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 and they are confirmed by the numerical results obtained by Goluskin

Introduction

Natural convection induced by internal heat production is a phenomenon that occurs very often in geophysical, astrophysical and engineering systems [START_REF] Goluskin | Penetrative internally heated convection in two and three dimensions[END_REF]. By following the analysis recently given by [START_REF] Creyssels | Model for classical and ultimate regimes of radiatively driven turbulent convection[END_REF], the purpose of this paper is to extend the many theoretical, numerical and experimental results of Rayleigh-Bénard (RB) convection to two internally heated (IH) convection systems shown in Figs. 1 (a) and (b). In RB convection, convective flow is produced by thermal boundary conditions that cause heat to enter through the lower hot plate and exit through the upper cold plate. In this case, convection is controlled by the temperature difference between the plates (∆T ) and the height of the cell (h), or by the Rayleigh number defined as

Ra = gβ∆T h 3 νκ , (1.1)
where g is the uniform gravitational acceleration, β, ν and κ are, respectively, the coefficient of thermal expansion, the kinematic viscosity and the thermal diffusivity of the fluid. On the contrary, for IH convection, the flow is produced by a volumetric source of internal heating (q in W/m 3 ), itself produced by chemical or nuclear reactions, or by radiation. Instead of using Ra, the Rayleigh-Roberts number [START_REF] Roberts | Convection in horizontal layers with internal heat generation[END_REF]) is adopted as follows

Rr = gβqh 5 λνκ , (1.2)
where λ is the thermal conductivity of the fluid. A first approach of IH convection is to take q constant and uniform throughout the volume. Using h 2 /κ as the unit of time, h But the heat flux at the center of the cell is lower or greater than Φ0, depending on the sign of q: Φa(z = h/2) = Φ0 -qh/2. Configuration (b) is more complex because the upper half cell is very similar to the upper half cell of RB experiments whereas the flow is stratified in the lower part of the bottom half cell. The heat flux at the bottom plate is negative (-q bot h) and is not equal in absolute value to the heat flux at the top plate (qtoph).

Besides, qtop > q bot . For configuration (b), the mean temperature profile T (z) was measured by [START_REF] Goluskin | Penetrative internally heated convection in two and three dimensions[END_REF]. The upper and lower thermal boundary layers of thickness δtop and δ bot are also displayed for each configuration.

as the unit of length and qh 2 /λ as the unit of temperature, the dimensionless Boussinesq equations governing the velocity, pressure and temperature are the incompressibility condition (∇ • u) and ∂t ũ + ũ • ∇ ũ = -∇p + P r ∇2 ũ + P r Rr T êz , (1.3) ∂t T + ũ • ∇ T = ∇2 T + 1, (1.4) where dimensionless variables and operators are designated by tildes, êz is the vertical unit vector and P r is the Prandtl number. With regard to thermal boundary conditions, we consider hereafter those used by most of previous studies i.e. fixed and equal temperature conditions (T 0 ) at the top and bottom plates. By adopting this condition, modeling an IH convection experiment becomes a great challenge because in a single cell, there are both positive and negative vertical mean temperature gradients (see Fig. 1b). This leads to both turbulent convection and a stably stratified lower boundary layer. Therefore, the experiments on RB and IH convection have some similarities but also some differences.

For both cases, the mean temperature is almost constant in the middle of the cell and we call it the temperature of the 'bulk flow' (T b ). At high Ra numbers and assuming negligible non-Boussinesq effects, T b is equal to the average of the top and bottom plate temperatures for a RB experiment, while T b is the maximum of the mean temperature in an IH convection cell (see Fig. 1b). Besides, the two thermal boundary layers located near the top and bottom plates have the same thickness for a RB experiment. On the contrary, heating in volume leads to an asymmetry between the two thermal boundary layers. The mean temperature profile was measured by [START_REF] Goluskin | Penetrative internally heated convection in two and three dimensions[END_REF] and is shown in Fig. 1 (b). Therefore, the upper boundary layer is similar to that observed in a RB experiment, whereas in the lower boundary layer, the mean temperature gradient tends to stop convective flows produced in the upper region of the cell. Consequently, in an IH convection cell, the thickness of the lower boundary layer is greater than that of the upper boundary layer (δ bot > δ top ). In addition, the difference in thickness must increase as the Rayleigh number increases. Likewise, at a fixed Ra number, the mean vertical heat flux is constant for a RB experiment and is given by the Nusselt number as Φ RB = N u RB λ∆T h . In contrast, in an IH convection cell, the heat produced inside the fluid is evacuated through both lower and upper boundaries, leading to a mean vertical heat flux that changes sign from the bottom plate to the top plate (see Fig. 1b). As the mechanisms that drive the two thermal boundary layers are different, the heat fluxes through the upper and lower plates are not equal in absolute value. A coefficient α can be defined to quantify this down-up asymmetry. Indeed, the fraction of heat produced inside the fluid flowing outwards from the bottom plate can be written as

q bot = ( 1 2 -α)q, (1.5)
leading to a heat flux at the bottom plate equal to -q bot h e z . In steady state, energy conservation yields to a heat flux that leaves through the top plate as q top h e z , with

q top = ( 1 2 + α)q.
(1.6)

Then, for each plate, we can define one Nusselt number as

N u bot = q bot h 2 λ∆T , (1.7) N u top = q top h 2 λ∆T . (1.8)
To be consistent with the definition of the Nusselt number adopted for RB convection experiments, the characteristic temperature difference ∆T used in (1.7) and (1.8) is:

