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A theoretical model is derived to predict both the heat fluxes at the upper and lower
horizontal surfaces of an internally heated (IH) convection cell by extending the well-
known Grossmann & Lohse (2001) theory. The approach of Creyssels (2020) is generalized
for a fluid heated internally and uniformly, confined between top and bottom plates
of equal temperature. For each plate, a Nusselt number is defined and an analytical
formula is given to predict its variations with the Rayleigh and Prandtl numbers. The
turbulent flow produced in the upper half of the IH convection cell is very similar to that
observed in standard Rayleigh-Bénard (RB) convection. On the contrary, the lower plate
is swept by the large scale flow that circulates through the entire cell. The corresponding
boundary layer is therefore modelled by a laminar boundary layer of the Blasius type.
These predictions are consistent with the independent theoretical scalings proposed by
Wang et al. (2021) and they are confirmed by the numerical results obtained by Goluskin
& van der Poel (2016); Wang et al. (2021).

1. Introduction

Natural convection induced by internal heat production is a phenomenon that occurs
very often in geophysical, astrophysical and engineering systems (Goluskin 2015). By
following the analysis recently given by Creyssels (2020), the purpose of this paper is
to extend the many theoretical, numerical and experimental results of Rayleigh-Bénard
(RB) convection to two internally heated (IH) convection systems shown in Figs. 1 (a)
and (b). In RB convection, convective flow is produced by thermal boundary conditions
that cause heat to enter through the lower hot plate and exit through the upper cold
plate. In this case, convection is controlled by the temperature difference between the
plates (∆T ) and the height of the cell (h), or by the Rayleigh number defined as

Ra =
gβ∆Th3

νκ
, (1.1)

where g is the uniform gravitational acceleration, β, ν and κ are, respectively, the
coefficient of thermal expansion, the kinematic viscosity and the thermal diffusivity of
the fluid. On the contrary, for IH convection, the flow is produced by a volumetric source
of internal heating (q in W/m3), itself produced by chemical or nuclear reactions, or by
radiation. Instead of using Ra, the Rayleigh-Roberts number (Roberts 1967) is adopted
as follows

Rr =
gβqh5

λνκ
, (1.2)

where λ is the thermal conductivity of the fluid. A first approach of IH convection is to
take q constant and uniform throughout the volume. Using h2/κ as the unit of time, h
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Figure 1. Two convective systems are theoretically studied here. Configuration (a) is closer to
standard RB experiments since the two hot and cold plates play the same role and the same
heat flux (Φ0) crosses them. But the heat flux at the center of the cell is lower or greater than

Φ0, depending on the sign of q: Φa(z = h/2) = Φ0 − qh/2. Configuration (b) is more complex
because the upper half cell is very similar to the upper half cell of RB experiments whereas the
flow is stratified in the lower part of the bottom half cell. The heat flux at the bottom plate is
negative (−qboth) and is not equal in absolute value to the heat flux at the top plate (qtoph).
Besides, qtop > qbot. For configuration (b), the mean temperature profile T (z) was measured by
Goluskin & van der Poel (2016). The upper and lower thermal boundary layers of thickness δtop
and δbot are also displayed for each configuration.

as the unit of length and qh2/λ as the unit of temperature, the dimensionless Boussinesq
equations governing the velocity, pressure and temperature are the incompressibility
condition (∇ · u) and

∂̃tũ+ ũ · ∇̃ũ = −∇̃p̃+ Pr∇̃2
ũ+ PrRr T êz , (1.3)

∂̃tT̃ + ũ · ∇̃T̃ = ∇̃2T̃ + 1, (1.4)

where dimensionless variables and operators are designated by tildes, êz is the vertical
unit vector and Pr is the Prandtl number. With regard to thermal boundary conditions,
we consider hereafter those used by most of previous studies i.e. fixed and equal tempera-
ture conditions (T0) at the top and bottom plates. By adopting this condition, modeling
an IH convection experiment becomes a great challenge because in a single cell, there are
both positive and negative vertical mean temperature gradients (see Fig. 1b). This leads
to both turbulent convection and a stably stratified lower boundary layer. Therefore, the
experiments on RB and IH convection have some similarities but also some differences.
For both cases, the mean temperature is almost constant in the middle of the cell and
we call it the temperature of the ‘bulk flow’ (T b). At high Ra numbers and assuming
negligible non-Boussinesq effects, T b is equal to the average of the top and bottom plate
temperatures for a RB experiment, while T b is the maximum of the mean temperature
in an IH convection cell (see Fig. 1b). Besides, the two thermal boundary layers located
near the top and bottom plates have the same thickness for a RB experiment. On the
contrary, heating in volume leads to an asymmetry between the two thermal boundary
layers. The mean temperature profile was measured by Goluskin & van der Poel (2016)
and is shown in Fig. 1 (b). Therefore, the upper boundary layer is similar to that observed
in a RB experiment, whereas in the lower boundary layer, the mean temperature gradient
tends to stop convective flows produced in the upper region of the cell. Consequently,
in an IH convection cell, the thickness of the lower boundary layer is greater than that
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Reference Pr Rr range Nutop fit Nubot fit
Laboratory experiments

