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Abstract

Trust is a very significant notion in social life, and even more in online social networks
where people from different cultures and backgrounds interact. Weighted Signed Net-
works (WSNs) are an elegant representation of social networks, since they are able to
encode both positive and negative relations, thus allow to express trust and distrust as
we know them in the real world. While many trust inference algorithms exist for tradi-
tional unsigned networks, distrust makes it hard to adapt them to WSNs. In this paper,
we propose a new unsupervised trust inference algorithm based on collaborative filtering
(CF), where we consider the trustors as users, the trustees as items, and use agreement
as a local similarity metric to predict trust values in signed, and unsigned, networks. In
addition to its prediction performances, experiments on four real-world datasets show
that our algorithm is very robust to network sparsity.

Keywords: Online Social Network, Trust Inference, Distrust, Weighted Signed Network,
Collaborative Filtering, Agreement.

1. Introduction

Trust, like probably anything that matters in life, has two conflicting aspects: on the
one hand, it is fundamental to any social relationship (Robbins, 2016; Kleinberg, 1999),
and on the other hand it implies taking risks, which may range from slight disappoint-
ments to big betrayals (Mayer et al., 1995; Jones, 1996). To mitigate these risks, we
have two options: a) Avoid trusting altogether, therefore not taking any risk, but then
again miss out on so many opportunities, b) Learn when, who, and how much to trust,
and minimize the risks that it implies.

While trust may seem intuitive or natural in real life, it is complex and difficult to
assess online. This difficultly may be attributed to several factors such as: the lack of
the proximity and the clues that assist us in real life; the big differences in cultures and
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motives; and the huge volumes of conflicting information to which we are exposed on-
line. So if technology has the power to enable us to communicate and trust despite the
distances, it should also have the power —or even the duty— to help us assess trust de-
spite theses distances. And unsurprisingly, many research efforts have been undertaken
in recent years in modeling, processing, and predicting trust (Cho et al., 2015; Sherchan
et al., 2013; Tang et al., 2016; Ruan and Durresi, 2016; Jiang et al., 2016a).

Trust, however, is a double sided coin. Trying to predict trust alone, without consid-
ering its counterpart; distrust, is often not enough to assist users (DuBois et al., 2011). A
good recommendation should help the user know whom to trust and whom to not trust.
If they were about to share sensitive information online, a good recommendation would
tell them whom they may share it with and; more importantly; whom they should not.
If they get their news online, they should be able to filter the fake from the true.

Nevertheless, distrust presents some challenges that make adapting most of the work
that has been done on unsigned networks (those that do not consider distrust) hard, or
even impossible (Guha et al., 2004; Chiang et al., 2014; Tang et al., 2016). For example,
while trust is somewhat transitive (Golbeck, 2005b), distrust is not. What, in fact, may
be deduced when Alice distrusts Bob who distrusts Carol? Even though the old saying
“The enemy of my enemy is my friend” is sometimes true, it is not always the case. Indeed,
what if Carol is worse than Bob? Alice would not trust her. A fact supported by empirical
evidence (Tang et al., 2014).

While some early trust modelizations and inference algorithms completely ignore
distrust (Ziegler, 2013), the recent trend in research on social networks is to fully and
rightfully embrace distrust. Indeed, many recent efforts integrate it to solve, and improve
on already existing solutions to problems such as sign prediction, link prediction, edge
weight prediction, node ranking and other tasks all pertaining to WSNs (Tang et al.,
2016). This widespread interest in distrust as a thing clearly confirms that it “is not the
mere absence of trust” as Hawley (2013) puts it.

Likewise, in our work, we do consider distrust as a crucial aspect in social life, and
rather than relying on transitivity, which is problematic for distrust, we turn toward a
reasoning that stands on the intuition that:

1. If two trustors agree about a set of common trustees, then they may also agree on
a future common trustee.

2. If two trustees are making the consensus among their common trustors, then they
may also be equally trusted by a future common trustor.

