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ABSTRACT

Context. The James Webb Space Telescope (JWST) will offer high angular resolution observing capability in the near-infrared with
masking interferometry on the Near-Infrared Imager and Slitless Spectrograph (NIRISS), and coronagraphic imaging on the Near-
Infrared Camera (NIRCam) and the Mid-Infrared Instrument (MIRI). Full-aperture kernel-phase-based interferometry complements
these observing modes by allowing us to probe for companions at small angular resolution while preserving the telescope throughput.
Aims. Our goal is to derive both theoretical and operational contrast-detection limits for the kernel-phase analysis of JWST NIRISS
full-pupil observations using tools from hypothesis testing theory. The study is immediately applied to observations of faint brown
dwarfs with this instrument, but the tools and methods introduced here are applicable in a wide variety of contexts.
Methods. We construct a statistically independent set of observable quantities from a collection of aberration-robust kernel phases.
Three detection tests based on these observable quantities are designed and analysed, all having the property of guaranteeing a constant
false-alarm rate for phase aberrations smaller than about one radian. One of these tests, the likelihood ratio or Neyman-Pearson test,
provides a theoretical performance bound for any detection test.
Results. The operational detection method considered here is shown to exhibit only marginal power loss with respect to the theoretical
bound. In principle, for the test set to a false-alarm probability of 1%, companions at contrasts reaching 103 and separations of 200 mas
around objects of magnitude 14.1 are detectable with a probability of 68%. For the brightest objects observable using the full pupil of
JWST and NIRISS, contrasts of up to 104 at separations of 200 mas could ultimately be achieved, barring significant wavefront drift.
We also provide a statistical analysis of the uncertainties affecting the contrasts and separations that are estimated for the detected
companions.
Conclusions. The proposed detection method is close to the ultimate bound and offers guarantees on the probability of making a false
detection for binaries, as well as on the error bars for the estimated parameters of the binaries that will be detected by JWST NIRISS.
This method is not only applicable to JWST NIRISS but to any imaging system with adequate sampling.

Key words. instrumentation: high angular resolution – methods: data analysis – stars: low-mass – binaries: close –
techniques: image processing – methods: statistical

1. Introduction

In the past few years, many nearby brown dwarfs have been
discovered thanks to the Wide-field Infrared Survey Explorer
(WISE) sky survey (Wright et al. 2010; Cushing et al. 2011;
Schneider et al. 2015). These newly discovered objects present
an observational challenge due to their intrinsically low lumi-
nosities. Some of them have been observed by the Hubble Space
Telescope (HST), mostly for proper motion and parallax mea-
surements (e.g. Marsh et al. 2013). While previous studies have
searched for companions, they lacked the sensitivity in the opti-
cal and the near infrared to achieve high enough contrasts to
detect very low-mass companions (e.g. Fontanive et al. 2018).
High angular resolution observations are also possible from the
ground using either adaptive optics or optical interferometry.
Cool dwarfs are however intrinsically faint objects and therefore
fall short of the requirements of either technique, unless assisted
by laser guide stars (Bernat et al. 2010).

Issues limiting the quality of ground-based observations,
such as sky background or atmospheric perturbations, can be

alleviated by observing from space. When launched, the James
Webb Space Telescope (JWST, Gardner et al. 2006) will be the
largest ever space telescope, and will provide unparalleled sen-
sitivity for studying faint, cool dwarfs. With a 6.5 m primary
mirror, and an instrument suite covering the 0.6−25.5 µm wave-
length range, the theoretical angular resolution of this telescope
ranges from 20 to 800 mas. For a nearby object located less
than 20 pc away, this translates to the ability to resolve struc-
tures present within a few astronomical units (AU) of the central
source.

However, even for instruments capable of very high angu-
lar resolution, the glare from an object can drown out the light
from faint surrounding structures. This issue is usually addressed
by using coronagraphy and the instrumentation of the JWST
offers several coronagraphs inside the Near-Infrared Camera
(NIRCam) and the Mid-Infrared instrument (MIRI), with inner
working angles ranging from 300 to 800 mas. To probe the
innermost parts of nearby systems, inside the inner working
angles of the coronagraphs, interferometry offers a viable alter-
native. In that scope, onboard JWST, the Near-Infrared Imager
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and Slitless Spectrograph (NIRISS) offers the aperture masking
interferometer (AMI) observing mode (Sivaramakrishnan et al.
2012) with a non-redundant mask (NRM) located in the instru-
ment pupil wheel. The AMI enables the detection of objects
with lower contrasts, but at narrower separations compared to
what can be achieved by the JWST coronagraphs. The AMI is
expected to have sufficient performance to address yet unan-
swered questions in the fields of active galaxy nuclei (AGNs;
Ford et al. 2014), planetary formation, exoplanets (Artigau et al.
2014), and to facilitate follow-ups on astrometry measurements
from the Gaia mission, or on ground-based extreme adaptive
optics (AO) surveys. In the case of binary point sources in non-
coronagraphic modes, contrast ratios as high as 10 mag (104) for
the brightest companions at 130 mas can be attained using AMI
(Sivaramakrishnan et al. 2012; Greenbaum et al. 2015, 2018).