Kulacki & Goldstein (1972) ≈ 6 5 · 104 − 2 · 107 0.18Rr0.23 0.66Rr0.10

Jahn & Reineke (1974) ≈ 7 105 − 109 0.39Rr0.20 1.07Rr0.10

Mayinger et al. (1975) ≈ 7 105 − 1011 0.22Rr0.23 0.68Rr0.10

Ralph et al. (1977) ≈ 7 4 · 108 − 1012 0.10Rr0.24 0.14Rr0.17

Lee et al. (2007) ≈ 0.7 1010 − 4 · 1011 0.09Rr0.24 0.71Rr0.11

Simulations (3D DNS)
Wörner et al. (1997) 7 105 − 108 0.19Rr0.23 0.65Rr0.10

Goluskin & van der Poel (2016) 1 5 · 107 − 2 · 1010 0.18Rr0.23 0.38Rr0.14

Table 1. Previous results giving Nusselt numbers as a function of Rr for experiments and
numerical simulations of three-dimensional IH convection (Goluskin 2015).

of the upper boundary layer (δbot > δtop). In addition, the difference in thickness must
increase as the Rayleigh number increases. Likewise, at a fixed Ra number, the mean
vertical heat flux is constant for a RB experiment and is given by the Nusselt number
as ΦRB = NuRB

λ∆T
h . In contrast, in an IH convection cell, the heat produced inside the

fluid is evacuated through both lower and upper boundaries, leading to a mean vertical
heat flux that changes sign from the bottom plate to the top plate (see Fig. 1b). As the
mechanisms that drive the two thermal boundary layers are different, the heat fluxes
through the upper and lower plates are not equal in absolute value. A coefficient α can
be defined to quantify this down-up asymmetry. Indeed, the fraction of heat produced
inside the fluid flowing outwards from the bottom plate can be written as

qbot = (
1

2
− α)q, (1.5)

leading to a heat flux at the bottom plate equal to −qboth~ez. In steady state, energy
conservation yields to a heat flux that leaves through the top plate as qtoph~ez, with

qtop = (
1

2
+ α)q. (1.6)

Then, for each plate, we can define one Nusselt number as

Nubot =
qboth

2

λ∆T
, (1.7)

Nutop =
qtoph

2

λ∆T
. (1.8)

To be consistent with the definition of the Nusselt number adopted for RB convection
experiments, the characteristic temperature difference ∆T used in (1.7) and (1.8) is:
∆T = 2(T b−T0). There is therefore a factor 2 by comparing the definitions of Nubot and
Nutop given in previous studies on IH convection (Goluskin 2015). Note also that other
definitions of Nusselt numbers are given in the literature. Instead of using T b, the mean
fluid temperature (〈T 〉, where angle brackets denote an average over the entire volume)
can be chosen as temperature reference in (1.7) and (1.8). Figure 6 (a) shows that the
difference of temperature T b−〈T 〉 becomes negligible only for very high Rayleigh-Roberts
numbers.
Kulacki & Goldstein (1972); Jahn & Reineke (1974); Mayinger et al. (1975); Ralph

et al. (1977); Lee et al. (2007); Wörner et al. (1997); Goluskin & van der Poel (2016)
have measured experimentally and numerically the Nusselt numbers Nutop and Nubot as
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a function of the control parameter Rr. As is usual for RB experiments, they presented
their results as power-law fits. Nutop has been found to increase with Rr at rates between
Rr0.20 and Rr0.24 (see Table 1). Nubot increases more slowly with Rr, at rates between
Rr0.10 and Rr0.17. Up to now, no theory has been able to predict these exponents whereas
for RB convection, the theory developed by Grossmann & Lohse (2000); Grossmann
& Lohse (2001) (henceforth the GL theory, Eqs. (2.18) and (2.19)) describes well the
behaviour of NuRB(Ra, Pr) and ReRB(Ra, Pr).
Creyssels (2020) has recently developed a simple theoretical model to predict the Ra

and Pr-dependent Nusselt number for a modified RB experiment in which heat is injected
by volume but only in the lower thermal boundary layer. At the same time, the upper
boundary layer is cooled with the same rate in order to have a constant energy in the
convection cell, as in a standard RB cell. Note that Lepot et al. (2018); Bouillaut et al.
(2019) presented an experimental method to bypass the cooling boundary layer in order
to perform this modified RB experiment. For configuration shown in Fig. 1 (b), the
problem is much more complex since the symmetry between the two plates is broken.
Because of this, GL theory is first extended to the modified RB configuration (a) (see Fig.
1a) for which the fluid is confined between two horizontal plates of different temperature
(∆T > 0 is fixed). To preserve the symmetry between the two plates, the lower part of
the cell for configuration (a) is cooled with the same volumetric power as the upper part
is heated:

qv(z) =

{

− q, for 0 6 z 6 h/2,

+ q, for h/2 6 z 6 h.
(1.9)

In steady state, energy conservation yields to the following variation of the heat flux
averaged over a horizontal cross-section:

Φa(z) =

{

Φ0 − qz, for 0 6 z 6 h/2,

Φ0 − q(h− z), for h/2 6 z 6 h,
(1.10)

where Φ0 is the heat flux that crosses each horizontal plate. For configuration (a), the
Nusselt number can then be defined as for standard RB experiment using

Nua =
Φ0h

λ∆T
. (1.11)

The Nusselt (Nua) and Reynolds (Rea) numbers depend on three non-dimensional pa-
rameters: Ra, Pr and Q, where Q represents the non-dimensional form of the volumetric
heating or cooling sources:

Q =
qh2

λ∆T
. (1.12)