∆T = 2(T b -T 0 ).
There is therefore a factor 2 by comparing the definitions of N u bot and N u top given in previous studies on IH convection [START_REF] Goluskin | Penetrative internally heated convection in two and three dimensions[END_REF]. Note also that other definitions of Nusselt numbers are given in the literature. Instead of using T b , the mean fluid temperature ( T , where angle brackets denote an average over the entire volume) can be chosen as temperature reference in (1.7) and (1.8). Figure 6 (a) shows that the difference of temperature T b -T becomes negligible only for very high Rayleigh-Roberts numbers. [START_REF] Kulacki | Thermal convection in a horizontal fluid layer with uniform volumetric energy sources[END_REF]; [START_REF] Jahn | Free convection heat transfer with internal heat sources, calculations and measurements[END_REF]; [START_REF] Mayinger | Examination of thermohydraulic processes and heat transfer in a core melt[END_REF]; [START_REF] Ralph | Experiments in turbulent thermal convection driven by internal heat sources[END_REF]; [START_REF] Lee | Boundary condition dependent natural convection in a rectangular pool with internal heat sources[END_REF]; [START_REF] Wörner | Direct numerical simulation of turbulence in an internally heated convective fluid layer and implications for statistical modeling[END_REF]; [START_REF] Goluskin | Penetrative internally heated convection in two and three dimensions[END_REF] have measured experimentally and numerically the Nusselt numbers N u top and N u bot as a function of the control parameter Rr. As is usual for RB experiments, they presented their results as power-law fits. N u top has been found to increase with Rr at rates between Rr 0.20 and Rr 0.24 (see Table 1). N u bot increases more slowly with Rr, at rates between Rr 0.10 and Rr 0.17 . Up to now, no theory has been able to predict these exponents whereas for RB convection, the theory developed by [START_REF] Grossmann | Scaling in thermal convection: A unifying view[END_REF]; Grossmann & Lohse (2001) (henceforth the GL theory, Eqs. (2.18) and(2.19)) describes well the behaviour of N u RB (Ra, P r) and Re RB (Ra, P r).

Creyssels (2020) has recently developed a simple theoretical model to predict the Ra and P r-dependent Nusselt number for a modified RB experiment in which heat is injected by volume but only in the lower thermal boundary layer. At the same time, the upper boundary layer is cooled with the same rate in order to have a constant energy in the convection cell, as in a standard RB cell. Note that [START_REF] Lepot | Radiative heating achieves the ultimate regime of thermal convection[END_REF]; [START_REF] Bouillaut | Transition to the ultimate regime in a radiatively driven convection experiment[END_REF] presented an experimental method to bypass the cooling boundary layer in order to perform this modified RB experiment. For configuration shown in Fig. 1 (b), the problem is much more complex since the symmetry between the two plates is broken. Because of this, GL theory is first extended to the modified RB configuration (a) (see Fig. 1a) for which the fluid is confined between two horizontal plates of different temperature (∆T > 0 is fixed). To preserve the symmetry between the two plates, the lower part of the cell for configuration (a) is cooled with the same volumetric power as the upper part is heated:

q v (z) =
-q, for 0 z h/2, + q, for h/2 z h.

(1.9)

In steady state, energy conservation yields to the following variation of the heat flux averaged over a horizontal cross-section:

Φ a (z) = Φ 0 -qz, for 0 z h/2, Φ 0 -q(h -z), for h/2 z h, (1.10)
where Φ 0 is the heat flux that crosses each horizontal plate. For configuration (a), the Nusselt number can then be defined as for standard RB experiment using

N u a = Φ 0 h λ∆T .
(1.11)

The Nusselt (N u a ) and Reynolds (Re a ) numbers depend on three non-dimensional parameters: Ra, P r and Q, where Q represents the non-dimensional form of the volumetric heating or cooling sources:

Q = qh 2 λ∆T . (1.12) Note that: (i) N u a = N u RB (Ra, P r) when Q = 0 ; (ii) Q can be either positive or negative ; (iii) a priori, N u a < N u RB and Re a < Re RB when Q > 0 whereas N u a > N u RB and Re a > Re RB if Q < 0 ; (iv) Φ a (z)
must be positive to avoid the weakening of the turbulent flow in the center of the cell and the appearance of a stratified flow. The condition Φ a (h/2) = Φ 0 -q h 2 > 0 implies that Q < 2N u a . Finally, for Q > 0, the upper boundary layer and the turbulent flow observed in the upper half of the cell of configuration (a) are similar to those observed in the upper half of a cell of configuration (b). However, Q is a control parameter in configuration (a) while Q must be measured or predicted in configuration (b) because ∆T = 2(T b -T 0 ) is a function of Rr and P r. For configuration (b), using the [START_REF] Grossmann | Scaling in thermal convection: A unifying view[END_REF] ansatz based on the decomposition of the kinetic and thermal dissipation rates, [START_REF] Wang | Scaling in internally heated convection: A unifying theory[END_REF] have theoretically modelled the inverse of Q ( ∆ ≈ 1/Q) by power-laws of Rr and P r (see table 1 in [START_REF] Wang | Scaling in internally heated convection: A unifying theory[END_REF]. In section 2, the GL theory is adapted to configuration (a) and the two equations (2.20) and (2.21) predict the evolution of N u a and Re a as a function of Ra, P r and Q. Under the same conditions (same Ra, P r and Q), we assume in sub-section 3.1 that both N u top and Re b measured in configuration (b) are given by N u a (Ra, P r, Q) and Re a (Ra, P r, Q) (Eqs. (3.1) and (3.2)). In subsection 3.2, a theoretical model based on Prandtl-Blasius-Pohlhausen theory is derived to predict N u bot as a function of the Reynolds number (Eq. (3.10)). Finally, these predictions for the Ra and P r dependence of N u top and N u bot are compared with threedimensional experimental and numerical results in section 4. A detailed comparison with the two-dimensional results of [START_REF] Goluskin | Convection driven by internal heating[END_REF]; [START_REF] Wang | Scaling in internally heated convection: A unifying theory[END_REF] is given in Appendix A.