The AMI achieves its best performance by taking advantage
of self-calibrating observable quantities called closure phases
(Jennison 1958). This technique, first developed for radio inter-
ferometry and later adapted to the optical regime (Baldwin et al.
1986) was adapted to single-dish telescopes using a non-
redundant aperture mask. Initially used in seeing-limited observ-
ing conditions (Nakajima 1989), the technique eventually took
advantage of the development of AO (Tuthill et al. 2006) allow-
ing stabilised longer-exposure modes and providing the ability
to observe fainter objects. Non-redundant mask interferometry
is now routinely used and has led to a variety of studies (e.g.
Sallum et al. 2015; Kraus et al. 2008, 2011).

Kernel phase generalises the idea of closure phase to aper-
tures of arbitrary shapes, and can be reliably used when aber-
rations are smaller than about one radian (Martinache 2010).
This method can therefore be used on images acquired using
any instrument onboard JWST, provided that the instrument
pupil geometry is accurately modelled. It is therefore useable on
full-pupil images as well as on AMI/NRM closure phases. The
Kernel method has already been used successfully to uncover
new brown dwarf binaries with HST observations, as reported
by Pope et al. (2013). Full-aperture kernel phase and AMI clo-
sure phase cover the same parameter space but with its lower
throughput (∼15%), AMI is suited to the observation of bright
targets that would otherwise saturate the instrument, as well as
to observations where aberrations are too important to fall into
the linear regime covered by the kernel method.

Kernel- and closure phase rely on exploiting the phase of
the Fourier transform (also referred to as the complex visibil-
ity) of the image. The image must satisfy the Nyquist-sampling
requirement (platescale smaller than 0.5 λ/D), although small-
grid dithering allows observers to reconstruct a Nyquist-sampled
image for other filters. Saturation should be avoided, although
recovery is still possible (Laugier et al. 2019). For a filter to be
fully exploitable, its shortest wavelength must respect the sam-
pling criterion. For the 6.5 m diameter of the primary mirror of
JWST, this means that the filters compatible with a Kernel-phase
analysis are:

– NIRCam in the short wavelength channel (0.6−2.3 µm), with
a platescale of 31 mas pixel−1: F212N

– NIRCam in the long wavelength channel (2.4−5.0 µm), with
a platescale of 63 mas pixel−1: F430M, F460M, F466N,
F470N and F480M.

– NIRISS, with a platescale of 65 mas pixel−1 (STSCI 2018):
F430M and F480M.

– MIRI, with a platescale of 110 mas pixel−1: all filters but
F770W and F780W.

Kernel detection limits for NIRCam have been computed by
Sallum & Skemer (2019) for the F430M and F480M filters, as
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Fig. 1. Left: entrance pupil for JWST. Centre: discrete model of
the pupil. The pupil is modelled by an array of subpupils, enabling the
use of the kernel method. Right: simulated PSF for NIRISS using the
480M filter, represented using a non-linear colour scale. The coloured
arrows represent the directions along which the simulated companions
are placed.

well a for NIRISS AMI in those same bands. The present work
aims at setting a general statistical framework for the theoret-
ical and operational detection limits of the Kernel approach,
with focus on guarantees for the actual false-alarm rate of the
implemented detection method. As for the practical results, we
investigate various aspects of the detection limits achievable for
full-aperture NIRISS observations in the F480M filter.

Section 2 describes how kernel phases are constructed,
presents the corresponding statistical model, and introduces
three statistical tests that are later used to determine contrast
detection limits. Section 3 shows how the method is applied
to simulated images by JWST NIRISS. For several objects
representative of the Y dwarfs discovered by WISE, this part
highlights the need for estimating the noise covariance matrix,
compares the performance of proposed detection tests, and anal-
yses the statistical uncertainty resulting in the estimation of the
parameters of the detected binaries. For the remainder of this
paper, an italicised lowercase letter such as a denotes a real or
complex number, a bold lowercase italicised letter such as a
denotes a vector, a bold italicised uppercase letter such as A
denotes a matrix, and a hat such as b̂ denotes the maximum like-
lihood estimate (MLE) of an unknown parameter b.

2. Kernel approach and statistical models

2.1. Kernel approach

The kernel framework introduced by Martinache (2010)
describes diffraction-dominated images produced by the mostly
continuous aperture of a telescope as if they were the interfer-
ence pattern formed by a discrete array of virtual subapertures
laid out on a regular grid of finite step. Although any pupil model
can in principle yield kernel phases, using a regularly spaced grid
allows the redundancy of the filled aperture to be encoded sim-
ply and effectively. The fidelity of the discrete representation of
the continuous aperture increases with the density the grid. In
practice however, the size of the grid step (s) translates into a
cut-off frequency λ/s that is matched to the field of view over
which the diffractive signal is recorded. The example of the dis-
crete representation of the JWST entrance aperture along with an
image of the theoretical point spread function (PSF) of the orig-
inal aperture are shown in Fig. 1. The entrance pupil is a com-
bination of the entrance pupil and of an additional pupil-plane
mask, CLEARP.