We expand on this intuition by emitting the following hypothesis. Given two nodes u
and v in a WSN, to predict the trust that the trustor u would put in the trustee v, we can:

1. Average the trusts that v receives from its trustors weighted by their similarities
with u.

2. Average the trusts that u puts in its trustees weighted by their similarities with v.

Such a formulation is in fact the basis of user–user and item–item collaborative filter-
ing (CF) problems (Aggarwal et al., 2016), where, in our case, the trustors are the users,
the trustees are the items, and the similarity is expressed in terms of agreements. The
challenge of this kind of approaches is two-fold:
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a) Find a metric by which we can accurately express the similarity between users, and
between items.

b) Ensure that this metric will be able to handle very sparse networks where finding
similar users, or similar items, is hard because there is not enough information to
infer from.

Our contributions which aim to address these challenges are summarized as follows:

1. Introducing agreement as a similarity metric between trustors, and between trustees.

2. Proposing a formal definition of agreement that is able to handle sparse networks.

3. Proposing a trust inference algorithm based on agreement, that not only is able to
predict trust and distrust values, but also proves to be robust to network sparsity.

The rest of this paper is structured as follows. In Section 2, we give a brief review
of some related work. In Section 3, we present our approach starting from the idea of
agreement to its use as the main ingredient in our trust inference algorithm. In Section 4,
in order to validate our main hypothesis, we conduct a series of experiments to analyze
the accuracy of our algorithm and its robustness to networks sparsity. After a discussion
of the results in Section 5, we conclude this study in Section 6 with some perspectives of
future work.

2. Related work

According to Tang and Liu (2015), trust can be described by a) global metrics which
associate to every node of the network some characteristics such as how popular, trust-
worthy, or sociable it is, or b) by local metrics which describe relations between two
nodes in the network (e.g., how does a node u trusts another one v). Predicting these
trust metrics can be seen as a) a supervised task, where it is treated as a classification
problem ; or b) an unsupervised task, which relies only on the information within the
social graph to predict unknown trust values (or signs). Furthermore, these tasks may be
supported by additional information such as interaction data among actors in the social
network (Xiang et al., 2010; Jones et al., 2013; Huang et al., 2018), emotions (Beigi
et al., 2016) or simply rely only on what the network already offers, i.e., the existing
trust relations.

This quick overview of trust inference tasks gives us a rough idea of how wide is the
subject, and the hierarchy becomes even deeper the more we add other classifications
criteria. For the sake of brevity, and to accurately position our work, we refer the reader
to some studies on the subject such as those by Jiang et al. (2016a) and Tang et al.
(2016). We focus in what follows on some examples of graph-based unsupervised meth-
ods with no additional interactions data, and how the advent of signed networks adds
more challenges to the question.

Among the unsupervised algorithms that operate on the sole network, without any
additional communication information, we can cite some of the populars ones such as:
TidalTrust (Golbeck, 2005a), MoleTrust (Massa and Avesani, 2007) and GFTrust (Jiang
et al., 2016b). These local metrics algorithms are built on trust propagation, of which
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Guha et al. (2004) stated the four atomic rules, namely: direct propagation (transitiv-
ity), transpose, co-citation, and trust coupling. As for global metrics, algorithms such
as HITS (Kleinberg, 1999), PageRank (Page et al., 1999), or Eigentrust (Kamvar et al.,
2003) are examples of methods that compute global attributes for the nodes.

The forecited works were designed to operate on unsigned networks and ignore,
by design, the notion of distrust or consider it as the absence of trust. Recently, how-
ever, researchers started to consider distrust. For instance, Zolfaghar and Aghaie (2010);
Mishra and Bhattacharya (2011) introduced new global metrics for signed networks,
while Shahriari and Jalili (2014) adapted the HITS, and the PageRank algorithms to in-
clude negative links. Very recently, Kumar et al. (2016) defined two new global metrics:
fairness and goodness, and a way to infer local trust simply by multiplying the fairness
of the trustor by the goodness of trustee. Speaking of local metrics, Gao et al. (2016)
proposed STAR, a propagation-based algorithm for trust and distrust prediction using a
2D semiring framework. It is worth noting that most propagation–based methods suffer
from some limitations such as trust decay on long paths, and path dependences (Jiang
et al., 2016b)

In addition to propagation-based approaches, some other works are built on various
social theories such as homophily, structural balance, status, and others which Yap and
Harrigan (2015) discuss and compare. With regard to homophily, Ziegler and Golbeck
(2007) demonstrated that there is a strong correlation between trust and interest simi-
larity. That is, if two individuals share the same interests and tastes, they are likely to
trust each other consequently. Borzymek et al. (2009) expanded on this correlation to
infer trust values between similar users; while Korovaiko and Thomo (2013) explored
various similarity factors of users such as: their ratings to reviews, their shared interests,
their common trustees, to predict trust in a supervised setting.