Note that: (i) Nua = NuRB(Ra, Pr) when Q = 0 ; (ii) Q can be either positive
or negative ; (iii) a priori, Nua < NuRB and Rea < ReRB when Q > 0 whereas
Nua > NuRB and Rea > ReRB if Q < 0 ; (iv) Φa(z) must be positive to avoid
the weakening of the turbulent flow in the center of the cell and the appearance of a
stratified flow. The condition Φa(h/2) = Φ0 − q h

2 > 0 implies that Q < 2Nua. Finally,
for Q > 0, the upper boundary layer and the turbulent flow observed in the upper
half of the cell of configuration (a) are similar to those observed in the upper half of a
cell of configuration (b). However, Q is a control parameter in configuration (a) while
Q must be measured or predicted in configuration (b) because ∆T = 2(T b − T0) is
a function of Rr and Pr. For configuration (b), using the Grossmann & Lohse (2000)
ansatz based on the decomposition of the kinetic and thermal dissipation rates, Wang
et al. (2021) have theoretically modelled the inverse of Q (∆̃ ≈ 1/Q) by power-laws of
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Rr and Pr (see table 1 in Wang et al. (2021). In section 2, the GL theory is adapted to
configuration (a) and the two equations (2.20) and (2.21) predict the evolution of Nua

and Rea as a function of Ra, Pr and Q. Under the same conditions (same Ra, Pr and
Q), we assume in sub-section 3.1 that both Nutop and Reb measured in configuration
(b) are given by Nua(Ra, Pr,Q) and Rea(Ra, Pr,Q) (Eqs. (3.1) and (3.2)). In sub-
section 3.2, a theoretical model based on Prandtl-Blasius-Pohlhausen theory is derived
to predict Nubot as a function of the Reynolds number (Eq. (3.10)). Finally, these
predictions for the Ra and Pr dependence of Nutop and Nubot are compared with three-
dimensional experimental and numerical results in section 4. A detailed comparison with
the two-dimensional results of Goluskin & Spiegel (2012); Wang et al. (2021) is given in
Appendix A.

2. Grossmann & Lohse (2001) theory for RB experiment with
volumetric energy sources (configuration a)

To predict the variations of Nusselt numbers with Ra and Pr for internal heating and
cooling convection experiments, Creyssels (2020) proposed to assume that, for high Ra
numbers, the dynamical structure of the convective flow is the same as in standard RB
experiments. Notably, he assumed that the 5 dimensionless parameters (a, c1-c4) defined
within the framework of the GL theory do not depend on the way the heat is injected
and extracted in the experiment. Besides, the thickness of each thermal boundary layer
is assumed to be only controlled by the difference of temperature between the bulk flow
and the corresponding plate using the following equation [Eq. (2.1) in Creyssels (2020)]:

δT
h

=
1

2NuRB(Ra, Pr)
. (2.1)

Then, the central idea of the GL theory is to split both mean kinetic energy and thermal
dissipation rates into two contributions each, one from the bulk (Bu) and one from the
boundary layers (BLs) as

〈ǫu〉 = 〈ǫu〉Bu + 〈ǫu〉BL, (2.2)

〈ǫT 〉 = 〈ǫT 〉Bu + 〈ǫT 〉BL, (2.3)

and each contribution is modelled as follows

〈ǫu〉Bu ∼ U2
a

h/U0

(

1− δu
h

)

≈ ν3

h4
Re30, (2.4)

〈ǫT 〉Bu ∼ (∆T )2

h/Uedge
a

(

1− δT
h

)

≈ κ

(

∆T

h

)2

ReaPrf

(

δu
δT

)

, (2.5)

〈ǫu〉BL ∼ ν

(

Ua

δu

)2
δu
h

=
ν3

h4
Re2a

h

δu
, (2.6)

〈ǫT 〉BL ∼ κ

(

∆T

δT

)2
δT
h

= κ

(

∆T

h

)2
h

δT
. (2.7)

In (2.4)-(2.6), Ua represents the characteristic velocity of the bulk flow. Grossmann &
Lohse (2001) introduced the function 0 6 f 6 1 because the relevant velocity at the edge
between thermal BL and the thermal bulk can be less than Ua, depending on the ratio:
δu/δT . They gave f(x) = (1 + xn)−1/n, with n=4 as an example of function f . Besides,
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they assumed that the velocity BLs are Blasius-like, with a thickness of

δu
h

=
a√
Rea

. (2.8)

For the mean kinetic energy and thermal dissipation rates, the balances of the tur-
bulent kinetic energy and of the thermal variance give the following two exact relations
(Creyssels 2020):

〈ǫu〉 =
gβ

h

[

∫ h

0

Φa(z)

ρcp
dz − λ∆T

ρcp

]

, (2.9)

〈ǫT 〉 =
1

h

∫ h

0

T (z)
qv(z)

ρcp
dz +

∆TΦ0

ρcp h
. (2.10)

Using (1.10), (1.1), (1.12) and (1.11), (2.9) becomes

〈ǫu〉 =
ν3

h4

(Nua − 1− Q
4 )Ra

Pr2
. (2.11)

As the GL theory is based on Prandtl-Blasius-Pohlhausen laminar boundary layers
(Grossmann & Lohse 2000), the mean temperature can be written as (Creyssels 2020):

2
T (z)− Tb

∆T
=















1−ΘP

(

z

δT

)

, for z 6 h/2, (2.12a)

ΘP

(

h− z

δT

)

− 1, for h/2 6 z 6 h, (2.12b)

with ΘP the Pohlhausen temperature profile which is assumed to be independent of the
Prandtl number. In particular, ΘP (0)=0 and ΘP (η)→1 when η ≫ 1. Using (1.9), (2.12),
(1.12) and (1.11), (2.10) then becomes:

