that
is granted by the fact that each network is defined on a known set of nodes. Despite using the ground
truth matching, the graphs are not expected to exhibit perfect similarity (i.e., J = 1, FRO = 0 or
C = 1), as their edge weights are subject-specific. This specificity is what determines the intra-cohort
variability that is taken into account into the J ratio similarity metric defined in Equation (12). The most
noticeable fact is that the graph Jaccard index and the correlation show an inverted trend with respect
to the one of the Frobenius norm. A higher number of parcels gives both lower Jaccard/correlation
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Figure 4: Each point shows the average similarity between every pair of subjects in the considered
cohort measured on connectomes obtained with a specific parcellation. The used alignment is the one
defined by the ground truth, which in our experiments is known a-priori. All panels show the similarity
measure as a function of the number of parcels of the considered atlas. A higher graph Jaccard index
and correlation corresponds to higher similarity. On the contrary, a higher Frobenius norm corresponds
to lower similarity. In order to keep the intuition that higher is better, the y axis of the Frobenius norm
is flipped.

index and lower Frobenius distance, which a priori is counter-intuitive. This phenomenon is due to the
fact that the Frobenius norm is incapable of capturing the relative difference between edge weights and
instead considers only the absolute difference between them. As a matter of fact, parcellations with a
higher number of parcels will create brain networks with lower edge weights, since the same amount of
connectivity (i.e., the same number of streamlines) is distributed among a number of edges that grows
quadratically with the number of regions. For this reason, the absolute value of the edge weights will
be lower, giving also a lower absolute difference. On the contrary, the graph Jaccard index and the
correlation, which are able to capture the relative difference between edge weights, show lower similarity
values between brain networks obtained with a higher number of parcels compared to brain networks
obtained with a lower number of parcels. This difference suggests that the graph Jaccard index and the
correlation mitigate the influence of the number of parcels in the estimation of the similarity between
the compared brain networks. Another observation can be done on the singular nature of the Desikan
and Glasser parcellations. When measured with the GJI and the correlation, both these parcellations
exhibit an intra-cohort similarity in line with the one of the Gallardo parcellation at the corresponding
resolutions.

4.3 Computing brain alignments with WL-align

In this work, the concept of similarity between networks was used as a proxy for the quality of a brain
alignment, since a good graph matching is expected to correspond to a higher similarity between the
aligned graph and the ground truth. A separate analysis was performed for each of the 23 considered par-
cellations. First, an alignment was computed between each pair of subjects with the proposed technique
WL-align and the state-of-the-art algorithm FAQ, then the similarity between the aligned network and
the ground truth network was computed with the similarity measures listed in the Methods section. The
node matching ratio (NMr) tells the proportion of nodes that were correctly matched by the alignment.
This measure does not give any information about the topological differences between the original and
the aligned graph, but it gives an important insight on how many nodes are correctly labeled, which
may be of fundamental importance in connectomic studies where the regions are associated to a specific
function of the brain. The second used metric is the Jaccard similarity index introduced and described
in this paper, while the third employed metric is the Jaccard index ratio. The latter measures how
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the Jaccard index performed with respect to the Jaccard index of the ground-truth matching shown in
Figure 4, which is known a priori from the design of the experiment. It differs from the raw Jaccard
index in the sense that it takes into account the complexity of the alignment problem, which we showed
in the previous section to be more difficult when the number of parcels is higher. A final comparison
was made using the Frobenius distance, which is what the FAQ algorithm is designed to minimize. This
makes it particularly interesting since we expect FAQ to give Frobenius distance which is less or equal
to the one obtained with WL-align.
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Figure 5: The displayed results concern the alignment between the structural brain network of one
subject and its randomly-permuted version. Each panel shows one type of similarity between the aligned
networks. Higher values of NMr, Jaccard index and Jaccard index ratio correspond to higher similarity,
whereas the Frobenius norm is higher when similarity is lower. In order to keep the intuition that higher
is better, the y axis of the Frobenius norm is flipped. In each panel, one point corresponds to the average
(among subjects) similarity computed between brain networks obtained on a specific parcellation and
aligned with one technique among WL-align and FAQ. We do not report the results for the J-ratio since
in this experiment its denominator J(m∗) = 1, making the plot identical to the one of the graph Jaccard
index. All the four plots show the similarity as a function of the number of parcels in the considered
atlas.