Grossmann & Lohse (2001) theory for RB experiment with volumetric energy sources (configuration a)

To predict the variations of Nusselt numbers with Ra and P r for internal heating and cooling convection experiments, [START_REF] Creyssels | Model for classical and ultimate regimes of radiatively driven turbulent convection[END_REF] proposed to assume that, for high Ra numbers, the dynamical structure of the convective flow is the same as in standard RB experiments. Notably, he assumed that the 5 dimensionless parameters (a, c 1 -c 4 ) defined within the framework of the GL theory do not depend on the way the heat is injected and extracted in the experiment. Besides, the thickness of each thermal boundary layer is assumed to be only controlled by the difference of temperature between the bulk flow and the corresponding plate using the following equation [Eq. (2.1) in [START_REF] Creyssels | Model for classical and ultimate regimes of radiatively driven turbulent convection[END_REF]]:

δ T h = 1 2N u RB (Ra, P r) . (2.1)
Then, the central idea of the GL theory is to split both mean kinetic energy and thermal dissipation rates into two contributions each, one from the bulk (Bu) and one from the boundary layers (BLs) as

ǫ u = ǫ u Bu + ǫ u BL , (2.2) ǫ T = ǫ T Bu + ǫ T BL , (2.3)
and each contribution is modelled as follows

ǫ u Bu ∼ U 2 a h/U 0 1 - δ u h ≈ ν 3 h 4 Re 3 0 , (2.4) ǫ T Bu ∼ (∆T ) 2 h/U edge a 1 - δ T h ≈ κ ∆T h 2 Re a P rf δ u δ T , (2.5) ǫ u BL ∼ ν U a δ u 2 δ u h = ν 3 h 4 Re 2 a h δ u , (2.6) ǫ T BL ∼ κ ∆T δ T 2 δ T h = κ ∆T h 2 h δ T .
(2.7)

In (2.4)-(2.6), U a represents the characteristic velocity of the bulk flow. [START_REF] Grossmann | Thermal convection for large Prandtl numbers[END_REF] introduced the function 0 f 1 because the relevant velocity at the edge between thermal BL and the thermal bulk can be less than U a , depending on the ratio:

δ u /δ T . They gave f (x) = (1 + x n ) -1/n
, with n = 4 as an example of function f . Besides, they assumed that the velocity BLs are Blasius-like, with a thickness of

δ u h = a √ Re a .
(2.8)

For the mean kinetic energy and thermal dissipation rates, the balances of the turbulent kinetic energy and of the thermal variance give the following two exact relations [START_REF] Creyssels | Model for classical and ultimate regimes of radiatively driven turbulent convection[END_REF]:

ǫ u = gβ h h 0 Φ a (z) ρc p dz - λ∆T ρc p , (2.9) ǫ T = 1 h h 0 T (z) q v (z) ρc p dz + ∆T Φ 0 ρc p h .
(2.10)

Using (1.10), (1.1), (1.12) and (1.11), (2.9) becomes

ǫ u = ν 3 h 4 (N u a -1 -Q 4 )Ra P r 2 . (2.11)
As the GL theory is based on Prandtl-Blasius-Pohlhausen laminar boundary layers [START_REF] Grossmann | Scaling in thermal convection: A unifying view[END_REF], the mean temperature can be written as (Creyssels 2020):

2 T (z) -T b ∆T =        1 -Θ P z δ T , for z h/2, (2.12a) 
Θ P h -z δ T -1, for h/2 z h, (2.12b) 
with Θ P the Pohlhausen temperature profile which is assumed to be independent of the Prandtl number. In particular, Θ P (0) = 0 and Θ P (η) → 1 when η ≫ 1. Using (1.9), (2.12), (1.12) and (1.11), (2.10) then becomes:

ǫ T = κ ∆T h 2 N u a -λ d δ T h Q , (2.13)
where

λ d = ∞ 0 [1-Θ P (η)
]dη denotes the displacement thickness of the mean temperature profile (λ d ≈ 0.57 for a Blasius profile).

From decomposition of the two global dissipation rates (2.2) and (2.3), four regimes of convection can be defined depending on whether the bulk or the BLs contributions dominate the global dissipations. For regimes II and IV , the kinetic energy dissipation rate is dominated by its bulk contribution whereas, for regimes I and III, ǫ u ∼ ǫ u BL . Combining (2.4) and (2.11), or (2.6) and (2.11), and using (2.8), we obtain

(N u a -1 -Q 4 )Ra P r 2 ∼ (Re a ) θi , (2.14)
whereas, for standard RB convection, we have

(N u RB -1)Ra P r 2 ∼ (Re RB ) θi , (2.15)
with θ II = θ IV = 3 and θ I = θ III = 5/2. Regimes III and IV are obtained for high Ra numbers for which thermal dissipation rate is dominated by its bulk contribution whereas, for regimes I and II, ǫ T ∼ ǫ T BL . For standard RB convection, [START_REF] Grossmann | Scaling in thermal convection: A unifying view[END_REF] predicted