〈ǫT 〉 = κ

(

∆T

h

)2 [

Nua − λd
δT
h
Q

]

, (2.13)

where λd =
∫

∞

0
[1−ΘP (η)]dη denotes the displacement thickness of the mean temperature

profile (λd ≈ 0.57 for a Blasius profile).
From decomposition of the two global dissipation rates (2.2) and (2.3), four regimes

of convection can be defined depending on whether the bulk or the BLs contributions
dominate the global dissipations. For regimes II and IV , the kinetic energy dissipation
rate is dominated by its bulk contribution whereas, for regimes I and III, 〈ǫu〉 ∼ 〈ǫu〉BL.
Combining (2.4) and (2.11), or (2.6) and (2.11), and using (2.8), we obtain

(Nua − 1− Q
4 )Ra

Pr2
∼ (Rea)

θi , (2.14)

whereas, for standard RB convection, we have

(NuRB − 1)Ra

Pr2
∼ (ReRB)

θi , (2.15)

with θII = θIV = 3 and θI = θIII = 5/2.
Regimes III and IV are obtained for high Ra numbers for which thermal dissipation

rate is dominated by its bulk contribution whereas, for regimes I and II, 〈ǫT 〉 ∼ 〈ǫT 〉BL.
For standard RB convection, Grossmann & Lohse (2000) predicted

(NuRB)
φi ∼ ReRBPrf

(

2aNuRB√
ReRB

)

, (2.16)
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Figure 2. Results of the extension of GL theory for turbulent convection with uniform
volumetric sources. Nua/NuRB (a) and Rea/ReRB (b) as a function of Q normalized by
NuRB(Ra,Pr) for Pr = 1 and for 3 different Ra numbers: Ra = 106 (solid line), Ra = 1010

(dashed line) and Ra = 1014 (dash-dotted line). The black dotted line represents regime IVu (Eq.
2.22) i.e. the limit of system of Eqs. (2.20) and (2.21) when Ra → ∞ and Pr > 1. Nua/NuRB

(c) and Rea/ReRB (d) as a function of Pr for Ra = 109 and from top to bottom: Q/NuRB = −1,
−0.5, 0.5 and 1.

with φIII = φIV = 1 and φI = φII = 2. For internal heating and cooling convection,
combining (2.5) and (2.13), or (2.7) and (2.13), and using (2.1), it yields to

Nua −
λd

2

Q

NuRB
∼



















ReaPrf

(

2aNuRB√
Rea

)

(regimes III and IV ),

NuRB ∼
√

ReRBPrf

(

2aNuRB√
ReRB

)

(regimes I and II).

(2.17)
As the 4 previous regimes can only be observed experimentally and numerically for

extreme values of Ra and Pr numbers, Grossmann & Lohse (2001) proposed to describe
RB convection at any Ra and Pr numbers as a mixture of these 4 regimes. Equations
(2.15) and (2.16) are then generalized as

(NuRB − 1)RaPr−2 =
c1
2a

Re
5/2
RB + c2Re3RB, (2.18)

NuRB = c3

√

ReRBPrf

(

2aNuRB√
ReRB

)

+ c4ReRBPrf

(

2aNuRB√
ReRB

)

. (2.19)
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By applying this idea to internal heating convection, (2.14) and (2.17) are generalized
using the two following equations
(

Nua − 1− Q

4

)

Ra

Pr2
=

c1
2a

Re5/2a + c2Re3a, (2.20)

Nua −
λd

2

Q

NuRB
= c3

√

ReRBPrf

(

2aNuRB√
ReRB

)

+ c4ReaPrf

(

2aNuRB√
Rea

)

. (2.21)

Equations (2.20) and (2.21) giveNua and Rea numbers as functions of the 3 parameters
Ra, Pr and Q. Figures 2(a) and 2(b) show the ratios Nua/NuRB and Rea/ReRB as a
function of Q compensated by NuRB(Ra, Pr) for Pr = 1 and for 3 different Ra numbers:
Ra = 106 (solid line), Ra = 1010 (dashed line) and Ra = 1014 (dash-dotted line). As
expected, heating the lower part of the cell (Q < 0) increases both Nua and Rea while
heating the upper part of the cell (Q > 0) decreases both Nua and Rea. At fixed ratio
Q/NuRB and when Ra increases, both ratios Nua/NuRB and Rea/ReRB increase for
Q < 0 and they decrease for Q > 0. This can easily be explained by the fact that
convection is described by a mixture of regimes II and IV for Pr = 1 and the higher
Ra, the lower the portion corresponding to regime II. Besides, Nua ≈ NuRB for pure
regime II whereas we have

Nua

NuRB
=

(

Rea
ReRB

)3/2

=
1

2
+

1

2

√

1− Q

NuRB
(2.22)

for pure regime IV and δu > δT (or Pr > 1). To obtain (2.22), the system of Eqs. (2.20)
and (2.21) is solved with c1 = c3 = 0 (regime IV ), assuming that Nua ≫ 1 > λd

2
Q

NuRB

and for δu > δT [f(δu/δT ) ≈ δT /δu]. Figures 2(a) and 2(b) show that ratios Nua/NuRB

and Rea/ReRB tend to the solution given by (2.22) when Ra → ∞ and Pr = 1.
Finally, when fixing Ra and Q, and for Pr > 1, ratios Nua/NuRB and Rea/ReRB

depend very little on Pr (see Figs. 2c-d), in agreement with the solution of pure regime
IVu (Eq. 2.22). On the contrary, when Pr decreases from 1 to 0 and even if Ra is held
constant, both ReRBPr and ReaPr decrease. As a result, the importance of regime II
in the mixture of regimes represented in Eq. (2.21) increases and thus ratio Nua/NuRB

approaches 1 (Figs. 2c-d).
These results are used in the following section to study the configuration shown in

Fig. 1(b) for which both non-dimensional numbers Ra and Q are not control parameters.
Indeed, they both depend on the temperature of the bulk flow (T b) and thus T b need to
be either measured or predicted. However, for configuration (b), using definitions (1.1)
and (1.12), we have: Rr = RaQ, with Rr the Rayleigh number adopted for IH convection
experiment (Eq. 1.2).