Subject-wise analysis In the context of this work, the simplest non-trivial alignment to be retrieved
is the one between the brain network of a subject and its randomly-permuted version. In this case, a
good alignment algorithm is expected to always retrieve the ground truth alignment. In Figure 5 we
report the average similarity between the ground truth and the obtained alignment. We notice that
WL-align consistently achieves the best possible performance with respect to all the considered metrics.
In particular, the naive metric of the node matching ratio always gives similarity equal to 1, meaning
that WL-align correctly labels all the nodes whenever a structural brain network is aligned against
a randomly-permuted version of itself. These considerations are true for every parcellation. On the
contrary, FAQ does not solve the self-alignment problem exactly. All the considered metrics highlight
a poor performance of FAQ both in absolute terms and compared to WL-align. As a matter of fact,
FAQ on average yields at most 40% of correctly matched nodes, while WL-align consistently gives 100%
of correctly matched nodes. Also, different parcellations behave differently when FAQ is employed; for
instance, the Desikan parcellation gives lower Frobenius similarity with respect to the other parcellations
but shows higher Jaccard index and node matching ratio.

Full cohort analysis When all the subject are aligned with the permuted version of each other, the
problem is more complicated. Even though we considered healthy subjects whose acquisition followed
the same protocol and that have been processed in an identical way, the subject-specific differences and
the intrinsic noise of the data yield estimated structural brain networks that are in practice different
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Figure 6: The displayed results concern the alignment between the structural brain networks of each
pair of subjects including the self-comparisons. Each panel shows one type of similarity between the
aligned brain networks. Higher values of NMr, Jaccard index and Jaccard index ratio correspond to
higher similarity, whereas the Frobenius norm is higher when similarity is lower. In order to keep the
intuition that higher is better, the y axis of the Frobenius norm is flipped. In each panel, one point
corresponds to the average (among subjects) similarity computed between brain networks obtained on a
specific parcellation and aligned with one technique among WL-align and FAQ. All the four plots show
the similarity as a function of the number of parcels in the considered atlas.
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among each other, despite being substantially coherent. In order to assess the ability of the proposed
alignment technique to overcome these differences and yield an alignment as close as possible to the
ground truth, we considered all the alignments between each pair of subjects, including the ones between
a subject and a randomly-permuted version of itself. The brain alignments obtained with WL-align
are compared to the ones computed with FAQ and presented in Figure 6, which reports the average
similarity between the obtained alignment and the ground truth alignment among all the possible pairs
of subjects. The statistical significance of the differences between results obtained with WL-align and
FAQ is assessed using the non-parametric paired-samples Wilcoxon signed-rank test [53]. For the studied
cohort, statistically significant differences are observed for each atlas and each employed similarity metric,
as shown in Section B of the supplementary material. In terms of Frobenius norm, the alignments
obtained with WL-align and FAQ are very similar, with WL-align systematically showing slightly higher
Frobenius similarity. The performance of the Gallardo parcellation is indistinguishable from the one
of the Schaefer parcellation. Also, the Glasser parcellation is in line with the Schaefer and Gallardo
parcellations when the alignment is obtained with WL-align, while this is not true for the Desikan
parcellation. Recalling that FAQ is a technique that is inherently based on the Frobenius norm and WL-
align is not, we can notice that WL-align gives a brain alignment that does satisfies also the optimality
criteria of FAQ, additionally to its own. A second thing that we can notice about the Frobenius norm
is that it exhibits the same phenomenon as in Figure 4, where the Frobenius similarity increases with
the number of parcels. This phenomenon appears for the same reason as before, namely the Frobenius
norm does not capture the relative difference between the edge weights in the compared networks. All
the other employed similarity metrics suggest that WL-align has superior performance with respect to
FAQ. While FAQ has almost identical performances when applied on the Gallardo and the Schaefer
parcellations, WL-align shows relevant and previously unobserved differences between the performances
of the two. In particular the Gallardo parcellation allows to retrieve better alignments with respect to
the Schaefer parcellation. This may be due to the fact that we are studying structural connectivity,
therefore the use of a function-based parcellation like the one of Schaefer may affect the quality of the
alignment when compared to the structural connectivity computed on a structure-based parcellation like
the one of Gallardo. Looking at the behavior of the Desikan and the Glasser parcellation, we notice
two different scenarios. The Glasser parcellation shows Jaccard similarity slightly lower than the one
of the Gallardo parcellation but still higher than Schaefer’s, suggesting that the multi-modal nature of
the atlas allows to capture, at least in part, the structural connectivity features that we are looking at.
This contrast is evident only when WL-align is employed. The Desikan parcellation behaves differently.
While exhibiting lower performance with FAQ, when the WL-align is employed it emerges as a slightly
superior parcellation with respect to the NMr, the GJI and the J ratio. We finally notice that atlases
with > 400 parcels all behave very similarly, namely they reach a plateau in terms of Jaccard index,
Jaccard index ratio and node matching ratio. This is true both when WL-align and FAQ are employed.
The performance in this range is lower than the one in the 50− 400 parcels range.