Structural balance theory (Heider, 1946; Cartwright and Harary, 1956) and Status
theory (Leskovec et al., 2010) explore the relations in triads of undirected networks for
the former, and directed ones for the latter. In a nutshell, structural balance stands on
the assumptions that “the friend of my friend is my friend” and “the enemy of my enemy is
my friend”. Status, on the other hand, is defined as a statement of the trustee’s status by
the trustor, such that if a positive link goes from u to v, then v has a higher status than
u, and if the link is negative than u has a higher status than v (Tang et al., 2015). Both
theories are empowering many recent efforts. For example, Wang et al. (2015) provided
a mathematical model for the status theory, and an algorithm for trust prediction in a
graph where a link from a node u to another v means that u trusts v, while Yuan et al.
(2017) developed a method using both theories for link sign prediction. It is also worth
noting that experiments conducted by Tang et al. (2015) on datasets from Epinion and
Slashdot show that more than 90% of the triads in these networks are consistent with
both theories. Such a finding reinforce the solidity of these theories which may, therefore,
be used in sign and link predictions. However, to our knowledge, extended versions of
these theories to weighted signed networks are yet to be formulated.

Finally, another category of methods, which we may describe as one at the crossroad
of the previous two, includes works based on collaborative filtering (CF), which gener-
ally aim to predict how would a user rate an item by using already observed ratings.
Collaborative filtering methods are generally divided into two main categories: model-
based methods, which leverage machine learning techniques; and memory-based ones,
in which the rating by a user u of an item p is predicted using information from their
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neighborhood. This neighborhood, as described in (Aggarwal et al., 2016), is defined in
two ways:

• User-based: the ratings provided by like-minded users of a target user u are used
to make a recommendation for u. For example, to predict how would Alice rate the
book “The Iliad”, we rank users who rated this book by their similarities to Alice
and return an aggregated rating prediction.

• Item-based: the rating by the target user u on similar items to the target item p
are used to predict how would the user u rate the item p. In this method, we look
for books similar to “The Iliad”, which Alice already rated, and rank them based on
their similarities to “The Iliad” and return an aggregated rating prediction.

To the best of our our knowledge, only a few works used memory-based CF methods
in trust predicting. For instance, Garakani and Jalali (2014) proposed a CF algorithm for
trust prediction using the NHSM similarity metric by Liu et al. (2014), while Ghodousi
and Hamzeh (2015) proposed a CF-based approach using the Pearson Correlation Coef-
ficient (PCC) as a similarity measure.

To be effective, CF methods have to tackle some issues. First, they need to define
a similarity metric between the nodes of a network that is accurate enough to weight
the recommendations of a neighbor. To this end, we introduce agreement as a similarity
metric. Second, these methods have to be robust to network sparsity, which can be
described as a situation where the target user rates only a few items, or the target item
is rated by only a few users. For this purpose, we propose a two-way approach (user-
user and item-item) and a bootstrapping factor to alleviate this problem. In summary,
our algorithm can be described as a two-way CF-based one that uses agreement as a
similarity metric. Details of this approach are given in the following section.

3. Our proposed approach

3.1. Notation and preliminaries
Two important facts about trust should be stated before choosing a model:

1. Trust may be positive or negative (distrust).

2. Trust is more than a binary concept. We say that Alice trusts Bob a lot, and slightly
distrusts Carol. That is, each state has different continuous shades.