3. Theory for IH convection experiment (configuration b)

3.1. Model for the top Nusselt number

The main assumption of this model is to assume that the flow in the upper half of
the configuration shown in Fig. 1(b) is similar to the flow seen in the upper half of
the cell of configuration (a). By analogy with RB convection for which NuRB ∼ Ra1/3

means that the two boundary layers behave independently of each other, we assume
here that the upper boundary layer is not sensitive to the flow structure that controls
the lower boundary layer. Therefore, the thickness of the top BL (δtop), the heat flux
at the top plate (qtoph) and the characteristic velocity (Ub) are only controlled by the
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following parameters: ∆T = 2(T b − T0), q, h and Pr. In non-dimensional form, it is
assumed that Nutop and Reb are given by the Nusselt and Reynolds numbers calculated
for configuration (a) under the same conditions:

Nutop(Rr, Pr) = Nua(Ra, Pr,Q), (3.1)

Reb(Rr, Pr) = Rea(Ra, Pr,Q). (3.2)

Besides, modelling both Nubot and Nutop is sufficient to give Ra and Q as a function of
the two control parameters Rr and Pr. Indeed, using (1.2)-(1.8), (1.1) and (1.12) become

Q(Rr, Pr) = Nubot +Nutop, (3.3)

Ra(Rr, Pr) =
Rr

Nubot +Nutop
. (3.4)

3.2. Model for the bottom Nusselt number

Since the mean temperature gradient is positive throughout the lower boundary layer
(see Fig. 1b), forced convection is the main mechanism that drives the heat flux at the
lower plate. Assuming static large scale flow, also called ‘wind flow’, a laminar velocity
boundary layer develops against the bottom plate in the same way as a Blasius boundary
layer. Using the theory of Prandtl-Blasius-Pohlhausen (Schlichting 1979), the thickness
of the thermal boundary layer is given by

δT,x

x
=

1

AF(Pr)Re
1/2
x

, (3.5)

with x the horizontal coordinate, A ≈ 0.33 and F(1) = 1. Here, δT is defined as (δT )
−1 =

(

dΘP

dz

)

z=0
, with ΘP = (T −T0)/(T b−T0) the non-dimensional difference of temperature.

The Prandtl-dependent function F varies as Pr1/3 when Pr > 0.5, whereas, when Pr
decreases, the exponent of the power-law behaviour of F increases up to 1/2. In the
range 10−3 6 Pr 6 103, F can be approximated by F(Pr) = d1Pr1/2f(d2Pr1/6) with a
precision of ±1%, using f(x) = (1 + xn)−1/n, n = 4, d1 = 1.68 and d2 = 1.63.
At the bottom plate (z=0), the local heat flux is the sum of two contributions:

Φx = Φx,P + Φx,q. (3.6)

Φx,P and Φx,q represent, respectively, the heat flux given by the theory of Prandtl-Blasius-
Pohlhausen and the heat flux due to the presence of volumetric heat sources inside the
thermal boundary layer:

Φx,P = AF(Pr)Re1/2x

λ(T b − T0)

x
, (3.7)

Φx,q = B q δT,x. (3.8)

In (3.8), B is a numerical constant to be determined using experiments or numerical
simulations. In the case of Φx,P = 0 (pure conductive state), B = 0.5.
Assuming an aspect ratio of 1 for the cell and using (3.7), (3.8) and (3.5), the integration

of the local heat flux Φx (Eq. 3.6) between x = 0 and x = h gives

Φbot =
1

h

∫ h

0

Φx =
2AF(Pr)

h
λ(T b − T0)Re

1/2
b +

2Bqh

3AF(Pr)Re
1/2
b

. (3.9)

Using (3.9) and (1.12), the bottom Nusselt number can be calculated as

Nubot =
Φboth

2λ(T b − T0)
= AF(Pr)Re

1/2
b +

2B

3AF(Pr)

Q

Re
1/2
b

. (3.10)
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Likewise, from (3.5), the mean bottom boundary layer thickness can be written as:

δbot
h

=
1

h2

∫ h

0

δT,xdx =
2

3AF(Pr)Re
1/2
b

. (3.11)

3.3. Mean fluid temperature 〈T 〉
Both models presented in sub-sections 3.1 and 3.2 are based on Blasius profiles for

the z-evolution of T (z) in the two boundary layers. In addition, T (z) ≈ T b in the bulk
flow i.e. for δbot ≪ z ≪ h− δtop. Thus, for configuration (b), using (2.12b), T (z) can be
expressed as

T b − T (z)

T b − T0

=



















1−ΘP

(

z

δbot

)

, for z 6 h/2, (3.12a)

1−ΘP

(

h− z

δtop

)

, for h/2 6 z 6 h. (3.12b)

The thicknesses of the bottom and top boundary layers (δbot and δtop) are given by (2.1)
and (3.11), respectively. Using (3.12), the mean fluid temperature can be calculated
yielding to

T b − 〈T 〉
T b − T0

= λd
δbot + δtop

h
, (3.13)

= λd

(

2

3AF(Pr)Re
1/2
b

+
1

2NuRB

)

, (3.14)

with Reb(Rr, Pr) (Eq. 3.2) and NuRB(Ra, Pr) with Ra(Rr, Pr) (Eq. 3.4).