Kernel phases are formed from a linear combination of the
phase measured in the Fourier transform of the image. For a
given wavelength, the discrete grid describing the original aper-
ture also defines the sampling of the Fourier space via the
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coordinates and redundancies of the different baselines. The val-
ues of the Fourier transform of an image for the selected spatial
frequencies are collected in the complex visibility vector u. The
phase vector φ is defined as the argument of the complex visibil-
ity,

φ := ∠u. (1)

In the optical path of a diffraction-limited instrument, unknown
and potentially evolving aberrations result in a variable PSF
that degrades the image quality. According to Martinache
(2010), in the small aberration regime and for simple (i.e. non-
coronagraphic) images, a linear model relates the phase φ mea-
sured in the Fourier space to the true phase of the observed object
φ0 and to the aberration phase ϕ present across the aperture:

φ = φ0 + Aϕ, (2)

where A is a phase transfer matrix, encoding how the aberrations
in each subaperture will propagate to the Fourier phase of the
image. Its properties depend on the discrete representation of the
aperture. The discrete model of the aperture of JWST featured in
Fig. 1 is made of m = 452 virtual subapertures, placed on a grid
with a step size of 20 cm that form n = 1363 distinct baselines,
resulting in a full rank phase transfer matrix A of dimensions
1363×452. The kernel matrix K is defined as a p×n matrix that
verifies

KA = 0. (3)

The kernel matrix cancels phase perturbation to the first order
(Ireland 2013). With the chosen model, this matrix makes it pos-
sible to form a vector of kernel phases k of size (p × 1), with
p = 887, defined as:

k := Kφ. (4)

The kernel matrix K represents the left-nullspace of the transfer
matrix A, and is computed from its singular value decomposi-
tion. The discrete representation of the aperture, the associated
phase transfer matrix A, and the kernel matrix K can be gen-
erated using a specially designed Python package called XARA1,
which also offers the basic tools to extract kernel phases from
images.

2.2. Statistical modelling and hypothesis tests

Given a data image, how likely is it that a companion is present?
The present study proposes to tackle this question through statis-
tical hypothesis testing. A hypothesis test compares a test statis-
tic (noted T ) to a threshold (ξ), and has the general form

T (y)
H1
≷
H0

ξ, (5)

where y is the data under test (obtained from the image) and
the test statistic T (y) is a real random variable. In (5), the null
hypothesisH0 (noise only) is accepted if T (y) < ξ and the alter-
native hypothesisH1 (noise + companion) is accepted otherwise.
If the distribution of T can be known, the probability of false
alarm can be controlled by the value of the test threshold ξ.

The performance of a detection test is given by its probability
of false alarm (PFA, the probability that a detection occurs under

1 XARA is available at http://github.com/fmartinache/xara

H0) and its probability of detection (PDET, the probability that a
detection occurs underH1):

PFA := Pr
(
T (y) > ξ ; H0

)
,

PDET := Pr
(
T (y) > ξ ; H1

)
. (6)

The power of a test is its PDET at a given PFA: the higher
the PDET for a given PFA, the more powerful the test. It can be
conveniently represented as a receiver operating characteristic
(ROC) curve, PDET as a function of PFA.

Turning back to our detection problem, in the absence of
noise the kernel phases can take the values{

k = 0, if the target is centrosymmetric or
k = Kφ0, if the target presents asymmetries.

(7)

The noises affecting the images propagate into the Fourier
phases and consequently into the kernel phases. As we see in the
following section, the noise on the kernels can be modelled by a
correlated Gaussian distribution with a covariance denoted Σ. If
this matrix is known, we can construct a vector y of “whitened”
kernel phases which are decorrelated (hence independent), and
similarly a vector x of whitened theoretical kernel phases corre-
sponding to the signature of the target:

y := Σ−
1
2 k, (8)

x := Σ−
1
2 Kφ0. (9)

This leads to the following statistical hypotheses:{
H0 : y = ε

H1 : y = x + ε
, ε ∼ N(0, I), (10)

where ε is a p × 1 noise vector with independent and identi-
cally distributed Gaussian entries (thanks to the whitening), and
N(0, I) denotes the standard normal distribution (the covariance
of ε is the identity matrix, I).

2.2.1. Known signature in white Gaussian noise

For the problem defined in (10), the most powerful test
is the likelihood ratio (LR), or Neyman-Pearson (NP) test
(Neyman & Pearson 1933). For this test, the companion signa-
ture x must be known. The NP test is defined as

`(x; y)
`(0; y)

H1
≷
H0

η, (11)

where `(x; y) is the likelihood of the signature x given the data
y and η is an adjustable threshold. For the Gaussian white noise
considered here, the likelihood is (Scharf & Friedlander 1994)

`(x; y) = (2π)
−

p
2 exp

(
−

1
2

(x − y)T (x − y)
)
, (12)

with p being the length of the kernel phase vector. The likeli-
hood under H0 can be obtained from Eq. (12) by taking x = 0.
Combining Eqs. (12) and (11) underH0 andH1 gives the test

exp
(
−

1
2

(xT x − 2yT x)
)
H1
≷
H0

η. (13)

Taking the logarithm of Eq. (13) and noting ξ := η + 1
2 xT x

leads to the test

TNP(y, x) = yT x
H1
≷
H0

ξ. (14)
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Hence, the NP test amounts to comparing the dot product of the
data with the signature to a threshold. The distribution of TNP
can be analytically determined underH0 andH1:{
H0 : TNP(y) ∼ N(0, xT x

)
,

H1 : TNP(y, x) ∼ N
(
xT x, xT x

)
.