With this in mind, we represent a social network using a directed weighted graph,
where each node represents an individual, and each arc going from a node u to another
node v, indicates that u trusts (or distrusts) v. The weight of such an arc is the signed
amount of trust that the source puts in the target. Table 1 summarizes the notation that
we will adopt throughout this paper.
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Notation Meaning
G(N , E ,W) A weighted directed graph G with nodes in N connected by arcs in E that are

weighted using the mappingW.
GT Converse, or transpose, of the graph G
W(p, q) Weight of the arc going form node p to node q.
−→
Γ (p) Set of the trustees of the node p.
←−
Γ (q) Set of the trustors of the node q.
R Trust range. R = max(trust)−min(trust).
−→
AG(u, v, w) Agreement of the trustors u and v about the trustee w.
←−
AG(w, z, u) Agreement on the trustees w and z by the trustor u.
−−→
AGRG(u, v) Aggregated agreement score between the trustors u and v
←−−
AGRG(u, v) Aggregated agreement score between the trustees u and v

Table 1. Notation used in this paper

3.2. Problem definition
Given a social network represented by a directed and weighted graph G = (N , E ,W),

whereN is a set of users (or nodes), E a set of arcs between nodes ofN , andW : E 7→ [−1,+1]
a mapping that associates to each arc (p, q) a weight w that describes how much p trusts
(w > 0) or distrusts (w < 0) q. The problem that this paper tries to solve is to predict
how much would a node p (dis)trust another node q, and that when all, or only some, of
the remaining weights are known.

3.3. The basic idea behind our approach
As illustrated in Fig. 1, we summarize our idea as follows: given two nodes p and q,

to predict how much p trusts, or distrusts, q, we ask ourselves these two questions:

Q1: How do other trustors of q trust it, and how much similar to p are they?

Q2: How does p trust its others trustees and how much similar to q are they?

q

c1

c2

c3

c4

c5

c6

c7

p
?

(a) Trustors similarity

p

t1

t2

t3

t4

t5

t6

t7

q
?

(b) Trustees similarity

Figure 1. How should p trust q knowing how others trust q? And how should q be trusted by p knowing
how p trusts others? A single question with two possible answers: the first coming from q’s
trustors, the second from p’s trustees.
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To predict the trust valueW(p, q), our approach may be summarized in these steps:

1. Take the average of the trust that q receives from its trustors, which we weight by
their respective similarities with p, and return, along this result, a confidence score.

2. Take the average of the trusts that p puts in its trustees weighted by their respective
similarities with q, and return, along this result, a confidence score.

3. Average the results of the previous steps weighted by their respective confidence
scores.

In an unsigned binary network, where trust is materialized by the existence of an arc
from a node to another, and distrust by the absence of such an arc, a traditional metric
such as the Jaccard coefficient may be used as a similarity metric.

As defined in Eq. (1), the Jaccard coefficient on trustees is the number of common
trustees of two users divided by the total number of their unique trustees (Tang and Liu,
2015).

−→
J (p, p′) =

∣∣−→Γ (p) ∩
−→
Γ (p′)

∣∣∣∣−→Γ (p) ∪
−→
Γ (p′)

∣∣ . (1)

However, in the case of WSNs, we can not rely on the number of common trustees
(or trustors) as a similarity indication between trustors (or trustees respectively). For
instance, let us consider the scenario depicted in Fig 2.

q

t7

t8

p1

t1

t2

t3

t4

t5

p2

p3

0.5

−1.0

0.2

0.7

0.1

−0.8

0.9

0.9

0.
5

0.5

0
.1

0.1

0.1

−
0.8

0.
5

Figure 2. How much would p1 trust q, knowing how much p2 and p3 trust q and agree more or less with
p about some or all of his/her trustees? “Quality over quantity” should be the answer.

As we can see, p1 shares 3 trustees with p2, and 2 with p3. However, were we to
predict the trust that p1 would put in q we would intuitively choose p3 as a reference
instead of p2. The reason is obvious from the graph: p1 tends to agree more with p3. The
arcs’ weights are more important than their number.
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Our hypothesis is, thus, formulated as follows: two trustors agreeing on a set of
common trustees are more likely to agree on a future common trustee. Symmetrically,
two trustees being agreed upon by a set of common trustors are more likely to be equally
trusted by a future common trustor.

In what follows, we present a formal definition of agreement by two trustors, and
about two trustees. Then, we propose an algorithm to test the validity of our main
hypothesis.

3.4. Agreement as a similarity metric
First, we define agreement as a metric that measures how similarly two trustors trust a

specific trustee, and how similarly two trustees are trusted by a specific trustor. Then, we
expand on this definition to propose aggregated agreement scores between two trustors,
and between two trustees.