4. Comparison between theories and numerical results

Theoretical predictions for Nutop, Nubot and mean fluid temperature are tested below
using experimental and numerical results on three-dimensional IH convection (see Table 1
and Goluskin (2015) for a literature survey). A comparison between the theories and two-
dimensional simulations of IH convection (Goluskin & Spiegel 2012; Goluskin & van der
Poel 2016; Wang et al. 2021) is given in Appendix A.

4.1. Top Nusselt number

Figures 3(a) and 3(b) show the variations of Nutop (filled squares) defined by (1.8) and
given by Goluskin & van der Poel (2016) for IH convection simulations. The variations
of the Nusselt number obtained for standard RB simulations are also shown (data from
Pandey & Verma (2016) and Shishkina et al. (2017), open symbols). Clearly, at constant
Ra and Pr numbers,Nutop is slightly lower thanNuRB. Dashed and solid lines represent,
respectively, GL theory for RB convection (Eqs. 2.18 and 2.19) and for RB convection
with volumetric energy sources (Eqs. 2.20 and 2.21). For the latter case, Q and Ra are
calculated using (3.3), (3.4) and the data of Goluskin & van der Poel (2016). A good
agreement between the numerical simulations and the extension of GL theory is observed
both by plotting Nutop as a function of Ra for Pr = 1 (Fig. 3a) and by considering the
variations of Nutop with Pr for Ra ≈ 1.7× 106 (Fig. 3b).
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Figure 3. The compensated Nusselt number for standard RB convection (open symbols) and for
IH convection (filled squares) as a function of Ra for Pr = 1 (a) and against Pr for Ra ≈ 1.7×106

(b). For IH convection, Ra numbers are calculated using (3.4). Dashed lines: Grossmann & Lohse
(2001) theory with prefactors given by Stevens et al. (2013) (Eqs. 2.18 and 2.19). Solid blue lines:
extension of GL theory for convection with volumetric energy sources (Eqs. 2.20 and 2.21).
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RebPr0.86

Ra1/2

ReRBPr0.86

Ra1/2

RebPr0.86

Ra1/2

Ra Pr
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Figure 4. The compensated Reynolds number for standard RB convection as a function of Ra
for Pr = 1 (a) and against Pr for Ra ≈ 1.7 × 106 (b) (symbols as Fig. 3). Also shown: the
predictions of the GL theory (dashed lines, Eqs. 2.18 and 2.19) and those of its extension to
convection with volumetric heat source (solid lines, Eqs. 2.20 and 2.21). For the second case,
Ra and Q are calculated using (3.4) and (3.3) and the data of Goluskin & van der Poel (2016).
The horizontal lines represent power-law behaviours (upper line: (4.1), lower line: (4.2)).

4.2. Bottom Nusselt number

The theory developed in sub-section 3.2 to predict the variations of Nubot is based on
forced convection in the lower half of the cell and the theory of Blasius. Therefore, to get
Nubot with good precision, a very good estimate of the Reynolds number is necessary
(see Eq. 3.10). However, to date there are no experimental or numerical measurements
for either Reb(Rr, Pr) or Rea(Ra, Pr,Q) in 3D. Even for RB convection, experimental
and numerical measurements of Reynolds number have larger uncertainties than those
of Nusselt number because they require measurement of velocity fluctuations throughout
the cell. In addition, several definitions of Re are given in the literature (root mean
square of the velocity, root mean square of the vertical velocity, maximum of the velocity
fluctuations, maximum mean velocity along the heated plate). Likewise, the GL theory is
less effective in predicting ReRB than NuRB. Figures 4(a) and 4(b) show the variations
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Figure 5. Nubot versus Ra (a) and Pr (b). Symbols: data from Goluskin & van der Poel
(2016). Solid lines: (3.10) with A = 0.21 and B = 0.4. Dashed lines: first term of (3.10)

(∝
√
Re ∝ Ra1/4). Dotted lines: second term of (3.10) (∝ Q/

√
Re).

of ReRB as a function of Ra and Pr given by Pandey & Verma (2016) and Shishkina
et al. (2017). For both cases i.e. Pr = 1, 105 6 Ra 6 5×108 (Fig. 4a) and Ra = 1.7×106,
0.1 6 Pr 6 10, ReRB can be fitted by a power-law of Ra and Pr as

ReRB ≈ 0.15Ra1/2Pr−γ , (4.1)

with γ ≈ 0.86. As no data on Rea is available, the same power-law behaviour will be
used for Rea. In addition, the extension of the GL theory (see section 2) predicts that
Rea/ReRB ≈ 0.8 in the range of Ra, Pr and Q investigated by Goluskin & van der Poel
(2016) (see Figs. 4a,b). Thus, the following equation will be use to give Rea or Reb as a
function of Ra and Pr:

Reb(R,Pr) = Rea(Ra, Pr,Q) = 0.12Ra1/2Pr−γ . (4.2)

Using (4.2), (3.10) gives Nubot as a function of Ra, Pr and Q. Note that Ra and Q are
calculated from the data of Goluskin & van der Poel (2016) and using (3.3) and (3.4).
Figures 5 (a-b) show that the equation (3.10) describes well both the evolution of Nubot

with Ra and with Pr, using A = 0.21 (not far away from 0.33) and B = 0.4 (close to the
value 0.5 which characterizes a purely conductive boundary layer).