(15)

Using N(0, 1) to denote a standard normal variable and FN its
cumulative distribution function (CDF), PFA and PDET for TNP
can be derived using their definitions in Eq. (6) and the distribu-
tions in Eq. (15)

PTNP
FA (ξ) = 1 − FN

(
ξ
√

xT x

)
,

PTNP
DET(ξ) = 1 − FN

(
ξ − xT x
√

xT x

)
,

(16)

which, for the purpose of plotting ROC curves, combine to

PTNP
DET

(
PTNP

FA

)
= 1 − FN

(
F −1
N (1 − PTNP

FA ) −
√

xT x
)
. (17)

This test is the most powerful for the considered model, and
serves as the benchmark against which any other detection test
can be evaluated.

Implementing the NP test (Eq. (14)) requires knowledge of
the target signature x (namely, contrast and position if x cor-
responds to a companion). In practical situations however, x is
often partially or even fully unknown. This leads us to consider
the statistical model{
H0 : y = ε,

H1 : y = x + ε, x ∈ X
, (18)

where X is a space describing some prior information about x.
Below, we consider two cases: a completely unknown signature
(X = Rp) and the signature of a binary with unknown contrast and
separation (X is then the space spanned by all possible binary sig-
natures). A classical approach when some parameters describing
the target x are unknown is to inject its MLE (denoted x̂) in place
of x in the LR of Eq. (11). The MLE is defined by

x̂ := argmax
z∈X

`(z; y), (19)

and injecting the MLE in the LR leads to the so-called gener-
alised likelihood ratio (GLR) defined as

max
z∈X

`(z; y)

`(0; y)
H1
≷
H0

η ⇔
`(x̂; y)
`(0; y)

H1
≷
H0

η. (20)

2.2.2. Completely unknown x signature

If we assume as a worst-case situation that nothing is known
about the signature x, we have X = Rp. The likelihood in (12) is
maximised for x̂ = y, and injecting this value in Eq. (20) yields

exp
(
−

1
2

(y − y)T (y − y)
)

exp
(
−

1
2

(y − 0)T (y − 0)
) H1
≷
H0

ξ′ , (21)

with ξ′ being a threshold. Taking the logarithm of Eq. (21), we
obtain the test:

TE(y) := ‖y‖2
H1
≷
H0

ξ. (22)

This test uses the measured squared norm of the signal as a test
statistic and is called an energy detector (hence TE). Its statistic
is distributed as:{
H0 : TE(y) ∼ χ2

p(λ2 = 0),
H1 : TE(y) ∼ χ2

p(λ2 = xT x).
(23)

Using Fχ2
p(λ2) to denote the CDF of a χ2

p(λ2) random variable
with p degrees of freedom and non-centrality parameter λ, we
obtainPTE

FA(ξ) = 1 − Fχ2
p(0)(ξ),

PTE
DET(ξ) = 1 − Fχ2

p(xT x)(ξ).
(24)

We note that test TE in Eq. (22) was previously used in the lit-
erature, for example by Zwieback et al. and Le Bouquin & Absil
(2016; 2012) (although not identified as a GLR), with the PFA
reported in Eq. (24).

The expressions above combine into

PTE
DET

(
PTE

FA

)
= 1 − Fχ2

p(xT x)

(
F −1
χ2

p(0)

(
1 − PTE

FA

))
. (25)

Indeed, this test does not exploit any prior knowledge of the
structure of the object to be detected and can thus be seen as
providing a lower bound for the detection performance.

2.2.3. Signature of a binary

Repeated observations of gravitationally interacting multiple
systems is the only means by which unambiguous dynamical
masses can be determined. Because they make it possible to
resolve asymmetries near or even slightly below the diffraction
limit, which translates into small orbital distances, NRM clo-
sure or kernel phase (Kraus et al. 2008; Huélamo et al. 2011;
Lacour et al. 2011) and full-aperture kernel phase (Pope et al.
2013; Laugier et al. 2019) are particularly suited to the obser-
vation of unequal-brightness, low-mass binary systems.

At any instant, a binary system is characterised by three
parameters: the angular separation ρ of the companion relative to
the primary, its position angle θ, and a contrast c, defined here as
the luminosity ratio of the primary over the secondary. Our sim-
ulations assume that the position angle is measured in the image
relative to the axis pointing up (represented by a blue arrow in
the right hand panel of Fig. 1), and increases counterclockwise.
Actual observations also have to take into account the orienta-
tion of the telescope to project the apparent position angle onto
the celestial sphere to combine observations at multiple epochs.