(N u RB ) φi ∼ Re RB P rf 2aN u RB √ Re RB , (2.16) -1 0 1 0.8 1 1.2 -1 0 1 0.8 1 1.2 10 -1 10 0 10 1 0.8 1 1.2 10 -1 10 0 10 1 0.8 1 1.2
Ra = 10 6 Ra = 10 10 Ra = 10 14 Ra = 10 6 Ra = 10 10 Ra = 10 14 with φ III = φ IV = 1 and φ I = φ II = 2. For internal heating and cooling convection, combining (2.5) and (2.13), or (2.7) and (2.13), and using (2.1), it yields to

Q/N uRB = -1 Q/N uRB = -0.5 Q/N uRB = 0.5 Q/N uRB = 1 Q/N uRB = -1 Q/N uRB = -0.5 Q/N uRB = 0.5 Q/N uRB = 1 P r Q/N uRB Q/N uRB P r Rea ReRB N ua N uRB Rea ReRB N ua N uRB (a) (b) (c) (d)
N u a - λ d 2 Q N u RB ∼          Re a P rf 2aN u RB √ Re a (regimes III and IV ), N u RB ∼ Re RB P rf 2aN u RB √
Re RB (regimes I and II).

(2.17) As the 4 previous regimes can only be observed experimentally and numerically for extreme values of Ra and P r numbers, [START_REF] Grossmann | Thermal convection for large Prandtl numbers[END_REF] proposed to describe RB convection at any Ra and P r numbers as a mixture of these 4 regimes. Equations (2.15) and (2.16) are then generalized as

(N u RB -1)RaP r -2 = c 1 2a Re 5/2 RB + c 2 Re 3 RB , (2.18) N u RB = c 3 Re RB P rf 2aN u RB √ Re RB + c 4 Re RB P rf 2aN u RB √ Re RB . (2.19)
By applying this idea to internal heating convection, (2.14) and (2.17) are generalized using the two following equations

N u a -1 - Q 4 Ra P r 2 = c 1 2a Re 5/2 a + c 2 Re 3 a , (2.20) N u a - λ d 2 Q N u RB = c 3 Re RB P rf 2aN u RB √ Re RB + c 4 Re a P rf 2aN u RB √ Re a . (2.21)
Equations (2.20) and (2.21) give N u a and Re a numbers as functions of the 3 parameters Ra, P r and Q. Figures 2(a) and 2(b) show the ratios N u a /N u RB and Re a /Re RB as a function of Q compensated by N u RB (Ra, P r) for P r = 1 and for 3 different Ra numbers: Ra = 10 6 (solid line), Ra = 10 10 (dashed line) and Ra = 10 14 (dash-dotted line). As expected, heating the lower part of the cell (Q < 0) increases both N u a and Re a while heating the upper part of the cell (Q > 0) decreases both N u a and Re a . At fixed ratio Q/N u RB and when Ra increases, both ratios N u a /N u RB and Re a /Re RB increase for Q < 0 and they decrease for Q > 0. This can easily be explained by the fact that convection is described by a mixture of regimes II and IV for P r = 1 and the higher Ra, the lower the portion corresponding to regime II. Besides, N u a ≈ N u RB for pure regime II whereas we have

N u a N u RB = Re a Re RB 3/2 = 1 2 + 1 2 1 - Q N u RB (2.22)
for pure regime IV and δ u > δ T (or P r 1). To obtain (2.22), the system of Eqs. (2.20) and (2.21) is solved with 2(a) and 2(b) show that ratios N u a /N u RB and Re a /Re RB tend to the solution given by (2.22) when Ra → ∞ and P r = 1.

c 1 = c 3 = 0 (regime IV ), assuming that N u a ≫ 1 > λ d 2 Q N uRB and for δ u > δ T [f (δ u /δ T ) ≈ δ T /δ u ]. Figures
Finally, when fixing Ra and Q, and for P r 1, ratios N u a /N u RB and Re a /Re RB depend very little on P r (see Figs. 2c-d), in agreement with the solution of pure regime IV u (Eq. 2.22). On the contrary, when P r decreases from 1 to 0 and even if Ra is held constant, both Re RB P r and Re a P r decrease. As a result, the importance of regime II in the mixture of regimes represented in Eq. (2.21) increases and thus ratio N u a /N u RB approaches 1 (Figs. 2c-d).

These results are used in the following section to study the configuration shown in Fig. 1(b) for which both non-dimensional numbers Ra and Q are not control parameters. Indeed, they both depend on the temperature of the bulk flow (T b ) and thus T b need to be either measured or predicted. However, for configuration (b), using definitions (1.1) and (1.12), we have: Rr = Ra Q, with Rr the Rayleigh number adopted for IH convection experiment (Eq. 1.2).

Theory for IH convection experiment (configuration b)

Model for the top Nusselt number

The main assumption of this model is to assume that the flow in the upper half of the configuration shown in Fig. 1(b) is similar to the flow seen in the upper half of the cell of configuration (a). By analogy with RB convection for which N u RB ∼ Ra 1/3 means that the two boundary layers behave independently of each other, we assume here that the upper boundary layer is not sensitive to the flow structure that controls the lower boundary layer. Therefore, the thickness of the top BL (δ top ), the heat flux at the top plate (q top h) and the characteristic velocity (U b ) are only controlled by the following parameters: ∆T = 2(T b -T 0 ), q, h and P r. In non-dimensional form, it is assumed that N u top and Re b are given by the Nusselt and Reynolds numbers calculated for configuration (a) under the same conditions: N u top (Rr, P r) = N u a (Ra, P r, Q),

(3.1) Re b (Rr, P r) = Re a (Ra, P r, Q).