4.3. Mean fluid temperature 〈T 〉
The model presented in section 3 also predicts the evolution with Ra and Pr of the

difference between the mean fluid temperature (〈T 〉) and the temperature of the bulk flow
(T b). Figures 6 (a-b) show a good agreement between (3.14) and the numerical results
of Goluskin (2015) using no new adjustable parameters. Indeed, as for figures 5 (a-b),
A is taken equal to 0.21 whereas the displacement thickness of the mean temperature
profile is given by the Blasius theory (λd = 0.57). As shown by (3.13), the dimensionless
temperature difference (T b − 〈T 〉)/(T b − T0) is equal to the sum of the thicknesses of
the two boundary layers. For Ra > 105, as δbot ≫ δtop and Reb ∝ Ra1/2 (see Eq. (4.2)),
(3.14) can be approximated by

T b − 〈T 〉
T b − T0

≈ λd
δbot
h

∝ Ra−1/4 (4.3)

δbot
h ∝ Reb

−1/2 (see (3.11)) and Reb ∝ Ra1/2 (4.2), As Rayleigh number increases,
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Figure 6. Difference between the temperature of the bulk flow (T b) and the mean fluid

temperature (〈T 〉) as a function of Ra (a) and Pr (b). Symbols: data from Goluskin &
van der Poel (2016). Solid lines: (3.14) with A = 0.21 and λd = 0.57. Dashed lines: first

term of (3.14) i.e. λd
δbot
h

∝ Reb
−1/2 ∝ Ra−1/4. Dotted blue lines: second term of (3.14) i.e.

λd
δtop
h

∝ 1/NuRB ∝ Ra−θRB with θRB ≈ 0.3 (see sub-section 4.4).

the thicknesses of the upper and lower boundary layers decrease which also results in a
decrease of T b − 〈T 〉.

4.4. Approximation of Nutop and Nubot by power-laws of Rr

For 105 6 Ra 6 109 and Pr > 1, numerical simulations (Pandey & Verma 2016;
Shishkina et al. 2017; Goluskin & van der Poel 2016) and GL theory show that both
NuRB andNutop can be approximated by a power-law of Ra with an exponent θRB ≈ 0.3
(see also Fig. 3a). By neglectingNubot in front ofNutop, (3.4) yields to Ra ∼ Rr1/(1+θRB).
Consequently, we get:

Nutop ≈ 0.18Rr
θRB

(1+θRB) ≈ 0.18Rr0.23. (4.4)

This scaling for Nutop is consistent with the independent theoretical findings of Wang
et al. (2021). Indeed, for regimes I<

∞
and IVu, Wang et al. (2021) have shown that

Q ≈ ∆̃−1 ∼ Rr1/4 whereas for regimes Iu and Il, Q ≈ ∆̃−1 ∼ Rr1/5.

Using (4.2) and assuming again Q ≈ Nutop, (3.10) becomes

Nubot ≈ 0.11Pr−Γ Rr
1

4(1+θRB ) + 0.42PrΓ Rr
θRB−1/4

1+θRB , (4.5)

≈ 0.11Pr−0.10Rr0.19 + 0.42Pr0.10Rr0.04. (4.6)

Indeed, for Pr > 1, F(Pr) ≈ Pr1/3 and Γ = γ
2 − 1

3 ≈ 0.10. Equation (4.6) shows that
Nubot can be expressed by the sum of two power-laws of Rr with exponents 0.04 and 0.19
(see also Fig. 7). This explains the high variability of the measured exponents when the
experimental or numerical results are fitted by a single power law (see Table 1). Since the
experiments of Ralph et al. (1977) were performed for higher Rr numbers (4 ·108− 1012)
than the other works, the corresponding exponent (0.17) is larger than the exponents
calculated using the other results (∼ 0.10). Of course, the observed differences are also
due to experimental uncertainties, boundary conditions and the way the thermal power
qv is imposed in volume in the fluid.
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Figure 7. Nutop (squares) and Nubot (circles) versus Rr for Pr = 1 (data from Goluskin &
van der Poel (2016)). Solid upper line: Nutop ∝ Rr0.23 (Eq. 4.4). Solid lower line: (3.10) with
A = 0.21 and B = 0.4. Dashed line: Nubot = 0.11Rr0.19 + 0.42Rr0.04 (Eq. 4.6). Dotted line:
Nubot = 0.11Rr0.19.