As an intermediate step, it is also convenient to use a
Cartesian coordinate system in which the location of the sec-
ondary is given by (α, β). If the binary system is made of two
individually unresolved point sources, its intensity distribution
O can be modelled as a pair of Dirac distributions:

O(x, y) = δ(x, y) + c−1δ(x − α, y − β). (26)

The complex visibility u associated to this object is the 2D
Fourier transform of Eq. (26) (van Cittert 1934; Zernike 1938),
that is,

u(u, u) = 1 + c−1exp
(
−i

2π
λ

(αu + βu)
)
. (27)

We reiterate that in the alternative hypothesis defined in
Eq. (18), x = Σ−

1
2 Kφ0, where φ0 = ∠u. This leads to the para-

metric hypothesis:

H1 : y = Σ−
1
2 K∠

(
1 + c−1exp

(
−i

2π
λ

(αu + βu)
))

+ ε. (28)
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Fig. 2. Map of the likelihood that is maximised in Eq. (29) for a
data vector y accounting for a realistic covariance matrix Σ for JWST
NIRISS. The companion signature has parameters α = β = 104 mas
(red cross) and c = 100.

UnderH1, there are three free parameters: α, β, and c, so the
MLE is now

x̂ := argmax
α,β,c

`(c, α, β; y),

= argmax
α,β,c

e

−
1
2

∥∥∥∥∥∥∥∥∥y − Σ−
1
2 K∠

1 + c−1e
−i

2π
λ

(αu + βu)

∥∥∥∥∥∥∥∥∥

2

. (29)

Finding the MLE is equivalent to minimising the argument of
the exponential. This minimisation cannot be done analytically
but numerical methods can be used to compute x̂, as explained
below. Injecting (29) in (20) gives the test

exp
(
−

1
2

(y − x̂)T (y − x̂)
)

exp
(
−

1
2
yTy

) H1
≷
H0

η, (30)

equivalent to

TB(y) := 2yT x̂ − x̂T x̂
H1
≷
H0

ξ. (31)

We note that this detection problem is similar to “case VII” of
Scharf & Friedlander (1994), where the detection procedure also
relies on the ML estimation of the signal of interest. In this latter
study, however, the signature x is assumed to reside in a linear
subspace (independent from the nuisance subspace), which is not
the case here.

As mentioned above, the MLE x̂ must be found numerically.
Figure 2 illustrates, for one realisation of ε, an example of the
value of the likelihood for a fixed contrast as a function of posi-
tion angles α and β. It is apparent that the likelihood function is
multimodal, so the minimisation strategy must be able to avoid
local minima. A brute force search on a finely discretised grid of
the parameter space is possible but comes at a large computation
cost. Efficient numerical methods for solving multimodal prob-
lems exist, such as for instance the Monte Carlo Markov chains
method with simulated annealing (Andrieu et al. 2003) or nested
sampling (Skilling 2004).

Because the distribution of TB involves the unknown distri-
bution of the MLE estimate x̂, it cannot be characterised analyt-
ically. However, as we see in the following section, this distribu-
tion can be estimated by Monte Carlo simulations, allowing us
to accurately establish the relationship between the false-alarm
probability PTB

FA of this test and the threshold ξ in Eq. (31).
As an important final remark, we underline that the false-

alarm probabilities of the considered tests are independent of the
power of the phase perturbations ϕ (at least as long as the linear
model in Eq. (2) holds, that is, for phase perturbation below ≈1
radian). This is clear from expressions (16) and (24) for tests
TNP and TE; this is also the case for test TB because the phase
perturbation is cancelled by the operator K and does not affect
the test statistic. This means that the false-alarm rate of these
tests remains constant in case of fluctuating aberrations, which
is a desirable feature in practice.

2.2.4. Likelihoods, likelihood ratios, and χ2 intervals

The test statistic TB can be interpreted in terms of χ2-derived
intervals as follows. Let x̂ be some model obtained by some fit
on data y. The χ2 score corresponding to this fit is

Tχ2 (x̂, y) :=
N∑

k=1

(x̂k − yk)2 = (x̂ − y)T (x̂ − y). (32)

Considering the likelihood in Eq. (12), this shows that if y is
Gaussian with mean x̂, the score in Eq. (32) is indeed a χ2

p ran-
dom variable. Now, the test statistics TB can be rewritten as

TB = 2yT x̂ − x̂T x̂ = yTy −
(
(x̂ − y)T (x̂ − y)

)
(33)

= Tχ2 (0, y) − Tχ2 (x̂, y), (34)

which shows that TB can be interpreted as the reduction in the
sum of squared residuals when comparing the null hypothesis to
the considered model.

For the sake of accurately controlling the false-alarm rate,
we note however that Tχ2 in Eq. (32) may not be distributed as
a χ2

p variable because x̂ is a random variable. Actually, the true
distribution of Tχ2 may not be known analytically, and a Monte
Carlo procedure (such as that mentioned in Sect. 2.2.3 for the
estimation of the correspondence between the PFA and threshold
for TB) is required.