3.4.1. Trustors and trustees agreement
Given a network G(N , E ,W), and a constant λ > 0, the agreement of two trustors u

and v about a trustee w, and which we denote as
−→
AG(u, v, w), is expressed as follows:

−→
AG(u, v, w) = exp

( −λ|W(u,w)−W(v, w)|
R+ ε− |W(u,w)−W(v, w)|

)
, (2)

where ε → 0+ and R is the trust range (R = 2 in our case, since we choose trust
to be in [−1,+1]). As we can see in Eq. (2), the agreement decays exponentially as the
absolute difference between the two trust values increases, and will reach 0 when the
trusts values are at the opposite borders of the trust range.

We call the parameter λ an agreement decay factor since it decides on how fast the
agreement between two trustors decays as the difference between their trusts in a com-
mon trustee gets bigger.

Similarly, we say that two trustees w and z are agreed upon by a common trustor u,
if the latter trusts them somewhat equally. Thus, we define:

←−
AG(w, z, u) = exp

( −λ|W(u,w)−W(u, z)|
R+ ε− |W(u,w)−W(u, z)|

)
. (3)

Note that merging the two previous definitions into one is straightforward by noticing
that:

←−
AG(w, z, u) =

−−→
AGT (w, z, u), (4)

where GT is the converse, or the transpose, of the graph G. i.e., the graph resulting
from reversing the orientation of all the arcs of G.

3.4.2. Aggregated trust agreement
Inspired by the Jaccard coefficient mentioned earlier, the aggregated agreement of

two trustors u and v about all their trustees can, thus, be calculated as the sum of their
agreements about their common trustees divided by the number of all their trustees.
That is:
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−−−→
AGRG(u, v) =

β +
∑

w∈
−→
Γ (u)∩

−→
Γ (v)

−→
AG(u, v, w)

∣∣−→Γ (u) ∪
−→
Γ (v)

∣∣ , where β > 0. (5)

Likewise, we define the aggregated agreement of two trustees, as the sum of their
agreements divided by the number of all their trustors:

←−−−
AGRG(u, v) =

β +
∑

w∈
←−
Γ (u)∩

←−
Γ (v)

←−
AG(u, v, w)

∣∣←−Γ (u) ∪
←−
Γ (v)

∣∣ , where β > 0. (6)

The parameter β in Eq. (5) and Eq. (6) is a bootstrapping factor. It serves in not
excluding users with no common trustees (Eq. (5)) or no common trustors (Eq. (6)). To
clarify its utility, let us suppose that β = 0. Since we intend to weight trust recommenda-
tions by agreement scores, some of q’s trustors, and some of p’s trustees, may be excluded
from the recommendation process because they have a null agreement score with p, and
with q, respectively.

A simple explanation of the parameter β is given as follows: consider two nodes u
and v that share no common trustees. Without β, we would have

−−−→
AGRG(u, v) = 0 no

matter how much trustees they have in total. However, agreement may still be expressed
by the inverse of the missed chances to share trustees. For example, if u has 3 trustees
and v has 2 trustees, then they are more likely to agree than if they had 1000 trustees
each, without a single common one.

That is, the more
∣∣−→Γ (u)∪

−→
Γ (v)

∣∣ increases, while the intersection
−→
Γ (u)∩

−→
Γ (v) is still

empty, the less u agrees with v. We, thus, add the bootstrapping factor β to include other
nodes without shared trustees with u, yet keep them ranked by their agreement with u.

Again, and akin to Eq. (4), we notice that:

←−−−
AGRG(w, z) =

−−−−→
AGRGT (w, z), (7)

3.5. Our algorithm
As described in Algorithm 1, to predict how would a node p trust another node q,

we rank the trustors of q based on their agreement with p and calculate the weighted
mean of their trusts toward q by their agreement with p. The algorithm returns a tuple
containing both the inferred trust (the weighted mean) and a mean of the agreement
scores which we consider as confidence measure of the result (The more p agrees with
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other trustors of q, the more we expect the result to be correct.)

Algorithm 1: Trust inference by trustors agreement
Data: Graph:G(N , E ,W), Trustor: p, Trustee q
Result: Inferred Trust value from p to q and a confidence score.