4.4 Self matching rate

Figure 7 illustrates the self matching rate for each region of 9 example atlases, i.e., the fraction of times
regions were correctly matched when aligning different brains represented using the same atlas. It is
clear that, as the number of parcels is increased, the matching rate is reduced. This can be explained by
the increased difficulty of the alignment problem, but also by a decrease in the signal-to-noise ratio of the
connectomes driven by the reduction in parcel size. It is also interesting to note that the matching rate
does not appear to be symmetric across hemispheres. For example, the right inferior parietal region of
the Desikan atlas obtains relatively high matching rate of roughly 0.8, whereas the contralateral region
only obtains roughly 0.4. This analysis gives important insights into the type of errors that are made by
WL-align. In particular, it shows that the incorrect matchings do not have a particular structure that
can be related to the geometry and morphology of the brain, be it some regional concentration of errors
or some consistent symmetry with respect to the hemispheres.
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Figure 7: Self matching rate of the labeling per region for different atlases using WL-align. Atlases with
100 regions or less are illustrated in the first row. The second row illustrates atlases with approximately
300 regions and the third row those with 1000 regions.

5 Discussion and conclusions

Among the fundamental problems of network neuroscience at the scale of whole-brain structural connec-
tivity, finding correspondences between brain regions and quantitatively assessing the similarity between
brain networks are particularly important when it comes to considering massive heterogeneous datasets
and modern data science techniques. In this work we considered these two problems in relation with the
unresolved question concerning the choice of the parcellation for structural connectivity studies.

We proposed and analyzed a similarity index between brain networks, inspired by the Jaccard index
between sets, that behaves in a way similar to the classical correlation index. Additionally, it enjoys the
remarkable property of defining a metric in the space of connectomes, which is interesting both from the
theoretical point of view and for data science applications. The proposed graph Jaccard index showed to
be less affected by the number of regions in the chosen parcellation than the Frobenius distance, which
is one example of (dis)similarity index from the class of norm-based distances.