3. Results

The tests with the performance analyses presented in Sect. 2 are
very general: considering a different aperture and instrumental
noise simply amounts to replacing A, K, and Σ in the equations.
We focus now on their specific application to JWST NIRISS full-
pupil images (see Table 1).

3.1. Dataset and considered targets

We applied the three detection tests previously introduced to
a series of simulated JWST/NIRISS datasets, replicating the
observing scenario of archetypal ultracool Y-type brown dwarfs.
While their multiplicity rate is currently unknown, more than 25
such objects have been discovered less than 20 pc away, mostly
by the WISE mission (Kirkpatrick et al. 2011). At 20 pc, the the-
oretical angular resolution of JWST for λ = 4.8 µm translates
into an orbital distance of 3 AU: interferometric observations
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Table 1. Detector and targets characteristics used to compute the covari-
ance of the kernel phases extracted from our JWST NIRISS simulated
dataset.

Read noise (e−) 14.849
Flat field error 0.01%

Dark current (e− s−1) 0.04
Total integration time (s) 2400

Number of frames 15
Gain (e−/ADU) 1.00

Jitter value (mas) 7.0
Integration time 40 min

Number of photons (W2 mag = 15.4) 3.723 × 106

Number of photons (W2 mag = 14.1) 1.1181 × 107

will make it possible to probe within the first few AU of most
known Y dwarfs.

JWST NIRISS images of Y dwarfs are simulated to evaluate
the performance of the detection tests, using the ami_sim2 pack-
age (Greenbaum et al. 2016), corresponding to a 40 min integra-
tion on target and a 40 min integration on a perfect calibrator.
Frames are simulated in full-pupil mode, using the F480M filter,
for two different “W2” magnitudes: 15.4 and 14.1. The W2 mag-
nitude is the apparent magnitude in the band selected by the W2
(λ = 4.6 µm) WISE filter (Wright et al. 2010). For these objects,
companions are placed at a single position angle θ = 315◦ (mate-
rialised by the orange arrow in the PSF shown in Fig. 1). The
simulated companions lie at separations of ρ = 73 mas (≈0.5λ/D
@ λ = 4.8 µm) or ρ = 147 mas (≈λ/D @ λ = 4.8 µm), and have
contrasts c = 10, c = 20, c = 50, or c = 100, leading to a total of
eight possible signatures.

For any given target, a calibration frame is simulated and we
assume no calibration error (stable wavefront, calibrator with the
same spectrum and brightness as the Y dwarf). To comply with
a real situation, kernel phases are not extracted directly from
the simulated image: the frames are recentred, cropped to a size
of 64 × 64 pixels and apodized by a super-Gaussian mask (see
Eq. (2) of Laugier et al. 2019) of 30 pixels in radius to weigh
down the edges of the image.

3.2. Modelling the errors

Two types of errors affect kernel phases and the outcome of the
statistical tests described in Sect. 2. First are statistical errors
induced by random noises whose overall impact can be cap-
tured in the acquisition or the synthesis of a global covariance
matrix. Second are systematic errors resulting from the imper-
fect modelling by the kernel framework of the broadband, long-
exposure, and diffractive nature of images. The subtraction of
kernel phases acquired on a point source theoretically accounts
for this systematic error. However, in practice, wavefront drifts
between observations will result in unaccounted-for residual
errors referred to as systematic errors (Ireland 2013).

To estimate the potential impact of systematic errors induced
by wavefront drift, we rely on Perrin et al. (2018) who predict
that over a timescale of two hours, JWST drifts will result at
most in a 16 nm rms wavefront across the entire pupil3. We used

2 ami_sim is available at https://github.com/agreenbaum/ami_
sim
3 Perrin et al. (2018) predict that large variations in slew angle will
result in the most important variations, as the primary mirror regains
thermal equilibrium over the course of days.

�5.0 �2.5 0.0 2.5 5.0

y

10�4

10�3

10�2

10�1

100

101
1.12 · 107 photons

Expected distribution

Observed distribution

�5.0 �2.5 0.0 2.5 5.0

10�3

10�2

10�1

100

101
3.72 · 106 photons

Fig. 3. Histogram of the values of the whitened kernel phases for the
calibration images (orange). Standard, normal distribution (blue). Left-
panel: higher flux regime. Right panel: lower flux regime. The dis-
tribution of whitened kernel phases obtained in practice is accurately
described by the theoretical normal distribution considered in Eq. (10).
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Fig. 4. Isocontours of the joint PDF of the 668th and 669th elements of
the kernel-phase vector k, k668 and k669, before (left) and after (right)
whitening. The PDFs are estimated using 105 noise realisations.

the ten OPD maps distributed with the webbpsf package, scaled
down to correspond to the predicted rms to produce images
resulting in ten distinct kernel-phase realisations. The dispersion
of kernel phases across these realisations was used to estimate
the magnitude of the calibration residual. In the bright target sce-
nario (W2 mag = 14.1) introduced in Sect. 3.1, this calibration
residual accounts for about 14 % of the total noise variance. As
is shown further below, this systematic error has a small impact
when observing faint targets.