1 Function InferByTrustorsSimilarity(G, p, q):
2 others← 0;
3 trust← 0;
4 infered← 0;
5 confidence← 0;

6 for ci ∈
←−
Γ (q) \ {p} do

7 score← −−→AGRG(ci, p);
8 trust←W(ci, q)× score;
9 infered← infered + trust;

10 confidence← confidence + score;
11 others← others + 1;
12 end
13 if others > 0 then
14 infered← trust/confidence;
15 confidence← confidence/others;
16 end
17 return 〈 infered, confidence 〉
18 End Function

Similarly, to predict the trust that a node q should receive from another node p, we
rank the trustees of p based on their trustees-agreement with q, and calculate a weighted
mean of the trust that p puts in them weighted by their respective agreement score with
q. We return a tuple containing the weighted mean as an inferred trust, and the scores
mean as a confidence measure of the inference. Luckily, the observation made in Eq. (7),
allows us to reuse Algorithm 1 with the transpose of G.

Finally, the inferred trust from p to q using both methods is the average mean of their
results weighted by their confidence scores as shown in Algorithm 2.

Algorithm 2: Trust inference by agreement
Data: Graph:G(N , E ,W), Trustor: p, Trustee q.
Result: Inferred Trust value from p to q.

1 Function InferByAgreement(G, q, p):
2 trust← 0;
3 〈outTrust, outScore〉 ← InferByTrustorsSimilarity(G, p, q);
4 〈inTtrust, inScore〉 ← InferByTrustorsSimilarity(GT, q, p);
5 if outScore + inScore > 0 then

6 trust← ((inTrust× inScore) + (outTrust× outScore))

(inScore + outScore)
;

7 end
8 return trust;
9 End Function

The time complexity of our algorithm when trying to predict the trust that a node u
would put in another one v is O(2

∣∣−→Γ (u)
∣∣∣∣←−Γ (v)

∣∣) since we examine all u’s trustees and
all v’s trustors twice.
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4. Experimental evaluation

4.1. Datasets description
Table 2 shows some statistics of the real-world datasets that were used during our

various tests. The first three were taken from the Stanford Large Network Dataset Collec-
tion1, and the last one from Trustlet2.

Bitcoin Alpha and OTC : being an anonymous cryptocurrency, bitcoin users need to
assess the trustworthiness of other users they trade with. This need, exacerbated
by the risk of fraudulent users, led to the emergence of several exchanges, where
users state the level of trust they put in each other (Kumar et al., 2016). Among
these exchanges, we use two datasets created by (Kumar et al., 2016) for two
Bitcoin-Exchanges: Bitcoin-Alpha, and Bitcoin-OTC. Trust ratings from these two
exchanges, originally in the interval −10 (total distrust) to +10 (total trust), were
scaled to fit in the interval [−1,+1].

Wikipedia Rfa : Wikipedia administrators are elected by the community members in
response to a Request for adminship (Rfa) that has been submitted by the user
himself/herself or another member (West et al., 2014). Originally, the opinions of
the community members about such requests are expressed by a vote (+1 positive,
0 neutral, or −1 negative) accompanied by a comment. These comments were
analyzed using the VADER sentiment engine (Gilbert, 2014) in order to generate a
WSN with weights in [−1,+1] (Kumar et al., 2016).

Advogato : is a social network for developers to rate each other’s authority. An advogato
user may rate another as an observer, an apprentice, a journeyer, or a master. These
rating were mapped to real numbers (0.1, 0.4, 0.7, and 0.9 respectively) as done
by Yao et al. (2013). The resulting network is, in fact, unsigned but we wanted to
evaluate how our algorithm and others perform with such a dataset.

Network Nodes Arcs Description
Bitcoin-Alpha 3783 24186 Trust from bitcoin user p to user q.
Bitcoin-OTC 5881 35592 Trust from bitcoin user p to user q.
Wikipedia Rfa 9654 104554 Support or opposition to the election of a user q as a

Wikipedia administrator, by another user p.
Advogato 5417 51327 Trust from Advogato user p to user q.

Table 2. Statistics about the used datasets

4.2. Evaluated algorithms
We conducted a series of inference tests on the forecited datasets using the following

algorithms:

1http://snap.stanford.edu/data/
2http://www.trustlet.org/datasets/
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Reciprocal this is the simplest one and relies on the assumption that if a node u trusts
another node v, then v will probably trust u back as much as it trusts it. That is,
W(u, v) =W(v, u) if the arc from v back to u exists, and 0 otherwise.