The second object introduced in this paper is WL-align, a novel algorithm that allows to find the
graph alignment between two brain networks. It relies solely on topological features of the brain network,
which makes it particularly suitable for being applied also outside the domain of network neuroscience.
When WL-align is used in our experiments in order to retrieve the alignment between a network and a
permuted version of itself, it gives the exact solution. This does not happen when the main competitor
FAQ is employed. The superior performance of WL-align is evident also when brain networks of different
subjects are aligned. In this case, the WL-align algorithm was shown to retrieve brain alignments that
are closer to the ground truth with respect to the alignments obtained by FAQ, and we showed that
the difference between the WL-align and the FAQ alignments is statistically significant in the studied
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population. Notice that as it is designed, the WL-align algorithm builds on the construction of a feature
vector for each node of the graph, which is then used as an edge weight in an assignment problem on a
bipartite graph. This does not include any prior knowledge other than the topological similarity between
the two networks to be aligned. The analysis provided in this work was intentionally constrained to the
pure topological comparison of networks. Nevertheless, it would be possible to extend the feature vector
defined in WL-align with any prior of geometrical, spatial, anatomical or connectomic nature or to add
any constraints in the assignment problem on the bipartite graph. Future works will be devoted to the
design of these constraints and features.

The proposed WL-align algorithm can be further adapted to work with types of network other than
the structural networks studied in this work, which are undirected and have non-negative edge weights.
The most intuitive way to adapt WL-align is to change the way in which the node signatures are defined,
then set up the bipartite graph and find the matching with the Hungarian algorithm in the canonical
way. A first interesting case is represented by weighted networks having both positive and negative
weights. This is the typical case of functional connectivity studies, where the connectivity between
regions is evaluated as the correlation (i.e., wij ∈ [−1, 1]) between the activation in different regions [46].
As we defined it in this work, WL-align would select the most relevant d nodes in an unpredictable way
due to the presence of negative-valued entries in Equation (9). A possible adaptation of it would be
to select the relevant edges performing the breadth-first search ignoring the sign of the weights, then
evaluating the corresponding entries of the WL signature using the signed edge weights in Equation (9).
Another possible adaptation would require the decomposition of the adjacency matrix of the network as
Adj(A) = Ap−An, where Ap is the positive part of the matrix and An is the negative part of the matrix.
Notice that the graphs corresponding of both Ap and An will have non-negative edge weights. For each
node, the WL signatures obtained from Ap and An can be concatenated, then used in the canonical
way. Another interesting case is represented by directed networks, which in the context of brain imaging
represent the concept of effective connectivity [16]. Here, the only further adaptation that would be
required is a careful definition of the breadth-first search that gives the selection and the order of nodes
that are used for defining the WL signature. For directed positive-weighted network, the algorithm works
as it is, while for directed networks with signed weights it would require the adaptations mentioned for
the case of functional connectivity. Finally, we discuss the adaptation of WL-align to temporal networks.
This type of graph has gained much interest in the context of brain imaging since the concept of dynamic
functional connectome [36] has been introduced and the consequent definition of specific tools for the
graph-theoretical analysis of these time-dependent networks [40]. In this case, at least two options can
be explored: first, one could concatenate the WL signatures of each node obtained at each time point,
then run WL-align in the canonical way. Alternatively, it would be possible to perform the breadth-first
search by taking into account the temporal component, hence traversing the graph both in space and
time.

An important instance of the graph matching problem which we did not consider in this work cor-
responds to when the two networks that are being aligned have different numbers of nodes. Being a
generalization of a graph isomorphism test, WL-align does not appear to be trivially adaptable to this
case. A possible solution would be to employ some dimensionality reduction technique (e.g., clustering
via community detection) in the larger graph to reduce the number of nodes to the one of the smaller
graph, then use WL-align to retrieve the wanted alignment.