5. Conclusions

Grossmann & Lohse (2001) theory has been extended here to RB convection with
volumetric energy sources in the fluid (configuration a). The two equations of the
GL theory (2.18)-(2.19) have been modified to take account the effect of the new
non-dimensional parameter Q = qh2/(λ∆T ). Equations (2.20) and (2.21) predict the
evolution of Nua and Rea as a function of Ra, Pr and Q. Besides, these two equations
can also describe the top Nusselt number Nutop and the Reynolds number of an IH
convection experiment (configuration b). In this case, the non-dimensional parameter
Rr = RaQ is the control parameter of the IH convection system whereas Ra and Q
are theoretically modelled using Q = Nutop +Nubot, with Nutop = Nua(Ra, Pr,Q) and
Nubot(Rea, P r,Q). The bottom Nusselt number is the sum of two terms (Eq. 3.10).
The first term can be modelled using the Prandtl-Blasius-Pohlhausen theory and is
proportional to square root of the Reynolds number. The second term comes from the
presence of volumetric energy sources and is proportional to Q/

√
Re. In agreement with

the independent theoretical findings of Wang et al. (2021), for high Rr numbers, Nutop

scales as Rr
θRB

(1+θRB) , with θRB the exponent of the power-law behaviour of NuRB with
Ra. These predictions are confirmed by experimental and numerical results and show
that natural and forced convections are the two mechanisms that control the heat fluxes
in an IH convection experiment.
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Appendix A. Comparison between theories and numerical results for
two-dimensional IH convection

For two-dimensional IH convection, the predictions of the theoretical work presented
in section 3 can be tested thanks to the numerical investigations of Goluskin & Spiegel
(2012); Wang et al. (2021). Figures 8(a-b) show the variations of Nutop and Re as
a function of the Rayleigh number (Ra = Rr/(Nutop + Nubot)), for Pr = 1. For
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Figure 8. Results for two-dimensional IH and RB convection. (a)Nutop and Nubot compensated

by Ra1/3 as a function of Ra. Data from Goluskin & Spiegel (2012) (diamonds) and Wang

et al. (2021) (squares), Pr = 1. The results for RB convection (NuRBRa−1/3) are also shown:
Johnston & Doering (2009) (asterisks), Zhu et al. (2018) (stars) and Zhang et al. (2017) (plusses:
Pr = 0.7, crosses: Pr = 5.3). Blue dashed line: (A 1). Red solid line: (3.10) with A2D = 0.28

and B2D = 0.4. (b) Compensated Reynolds number (RePr0.86/Ra1/2) vs. Ra. Blue solid line:
(A 2).

comparison purposes, the measured Nusselt and Reynolds numbers for RB convection
are also displayed. We observe very little difference between Nutop and NuRB whereas
the Reynolds number is about 65% lower for IH convection than for RB convection. With
good precision, Nutop and Reb can be approximated by power laws of Ra as:

Nutop ≈ NuRB ≈ 0.25Ra0.25, (A 1)

Reb ≈ 0.65ReRB ≈ 0.038Pr0.86Ra0.58. (A 2)

The results for 2D IH convection are therefore slightly different from those obtained for
3D IH convection. In 3D, numerical data of Goluskin (2015) and extension of the GL
theory show that 0.83 6 Nutop/NuRB 6 0.91 and Reb ≈ 0.8ReRB (using GL theory)
whereas Nutop ≈ NuRB and Reb ≈ 0.65ReRB in 2D. However, beyond these small
differences, the 2D and 3D numerical results validate the theoretical approach chosen
here to separate the IH convection cell into two distinct parts. The upper half of the cell
behaves like the upper half of a RB convection cell (Nutop ∼ NuRB) and controls the
Reynolds number. The heat transfer at the bottom plate is controlled by the Reynolds
number and using the theory of Blasius, Nubot is given by (3.10). Indeed, Figure 8(a)
shows a good agreement between results of Wang et al. (2021) (red squares) and (3.10)
(red solid line) using A2D = 0.28 and B2D = B3D = 0.4. In 2D, the parameter A is
therefore slightly higher than in 3D (A3D ≈ 0.22) and closer to the value for a Blasius
boundary layer (A ≈ 0.33). A greater difference is observed between the data from
Goluskin & Spiegel (2012) (red diamonds) and (3.10). This is probably due to the fact
that the equation that gives the Reynolds number (A 2) is less well verified when the
Rayleigh number is low.
The updown asymmetry that turbulent convection induces is quantified measuring the

coefficient α. From definitions given by (1.5)-(1.7), α is directly linked to the ratio of
Nutop over Nubot

2α =

Nutop

Nubot
− 1

Nutop

Nubot
+ 1

. (A 3)



16 M. Creyssels

105 106 107 108 109
0.1

0.2

0.3

Ra

α 3D

2D

Figure 9. Asymmetry coefficient α versus Ra for 2D (red open symbols) and 3D IH convection
(blue circles: data of Goluskin & van der Poel (2016)). Red solid line: (A 3) and using (A1),
(A 2) and (3.10). Blue dashed line: (A 3) and using (4.4), (4.2) and (3.10). Lower and upper
dotted lines: (A 3) with Nutop/Nubot ∼ Ra−0.04 and Nutop/Nubot ∼ Ra0.05, respectively.

Both for 2D and 3D IH convection, Figure 9 shows that the theory presented in section 3
describes well the evolution of the asymmetry coefficient with Ra. However, the evolution
of α with Ra is different in 2D than in 3D. In particular, for 2D, α saturates and even
decreases when Ra increases. This behaviour is well described by (3.10). For high Ra
numbers, (3.10) can be approximated by Nubot ∼ Re1/2. Using (A 2) (2D) or (4.2) (3D),
we obtain Nubot ∼ Ra0.29 for 2D while Nubot ∼ Ra0.25 for 3D. As Nutop ∼ Ra0.25 for
2D (A1) and Nutop ∼ Ra0.3 for 3D (see subsection 4.4), Nutop/Nubot varies as Ra−0.04

for 2D and as Ra0.05 for 3D IH convection. That is why, for Ra ' 107, α decreases with
Ra in 2D while α continues to increase with Ra in 3D (see Fig. 9).
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