Bias and Deserve (BAD) we took DESERVE(v) as the inferred trust value as described
in Mishra and Bhattacharya (2011).

Fairness-Goodness (FxG) the inferred trust value as proposed in Kumar et al. (2016).

Inference by Agreement our inference by agreement algorithm described in Section 3,
with λ = 2 and β = e−λ.

4.2.1. Performance evaluation metrics
Chai and Draxler (2014) have recommend to use a combination of metrics to assess

the performance of models. For our study, given xi and yi the actual, and inferred trust
values respectively for the ith arc, we measured the performance of these algorithms
using the following three metrics:

Mean Absolute Error (MAE) is the mean of the absolute differences between the actual
trust value and the inferred one:

MAE =
1

N

N∑
i=1

|xi − yi|.

Root Mean Squared Error (RMSE) is the square mean of the absolute square differ-
ences between the actual trust value and the inferred one:

RMSE =

√√√√ 1

N

N∑
i=1

(xi − yi)2.

Pearson Correlation Coefficient (PCC) ranges between −1 and +1 and indicates how
the predicted trust values correlate with the actual ones. The more the PCC con-
verges towards +1, the more the two values are correlated:

PCC =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2

√∑N
i=1(yi − ȳ)2

,

where x̄ and ȳ are the arithmetic means of xi and yi respectively, and i = 1 · · · N .

4.3. Experiments
To measure the performances of our algorithm, we have conducted two types of

experiments. In the first tests series, we have evaluated the accuracy of the studied
algorithms in predicting an unknown arc’s weight using the rest of the network’s arcs.
The second test series allows us to see how would these algorithms behave in case of
network sparsity, where some or most of the global network is invisible due to privacy or
optimization concerns. Details of these experiments are given in what follows.
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4.3.1. Leave One-Out prediction
This is a usual inference test for social networks. It consists in removing an arc from

the graph, and predicting its weight given the information of the rest of the network.
We carried out various tests on the four datasets using the forecited algorithms on

every arc of the datasets, and calculated the MAE, RMSE, and PCC metrics for every com-
bination of algorithm and dataset. Table 3 shows the results of these tests, and clearly
demonstrates that our inference by agreement outperforms all the other algorithms, on
every metric (MAE, RMSE, PCC), and on every dataset.

Bitcoin-Alpha Bitcoin-OTC Wikipedia-Rfa Advogato
Reciprocal (0.12, 0.27, 0.47) (0.15, 0.32, 0.46) (0.27, 0.35, 0.04) (0.50, 0.60, 0.01)
FxG (0.19, 0.33; 0.24) (0.22, 0.38, 0.30) (0.18, 0.24, 0.42) (0.17, 0.21, 0.52)
BAD (0.20, 0.34, 0.24) (0.23, 0.40, 0.32) (0.18, 0.23, 0.44) (0.14, 0.21, 0.48)
Agreement (0.14, 0.24, 0.56) (0.14, 0.26, 0.69) (0.17, 0.22, 0.53) (0.10, 0.16, 0.76)

Table 3. Results of the leave One-Out tests. Each cell of this table contains a tuple (MAE, RMSE, PCC) of
the results of the algorithm (row) on the dataset (column). Lower MAE and RMSE, and higher
PCC are better.

4.3.2. Leave N% Out predictions
In order to study the robustness of our approach to network sparsity, we have con-

ducted a series of tests on all the datasets where we remove N% arcs, and try to predict
their weights using the remaining ones. Note that we do not set the weights of the re-
moved arcs to 0 to consider them as removed, but we completely ignore their existence.
This distinction is important because when the arc’s weight is set to 0, it is assumed that
the arc exists, and that we are trying to predict its weight, whereas when we discard the
arc, we are trying to predict its weight were it to form in the future.

To conduct these tests, we have randomly removed 10% edges, then 20%, and so on,
up to 90% edges in steps of 10% and tried to predict their weights. We have repeated the
tests 100 times for every percent, and took the averages of the resulting MAE, RMSE, and
PCC for every algorithm, on every dataset. Figure 3 shows how networks sparsity affects
the four algorithms, and again demonstrates that our inference by agreement provides the
best prediction and is very robust to network sparsity.