(3.2)

Besides, modelling both N u bot and N u top is sufficient to give Ra and Q as a function of the two control parameters Rr and P r. Indeed, using (1.2)-(1.8), (1.1) and (1.12) become

Q(Rr, P r) = N u bot + N u top , (3.3) 
Ra(Rr, P r) = Rr N u bot + N u top .

(3.4) 3.2. Model for the bottom Nusselt number Since the mean temperature gradient is positive throughout the lower boundary layer (see Fig. 1b), forced convection is the main mechanism that drives the heat flux at the lower plate. Assuming static large scale flow, also called 'wind flow', a laminar velocity boundary layer develops against the bottom plate in the same way as a Blasius boundary layer. Using the theory of Prandtl-Blasius-Pohlhausen [START_REF] Schlichting | Boundary-Layer Theory[END_REF], the thickness of the thermal boundary layer is given by

δ T,x x = 1 A F (P r) Re 1/2 x , (3.5) 
with x the horizontal coordinate, A ≈ 0.33 and F (1) = 1. Here, δ T is defined as (δ T ) -1 = dΘP dz z=0 , with Θ P = (T -T 0 )/(T b -T 0 ) the non-dimensional difference of temperature. The Prandtl-dependent function F varies as P r 1/3 when P r 0.5, whereas, when P r decreases, the exponent of the power-law behaviour of F increases up to 1/2. In the range 10 -3 P r 10 3 , F can be approximated by F (P r) = d 1 P r 1/2 f (d 2 P r 1/6 ) with a precision of ±1%, using f (x) = (1 + x n ) -1/n , n = 4, d 1 = 1.68 and d 2 = 1.63.

At the bottom plate (z = 0), the local heat flux is the sum of two contributions:

Φ x = Φ x,P + Φ x,q .
(3.6) Φ x,P and Φ x,q represent, respectively, the heat flux given by the theory of Prandtl-Blasius-Pohlhausen and the heat flux due to the presence of volumetric heat sources inside the thermal boundary layer:

Φ x,P = A F (P r) Re 1/2 x λ(T b -T 0 ) x , (3.7) Φ x,q = B q δ T,x . (3.8)
In (3.8), B is a numerical constant to be determined using experiments or numerical simulations. In the case of Φ x,P = 0 (pure conductive state), B = 0.5. Assuming an aspect ratio of 1 for the cell and using (3.7), (3.8) and (3.5), the integration of the local heat flux Φ x (Eq. 3.6) between x = 0 and x = h gives

Φ bot = 1 h h 0 Φ x = 2A F (P r) h λ(T b -T 0 )Re 1/2 b + 2Bqh 3A F (P r)Re 1/2 b .
(3.9) Using (3.9) and (1.12), the bottom Nusselt number can be calculated as

N u bot = Φ bot h 2λ(T b -T 0 ) = A F (P r) Re 1/2 b + 2B 3A F (P r) Q Re 1/2 b .
(3.10) Likewise, from (3.5), the mean bottom boundary layer thickness can be written as: Both models presented in sub-sections 3.1 and 3.2 are based on Blasius profiles for the z-evolution of T (z) in the two boundary layers. In addition, T (z) ≈ T b in the bulk flow i.e. for δ bot ≪ z ≪ h -δ top . Thus, for configuration (b), using (2.12b), T (z) can be expressed as

δ bot h = 1 h 2 h 0 δ T,x dx = 2 3A F (P r) Re
T b -T (z) T b -T 0 =          1 -Θ P z δ bot , for z h/2, (3.12a) 1 -Θ P h -z δ top , for h/2 z h. (3.12b)
The thicknesses of the bottom and top boundary layers (δ bot and δ top ) are given by (2.1) and (3.11), respectively. Using (3.12), the mean fluid temperature can be calculated yielding to

T b -T T b -T 0 = λ d δ bot + δ top h , (3.13) = d 2 3A F (P r) Re 1/2 b + 1 2N u RB , (3.14)
with Re b (Rr, P r) (Eq. 3.2) and N u RB (Ra, P r) with Ra(Rr, P r) (Eq. 3.4).

Comparison between theories and numerical results

Theoretical predictions for N u top , N u bot and mean fluid temperature are tested below using experimental and numerical results on three-dimensional IH convection (see Table 1 and [START_REF] Goluskin | Penetrative internally heated convection in two and three dimensions[END_REF] for a literature survey). A comparison between the theories and twodimensional simulations of IH convection [START_REF] Goluskin | Convection driven by internal heating[END_REF][START_REF] Goluskin | Penetrative internally heated convection in two and three dimensions[END_REF][START_REF] Wang | Scaling in internally heated convection: A unifying theory[END_REF]) is given in Appendix A.

Top Nusselt number

Figures 3(a) and 3(b) show the variations of N u top (filled squares) defined by (1.8) and given by [START_REF] Goluskin | Penetrative internally heated convection in two and three dimensions[END_REF] for IH convection simulations. The variations of the Nusselt number obtained for standard RB simulations are also shown (data from [START_REF] Pandey | Scaling of large-scale quantities in Rayleigh-Bénard convection[END_REF] and [START_REF] Shishkina | Scaling relations in large-Prandtl-number natural thermal convection[END_REF], open symbols). Clearly, at constant Ra and P r numbers, N u top is slightly lower than N u RB . Dashed and solid lines represent, respectively, GL theory for RB convection (Eqs. 2.18 and 2.19) and for RB convection with volumetric energy sources (Eqs. 2.20 and 2.21). For the latter case, Q and Ra are calculated using (3.3), (3.4) and the data of [START_REF] Goluskin | Penetrative internally heated convection in two and three dimensions[END_REF]. A good agreement between the numerical simulations and the extension of GL theory is observed both by plotting N u top as a function of Ra for P r = 1 (Fig. 3a) and by considering the variations of N u top with P r for Ra ≈ 1.7 × 10 6 (Fig. 3b). 