Some remarkable conclusions concerning the parcellations to be used in structural brain connectivity
studies can be drawn from the ability of WL-align to find the correct alignment between two brain
networks. First, the function-based parcellation of Schaefer is a poorer choice than the structure-based
parcellation of Gallardo, the multimodal parcellation of Glasser and the morphological parcellation of
Desikan. This was expected from the fact that the whole study is centered on measuring structural
connectivity, hence the choice of a function-based parcellation was never expected to be optimal from
any point of view. Allowing to express this concept quantitatively is one of the merits of WL-align. A
second remarkable aspect is the performance of the Desikan atlas, which gave better results in terms of
alignability than any other parcellation of any granularity. For this reason, whenever a study is designed
using a coarse parcellation of the cortex (in the 50-200 parcels range), one should consider using the
Desikan atlas as a first choice. Not only it would be a highly reliable choice that has been consistently
used throughout time in the community, but with this study we showed that it would also allow to define
brain networks with more consistent topological features, in particular those captured by WL-align. As
far as brain atlases with a higher number of parcels are concerned, we showed that parcellations with a
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number of parcels in the > 400 range have lower performance in terms of GJI and NMr. However, when
the inter-subject variability is taken into account in the evaluation of the similarity, as for the case of
the Jaccard index ratio, we see that the performance is nearly constant for atlases with > 300 parcels.

The change in performance that we observe with the growing resolution of the atlas could also be due
to the number of streamlines employed in the tractography pipeline, which could be adapted to the used
atlas, but in practice is the same for every atlas at each resolution. On the other hand, the standardized
tractography pipeline (including the identical number of streamlines in each tractogram) is what allowed
us to present a comprehensive analysis and comparison of the performance across resolutions. In order
to disambiguate this point, it would first be necessary to analyze how the strongest connections in the
network (hence those considered by WL-align) are affected by the number of tracked streamlines. An
alternative solution could be to employ a tractography filtering technique such as SIFT2 [42], COM-
MIT [10] or LiFE [35] in order to mitigate the limited reliability of streamline count as a proxy of axonal
connectivity [25]. Given that tractography filtering techniques have non-negligible effects on the topology
of structural connectomes [15], an independent analysis is due in order to assess how their use affects
the alignability of connectomes.

Notice that in our analysis we used the defined similarity metrics to assess which atlas yields connec-
tomes with higher or lower robustness in a certain resolution range. This means that we could not have
used the similarity argument to claim that, for instance, the Desikan atlas (68 parcels) should in general
be preferred to the Gallardo 1000 atlas. In this sense, we highlight how the considered similarity metrics
(GJI, Jr, NMr and Fro) should not be used for selecting the appropriate resolution at which structural
connectivity studies should be designed, but they provide a well grounded tool for assessing which of the
available atlases at the wanted resolution is most suitable for the considered type of study.

As highlighted throughout the paper, this work analyzes the problems of parcellation selection and
brain alignment in the context of structural connectivity. Any conclusion we made should not be straight-
forwardly generalized to functional connectivity or effective connectivity studies, which would require a
separate analysis which was out of the scope of this work.
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Technical Terms

Parcellation: subdivision of the brain into distinct regions with respect to morphological, cytoarchitec-
tonic, anatomical, topological or functional criteria.

Tractography: method for tracking the trajectory of the axonal pathways that exploits the anisotropy
of the diffusion MRI signal.

Network alignment: function that maps nodes of a graph onto nodes of another graph, while
usually trying to preserve adjacency (endpoints of edges in a graph should map onto endpoints of edges
of the other graph).

Graph similarity: measure of how much two networks are close with respect to some criteria of
topological nature.

Signature: feature vector assigned to each node of a graph.
Bipartite graph: network whose nodes can be divided in two distinct and non-overlapping sets,

such that there are no edges connecting nodes in the same set.
Bi-stochastic matrix: matrix of positive entries where each column and row sums to one.
Breadth-first search (BFS): graph traversal that, starting from a root node, explores all its

neighbors before moving to the neighbors’ neighbors, and so on.
Connectome: the network which encodes the connections of the human brain; it refers to a com-

prehensive description of the brain’s structural and/or functional connections.
Structural Connectome: network that describes the structure of the white matter connections in

the brain; it can be obtained via diffusion MRI-based tractography.
Functional Connectome: network-like description of the coherence between the activity in different

brain regions; it can be obtained by studying co-activation patterns in functional MRI, EEG or MEG.
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