3.3. Covariance estimation

Whereas simulated images used in the analysis include all the
previously listed noises, experience has shown us that, apart
from calibration residuals, the covariance matrix can accurately
be estimated using the three dominant noises: photon, readout,
and dark current. Figure 3 indeed shows that after whitening by
this simpler covariance, the distribution of kernel-phases is indis-
tinguishable from a normal distribution of standard deviation 1.

The effect of the whitening is further illustrated in Fig. 4,
which shows how previously noise-correlated kernel phases (left
panel) are indeed made statistically independent (right panel).
The thus-whitened observables can indeed be reliably used as
input for the different statistical tests introduced in Sect. 2.2.

In practice, the covariance Σ is estimated using Monte
Carlo simulations. An accurate estimation requires a number of
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Fig. 5. Kernel phases of the recovered signature (x axis) against the
true kernel phases of the injected binary (y axis). Left panel: high flux
regime. Right panel: low flux regime. The worst S/N situation (ρ =
73.5 mas, c = 100) is in orange, and the best S/N (ρ = 147 mas, c = 10)
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simulated frames much greater than the total number of kernels;
we used 105 frames for 887 kernels in our case.

Calibrated kernel phases are obtained by subtracting the ker-
nel phases of a calibrator from those of the target in order
to remove kernel model imperfections. Since the same flux is
assumed for both observations, they share the same covariance.
The covariance of the calibrated kernel-phase vector is therefore
twice the covariance Σest estimated from the MC simulations.

To account for unknown calibration errors reported in NRM-
interferometry as well as in full aperture kernel phases that result
in a kernel-phase bias, one commonly used solution has been
to artificially inflate the experimental variance by adding an
additional term whose overall magnitude is adjusted during the
model fit (e.g. Martinache et al. 2009). The OPD maps intro-
duced in Sect. 3.2 make it possible to estimate the magnitude
of this bias a priori. Proper treatment of the calibration would
require the subtraction of an estimate of the calibration term,
using either the POISE algorithm of Ireland (2013) or the KL
decomposition approach described by Kammerer et al. (2019)
that relies on the observation of multiple calibration sources.
Here we estimate the impact of an unaccounted-for calibration
error on the contrast detection limits by adding the residual deter-
mined after analysis of the simulation that included the OPD
maps to the diagonal of the covariance. To pursue the possibly
covariated effects would require the computation of a distinct
covariance matrix from a large number of distinct realisations of
telescope drifts. For the faint brown dwarf case that motivates
this study, the impact of the calibration error is small, and there-
fore we chose not to pursue the non-diagonal terms.

3.4. Parameter estimation

Detecting a companion using the operational binary test TB
requires the determination of the MLE x̂. This requires esti-
mation of the parameters ρ, θ, and c from the whitened kernel
phases y in Eq. (28). The distribution of the parameters can be
estimated by generating, for each considered signature, a large
number of noisy kernel phases and estimating the parameters.
In practice, a global optimisation algorithm can be used. For the
purpose of making a large number of simulations, we assume
that the algorithm has localised the region in which the global
minimum is situated (the darkest region in Fig. 2). In this setting,
the minimum can be found by a gradient descent algorithm.

In the following, we use the algorithm described by
Branch et al. (1999), as implemented in scipy.optimize.
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Fig. 6. Error on the recovered parameters. Top panels: circles represent
the separation and contrasts of the injected signature, and each column
represents one flux regime. Bottom panels: error on the estimated angle
θ. The parameters ρ and c of each injected signature are represented
as coloured circles on the top panels, while θ is fixed at 315◦ for all
signatures. The same colour code is used for every panel, with each
colour corresponding to an injected signature. Each dot on the top panel
represents the parameters estimated for a single realisation of the noise.

leastsquares, which uses the local gradient and optimises for
the direction descent and step size. The initialisation of the algo-
rithm corresponds to the parameters of the injected companion.
This method is suited for the determination of contrast limits
thanks to its speed. We checked that we obtained very similar
results with a (computationally more expensive) systematic grid
search that would typically be used in practice4.

Figure 5 shows the recovered kernel phases as a function of
the kernel phases of simulated images for different separation,
contrast, and flux regimes. The fit remains relatively consistent
for each case, with scatter becoming predictably more important
as the S/N decreases (the S/N is affected by the contrast, the
separation, and the total flux in the image).

All of the signatures presented in Fig. 6 are detectable by
the TB with PFA < 10−3. The shape of the 2D distribution of
the estimated separation ρ and contrast c reproduces what was
for instance reported by Pravdo et al. (2006) in the context of
NRM observations: at angular separations smaller than λ/D,
estimates for the contrast and the angular separation are strongly
correlated.