Figure 4. The compensated Reynolds number for standard RB convection as a function of Ra for P r = 1 (a) and against P r for Ra ≈ 1.7 × 10 6 (b) (symbols as Fig. 3). Also shown: the predictions of the GL theory (dashed lines, Eqs. 2.18 and 2.19) and those of its extension to convection with volumetric heat source (solid lines, Eqs. 2.20 and 2.21). For the second case, Ra and Q are calculated using (3.4) and (3.3) and the data of [START_REF] Goluskin | Penetrative internally heated convection in two and three dimensions[END_REF]. The horizontal lines represent power-law behaviours (upper line: (4.1), lower line: (4.2)).

Bottom Nusselt number

The theory developed in sub-section 3.2 to predict the variations of N u bot is based on forced convection in the lower half of the cell and the theory of Blasius. Therefore, to get N u bot with good precision, a very good estimate of the Reynolds number is necessary (see Eq. 3.10). However, to date there are no experimental or numerical measurements for either Re b (Rr, P r) or Re a (Ra, P r, Q) in 3D. Even for RB convection, experimental and numerical measurements of Reynolds number have larger uncertainties than those of Nusselt number because they require measurement of velocity fluctuations throughout the cell. In addition, several definitions of Re are given in the literature (root mean square of the velocity, root mean square of the vertical velocity, maximum of the velocity fluctuations, maximum mean velocity along the heated plate). Likewise, the GL theory is less effective in predicting Re RB than N u RB . Figures 4(a of Re RB as a function of Ra and P r given by [START_REF] Pandey | Scaling of large-scale quantities in Rayleigh-Bénard convection[END_REF] and [START_REF] Shishkina | Scaling relations in large-Prandtl-number natural thermal convection[END_REF]. For both cases i.e. P r = 1, 10 5 Ra 5×10 8 (Fig. 4a) and Ra = 1.7×10 6 , 0.1 P r 10, Re RB can be fitted by a power-law of Ra and P r as

Re RB ≈ 0.15 Ra 1/2 P r -γ , (4.1) 
with γ ≈ 0.86. As no data on Re a is available, the same power-law behaviour will be used for Re a . In addition, the extension of the GL theory (see section 2) predicts that Re a /Re RB ≈ 0.8 in the range of Ra, P r and Q investigated by Goluskin & van der Poel (2016) (see Figs. 4a,b). Thus, the following equation will be use to give Re a or Re b as a function of Ra and P r:

Re b (R, P r) = Re a (Ra, P r, Q) = 0.12 Ra 1/2 P r -γ . (4.2)

Using (4.2), (3.10) gives N u bot as a function of Ra, P r and Q. Note that Ra and Q are calculated from the data of [START_REF] Goluskin | Penetrative internally heated convection in two and three dimensions[END_REF] and using (3.3) and (3.4). Figures 5 (a-b) show that the equation (3.10) describes well both the evolution of N u bot with Ra and with P r, using A = 0.21 (not far away from 0.33) and B = 0.4 (close to the value 0.5 which characterizes a purely conductive boundary layer).

Mean fluid temperature T

The model presented in section 3 also predicts the evolution with Ra and P r of the difference between the mean fluid temperature ( T ) and the temperature of the bulk flow (T b ). Figures 6 (a-b) show a good agreement between (3.14) and the numerical results of [START_REF] Goluskin | Penetrative internally heated convection in two and three dimensions[END_REF] using no new adjustable parameters. Indeed, as for figures 5 (a-b), A is taken equal to 0.21 whereas the displacement thickness of the mean temperature profile is given by the Blasius theory (λ d = 0.57). As shown by (3.13), the dimensionless temperature difference (T b -T )/(T b -T 0 ) is equal to the sum of the thicknesses of the two boundary layers. For Ra > 10 5 , as δ bot ≫ δ top and Re b ∝ Ra 1/2 (see Eq. (4.2)), (3.14) can be approximated by

T b -T T b -T 0 ≈ λ d δ bot h ∝ Ra -1/4 (4.3) δ bot h ∝ Re b -1/2 (see (3.11))
and Re b ∝ Ra 1/2 (4.2), As Rayleigh number increases, 1+θ RB , (4.5) ≈ 0.11 P r -0.10 Rr 0.19 + 0.42 P r 0.10 Rr 0.04 .

(4.6) Indeed, for P r 1, F (P r) ≈ P r 1/3 and Γ = γ 2 -1 3 ≈ 0.10. Equation (4.6) shows that N u bot can be expressed by the sum of two power-laws of Rr with exponents 0.04 and 0.19 (see also Fig. 7). This explains the high variability of the measured exponents when the experimental or numerical results are fitted by a single power law (see Table 1). Since the experiments of [START_REF] Ralph | Experiments in turbulent thermal convection driven by internal heat sources[END_REF] were performed for higher Rr numbers (4 • 10 8 -10 12 ) than the other works, the corresponding exponent (0.17) is larger than the exponents calculated using the other results (∼ 0.10). Of course, the observed differences are also due to experimental uncertainties, boundary conditions and the way the thermal power q v is imposed in volume in the fluid. 