5. Discussion

In a leave-one-out setting, and as shown in Table 3, our algorithm is the most accurate
one among the studied methods. A special case worth mentioning is that in terms of MAE,
we notice that our approach is neck-to-neck with the Reciprocal algorithm on the Bitcoin
datasets, and this may be attributed to the high reciprocity of trust in these networks.
However in terms of RMSE (which penalizes big differences between the inferred and the
original values), and PCC, our approach is more accurate than the reciprocal one.

As for the leave-N%-out tests, the plots in Fig. 3 show a very slow decrease of PCC and
a very slow increase of MAE and RMSE for our algorithm compared to the other methods.
In fact, for our approach, the average change that occurs in the evaluation metrics, while
going from an almost fully-visible network (10%) to an almost fully-hidden (90%) one, is
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Figure 3. Leave N% edges Out results. The x-axis are the percentage of removed edges. The three rows
of plots describe how the MAE, RMSE, and PCC respectively change as we remove more edges
from the datasets.

about +0.04 in MAE, +0.05 in RMSE, and −0.25 in PCC. These results clearly demonstrate
the robustness of our proposed method to networks sparsity. It may be explained by the
way these algorithms operate: global metrics need most, if not all, of the network to be
visible to accurately calculate the nodes’ characteristics. Whereas a local approach, such
as the one we propose, relies only on the direct neighbors of the edge’s ends (the trustor
and the trustee). Therefore, if the hidden portion of the network does not include that
region, the prediction will not be affected.

Considering the efficiency of the tested methods, and contrary to the iterative algo-
rithms (FxG and BAD), which are linear, the time complexity for inferring trust from u

to v using our approach is O(2
∣∣−→Γ (u)

∣∣∣∣←−Γ (v)
∣∣). This time complexity, while non-linear,

should generally be acceptable since social networks are arguably not complete graphs.
Additionally, one of the advantages of our approach is its locality. Indeed, the two itera-
tive methods rely on global metrics, which should be recalculated on every change that
occurs in the networks (new nodes, new edges, update of an edge’s weight, etc.). Such
events are more than frequent in active social networks. Moreover, knowing that agree-
ment is symmetric, i.e.,

−−−→
AGRG(u, v) =

−−−→
AGRG(v, u), our implementation has been further
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optimized by caching already computed agreement scores.
Finally, and interestingly, we notice that the Reciprocal algorithm provides somewhat

good results with the two bitcoin datasets, and bad ones with the Wikipedia-Rfa and the
advogato ones. This may be attributed to the very nature of the networks. Indeed, the
bitcoin networks are about trust in trade, and when there is satisfaction it is generally
shared and expressed by both the seller and the buyer, probably out of courtesy if not
for anything else. On the other hand, with networks such as the Wikipedia-Rfa and Ad-
vogato, what matters most is expertise or authority. An expert being trusted by ordinary
trustors does not feel the need, nor is he/she required, to return the favor. By considering
such a side observation, we can probably improve trust prediction by taking into account
the network’s own properties.

6. Conclusion and future work

We have explored in this paper the efficiency of agreement as a similarity metric for a
CF-based trust prediction in weighted signed social networks. Our various experiments
have shown that this approach is not only able to provide accurate predictions, but is
also very robust to network sparsity. In fact, our approach is barely affected by network
sparsity as demonstrated by the leave-N%-out tests.

As a future work, we would like to explore the various characteristics of agreement
as a concept. Is it transitive? If so, how can we easily deduce the agreement between
x and z by knowing the agreement scores between x and y; and between y and z. Also
worth extensively studying are the agreement decay and bootstrapping parameters (λ
and β respectively). Are they network-dependant, or node-specific? Answers to this
sort of questions can enhance even further the speed and the accuracy of agreement
calculation; and improve our understanding of social ties and weighted signed networks
in general.

Finally, as opposed to most propagation-based methods, we did not use the trust that
the target trustor puts in the trustors of the target trustee, we relied only on agreement
as a recommendation weight. It may be worth considering as an additional factor that
will enable us to enhance the accuracy of our prediction approach.
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