Conclusions

Grossmann & Lohse (2001) theory has been extended here to RB convection with volumetric energy sources in the fluid (configuration a). The two equations of the GL theory (2.18)-(2.19) have been modified to take account the effect of the new non-dimensional parameter Q = qh 2 /(λ∆T ). Equations (2.20) and (2.21) predict the evolution of N u a and Re a as a function of Ra, P r and Q. Besides, these two equations can also describe the top Nusselt number N u top and the Reynolds number of an IH convection experiment (configuration b). In this case, the non-dimensional parameter Rr = Ra Q is the control parameter of the IH convection system whereas Ra and Q are theoretically modelled using Q = N u top + N u bot , with N u top = N u a (Ra, P r, Q) and N u bot (Re a , P r, Q). The bottom Nusselt number is the sum of two terms (Eq. 3.10). The first term can be modelled using the Prandtl-Blasius-Pohlhausen theory and is proportional to square root of the Reynolds number. The second term comes from the presence of volumetric energy sources and is proportional to Q/ √ Re. In agreement with the independent theoretical findings of [START_REF] Wang | Scaling in internally heated convection: A unifying theory[END_REF], for high Rr numbers, N u top scales as Rr θ RB (1+θ RB ) , with θ RB the exponent of the power-law behaviour of N u RB with Ra. These predictions are confirmed by experimental and numerical results and show that natural and forced convections are the two mechanisms that control the heat fluxes in an IH convection experiment. The results for 2D IH convection are therefore slightly different from those obtained for 3D IH convection. In 3D, numerical data of [START_REF] Goluskin | Penetrative internally heated convection in two and three dimensions[END_REF] and extension of the GL theory show that 0.83 N u top /N u RB 0.91 and Re b ≈ 0.8 Re RB (using GL theory) whereas N u top ≈ N u RB and Re b ≈ 0.65 Re RB in 2D. However, beyond these small differences, the 2D and 3D numerical results validate the theoretical approach chosen here to separate the IH convection cell into two distinct parts. The upper half of the cell behaves like the upper half of a RB convection cell (N u top ∼ N u RB ) and controls the Reynolds number. The heat transfer at the bottom plate is controlled by the Reynolds number and using the theory of Blasius, N u bot is given by (3.10). Indeed, Figure 8(a) shows a good agreement between results of [START_REF] Wang | Scaling in internally heated convection: A unifying theory[END_REF] (red squares) and (3.10) (red solid line) using A 2D = 0.28 and B 2D = B 3D = 0.4. In 2D, the parameter A is therefore slightly higher than in 3D (A 3D ≈ 0.22) and closer to the value for a Blasius boundary layer (A ≈ 0.33). A greater difference is observed between the data from Goluskin & Spiegel (2012) (red diamonds) and (3.10). This is probably due to the fact that the equation that gives the Reynolds number (A 2) is less well verified when the Rayleigh number is low.

The updown asymmetry that turbulent convection induces is quantified measuring the coefficient α. From definitions given by (1.5)-(1.7), α is directly linked to the ratio of N u top over N u bot Both for 2D and 3D IH convection, Figure 9 shows that the theory presented in section 3 describes well the evolution of the asymmetry coefficient with Ra. However, the evolution of α with Ra is different in 2D than in 3D. In particular, for 2D, α saturates and even decreases when Ra increases. This behaviour is well described by (3.10). For high Ra numbers, (3.10) can be approximated by N u bot ∼ Re 1/2 . Using (A 2) (2D) or (4.2) (3D), we obtain N u bot ∼ Ra 0.29 for 2D while N u bot ∼ Ra 0.25 for 3D. As N u top ∼ Ra 0.25 for 2D (A 1) and N u top ∼ Ra 0.3 for 3D (see subsection 4.4), N u top /N u bot varies as Ra -0.04 for 2D and as Ra 0.05 for 3D IH convection. That is why, for Ra 10 7 , α decreases with Ra in 2D while α continues to increase with Ra in 3D (see Fig. 9).

Figure 1 .

 1 Figure1. Two convective systems are theoretically studied here. Configuration (a) is closer to standard RB experiments since the two hot and cold plates play the same role and the same heat flux (Φ0) crosses them. But the heat flux at the center of the cell is lower or greater than Φ0, depending on the sign of q: Φa(z = h/2) = Φ0 -qh/2. Configuration (b) is more complex because the upper half cell is very similar to the upper half cell of RB experiments whereas the flow is stratified in the lower part of the bottom half cell. The heat flux at the bottom plate is negative (-q bot h) and is not equal in absolute value to the heat flux at the top plate (qtoph). Besides, qtop > q bot . For configuration (b), the mean temperature profile T (z) was measured by[START_REF] Goluskin | Penetrative internally heated convection in two and three dimensions[END_REF]. The upper and lower thermal boundary layers of thickness δtop and δ bot are also displayed for each configuration.

Figure 2 .

 2 Figure2. Results of the extension of GL theory for turbulent convection with uniform volumetric sources. N ua/N uRB (a) and Rea/ReRB (b) as a function of Q normalized by N uRB (Ra, P r) for P r = 1 and for 3 different Ra numbers: Ra = 10 6 (solid line), Ra = 10 10 (dashed line) and Ra = 10 14 (dash-dotted line). The black dotted line represents regime IVu (Eq. 2.22) i.e. the limit of system of Eqs. (2.20) and (2.21) when Ra → ∞ and P r 1. N ua/N uRB (c) and Rea/ReRB (d) as a function of P r for Ra = 10 9 and from top to bottom: Q/N uRB = -1, -0.5, 0.5 and 1.

  Mean fluid temperature T

Figure 3 .

 3 Figure 3. The compensated Nusselt number for standard RB convection (open symbols) and for IH convection (filled squares) as a function of Ra for P r = 1 (a) and against P r for Ra ≈ 1.7×10 6 (b). For IH convection, Ra numbers are calculated using (3.4). Dashed lines: Grossmann & Lohse (2001) theory with prefactors given byStevens et al. (2013) (Eqs. 2.18 and 2.19). Solid blue lines: extension of GL theory for convection with volumetric energy sources (Eqs. 2.20 and 2.21).

Figure 5 .

 5 Figure 5. N u bot versus Ra (a) and P r (b). Symbols: data from Goluskin & van der Poel (2016). Solid lines: (3.10) with A = 0.21 and B = 0.4. Dashed lines: first term of (3.10) (∝ √ Re ∝ Ra 1/4 ). Dotted lines: second term of (3.10) (∝ Q/ √ Re).

Figure 6 .

 6 Figure 6. Difference between the temperature of the bulk flow (T b ) and the mean fluid temperature ( T ) as a function of Ra (a) and P r (b). Symbols: data from Goluskin & van der Poel (2016). Solid lines: (3.14) with A = 0.21 and λ d = 0.57. Dashed lines: first term of (3.14) i.e. λ d δ bot h ∝ Re b -1/2 ∝ Ra -1/4 . Dotted blue lines: second term of (3.14) i.e. λ d δtop h ∝ 1/N uRB ∝ Ra -θ RB with θRB ≈ 0.3 (see sub-section 4.4).

Figure 7 .

 7 Figure 7. N utop (squares) and N u bot (circles) versus Rr for P r = 1 (data from Goluskin & van der Poel (2016)). Solid upper line: N utop ∝ Rr 0.23 (Eq. 4.4). Solid lower line: (3.10) with A = 0.21 and B = 0.4. Dashed line: N u bot = 0.11 Rr 0.19 + 0.42 Rr 0.04 (Eq. 4.6). Dotted line: N u bot = 0.11 Rr 0.19 .

Figure 8 .

 8 Figure 8. Results for two-dimensional IH and RB convection. (a) N utop and N u bot compensated by Ra 1/3 as a function of Ra. Data from Goluskin & Spiegel (2012) (diamonds) and Wang et al. (2021) (squares), P r = 1. The results for RB convection (N uRB Ra -1/3 ) are also shown: Johnston & Doering (2009) (asterisks), Zhu et al. (2018) (stars) and Zhang et al. (2017) (plusses: P r = 0.7, crosses: P r = 5.3). Blue dashed line: (A 1). Red solid line: (3.10) with A2D = 0.28 and B2D = 0.4. (b) Compensated Reynolds number (ReP r 0.86 /Ra 1/2 ) vs. Ra. Blue solid line: (A 2).

Figure 9 .

 9 Figure 9. Asymmetry coefficient α versus Ra for 2D (red open symbols) and 3D IH convection (blue circles: data of Goluskin & van der Poel (2016)). Red solid line: (A 3) and using (A 1), (A 2) and (3.10). Blue dashed line: (A 3) and using (4.4), (4.2) and (3.10). Lower and upper dotted lines: (A 3) with N utop/N u bot ∼ Ra -0.04 and N utop/N u bot ∼ Ra 0.05 , respectively.

Table 1 .

 1 Previous results giving Nusselt numbers as a function of Rr for experiments and numerical simulations of three-dimensional IH convection[START_REF] Goluskin | Penetrative internally heated convection in two and three dimensions[END_REF].

	Reference	P r	Rr range	N utop fit	N u bot fit
	Laboratory experiments				
	Kulacki & Goldstein (1972) Jahn & Reineke (1974) Mayinger et al. (1975) Ralph et al. (1977) Lee et al. (2007)	≈ 6 ≈ 7 ≈ 7 ≈ 7 ≈ 0.7	5 • 10 4 -2 • 10 7 10 5 -10 9 10 5 -10 11 4 • 10 8 -10 12 10 10 -4 • 10 11	0.18Rr 0.23 0.39Rr 0.20 0.22Rr 0.23 0.10Rr 0.24 0.09Rr 0.24	0.66Rr 0.10 1.07Rr 0.10 0.68Rr 0.10 0.14Rr 0.17 0.71Rr 0.11
	Simulations (3D DNS)				
	Wörner et al. (1997) Goluskin & van der Poel (2016)	7 1	10 5 -10 8 5 • 10 7 -2 • 10 10	0.19Rr 0.23 0.18Rr 0.23	0.65Rr 0.10 0.38Rr 0.14

  6 (b). For IH convection, Ra numbers are calculated using (3.4). Dashed lines: Grossmann & Lohse (2001) theory with prefactors given by Stevens et al. (2013) (Eqs. 2.18 and 2.19). Solid blue lines: extension of GL theory for convection with volumetric energy sources (Eqs. 2.20 and 2.21).

	0.2					0.2			
			ReRBP r 0.86			ReRBP r 0.86		
				Ra 1/2			Ra 1/2		
	0.15					0.15			
		Re b P r 0.86			Re b P r 0.86		
			Ra 1/2			Ra 1/2		
	10 5 0.05	10 6	Ra	10 7	10 8	10 -1 0.05	10 0	P r	10 1
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Appendix A. Comparison between theories and numerical results for two-dimensional IH convection

For two-dimensional IH convection, the predictions of the theoretical work presented in section 3 can be tested thanks to the numerical investigations of [START_REF] Goluskin | Convection driven by internal heating[END_REF]; [START_REF] Wang | Scaling in internally heated convection: A unifying theory[END_REF]. Figures 8(a-b) show the variations of N u top and Re as a function of the Rayleigh number (Ra = Rr/(N u top + N u bot )), for P r = 1. For