Figure 6 also shows that two regimes can be distinguished.
For a companion at ρ ≈ λ/D (for JWST λ/D = 152 mas @
λ4.80 µm), all parameters are well constrained, while for a com-
panion at ρ < λ/D, the contrast and the angular separation can-
not be well constrained simultaneously. In practice, this means
that the estimation of the position of a companion using kernel-
phases when the expected angular separation is smaller than λ/D
can be further constrained by an independent measurement of the

4 The gradient descent procedure is indeed only applicable in the con-
text of the determination of detection limits by a Monte Carlo method.
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luminosity of the companion at a different epoch, when ρ > λ/D.
This property can be particularly useful in the case of objects
with high eccentricities or inclinations.

A study of the consequences of the uncertainties on param-
eters and correlations on the orbit that can be fitted using the
Kernel method on NIRISS images is out of the scope of this
paper; this should be the object of future work, along with rec-
ommendations of optimum observing strategies in regards to the
uncertainties on measured orbital parameters.

3.5. Detection and contrast performance

Firstly, we validate the theoretical relations predicting the per-
formance of the NP test TNP (Eq. (17)) and of the energy detec-
tor TE (Eq. (24)), and determine the actual performance of TB
(Eq. (31)). For that purpose, we perform Monte Carlo simula-
tions consisting of 2000 realisations5 of y under H0 and under
H1 for a given signature x (cf. Eq. (27)).

All of the detection limits are shown for PFA = 1% and
PDET = 68%. In terms more frequently encountered in astron-
omy publications, this is equivalent to having a 68% chance of
making a ≈2.3σ detection.

On each realisation, we perform each of the three tests using
the kernels operator K and the covariance matrix Σ estimated as
in Sect. 3.3.

Figure 7 presents our results in the form of ROC curves,
which provide a graphical representation of the power of each
test. It can be seen that the dashed curves representing the the-
oretical ROCs accurately match the solid lines corresponding to
the performance achieved in practice. As expected, TNP appears
to be the most powerful of the three tests (this test corresponds to
the upper performance bound) and TE the least powerful of the
three (this test uses no prior information on the target signature
and can be seen as a lower bound). The performance of TB log-
ically lies in between, but much closer to the upper than to the
lower bound.

The detection limits for the three tests TNP, TE, and TB are
represented in Fig. 8 across a range of contrasts and separations,
for a fixed position angle θ = 315◦. The dashed lines correspond
to no wavefront error while the solid lines correspond to 16 nm
rms of wavefront error. We can see that the theoretical perfor-
mance, validated for a single companion signature in Fig. 7, hold
true over a large range of contrasts and separations, and that
the detection limit of TB remains close to the bound provided
by TNP. The dashed and dotted lines correspond to a perfectly
stable JWST leading to a perfect calibration of the systematic
errors.

The detection limits further depend on θ, because the PSF
of JWST NIRISS is not centrosymmetric (as visible in Fig. 1).
Fluctuations of these limits are shown in Fig. 9 for three position
angles. Figure 9 also indicates the S/N level at the correspond-
ing positions in the image (computed here as the maximal pixel
value of a noiseless image with only the companion, divided by
the standard deviation of the considered noise), showing that the
detection limits follow the overall noise level in the image. Per-
formance wise, the detectable contrast ratios are of the order of
103 at 200 mas, with some variations between the two flux levels
considered.

5 The number of realisations is dictated by the target PFA and PDET.
For the considered PFA = 1% and PDET = 68%, 2000 realisations
correctly sample the distributions of the test statistic of TB under H0
andH1.
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Fig. 7. ROC curves of TE (green), TNP (blue), and TB (orange). Theo-
retical ROC curves for TNP and TE plotted using Eqs. (17) and (24), for
a companion at ρ = 200 mas, c = 1200, and θ = 45◦ off the vertical.
Dashed lines correspond to theoretical ROCs, while solid lines repre-
sent ROCs obtained by Monte-Carlo simulations. The closer a curve
is to the black line on the diagonal, the less powerful the correspond-
ing test. The higher flux regime is represented in the top panel, and the
lower flux regime in the bottom panel. The performance of TNP and
TE are accurately described by the theoretical expressions in Eqs. (17)
and (24). The test TNP presents the highest performance. TB is the next-
best-performing test and TE has the lowest performance of the three. We
see a clear improvement of the power of all tests as the flux (and thus
the S/N) increases.

3.6. Mass limits for WISE 1405+5534

WISE 1405+5534 is a Y-type brown dwarf with a W2 magnitude
of 14.1 that was used as a reference target to produce the contrast
detection limits featured in Fig. 8. The raw observational detec-
tion limit curve of contrast as a function of angular separation
can be converted into an astrophysical detection limit curve of
companion mass as a function of orbital separation.

Whereas the 129 ± 19 mas parallax measured by
Dupuy & Kraus (2013) directly allows for the conversion
of the angular separation into a projected orbital distance,
the contrast to mass conversion requires a model. We use the
mass–luminosity relations given by the AMES-Cond model of
Baraffe et al. (2003) for an age of 1 Gyr and a mass estimate of
30 MJ for the primary given by Cushing et al. (2011).

The detection limits obtained for WISE 1405+5534 are
shown in Fig. 10. At PFA = 1%, and PDET = 68%, a 1 MJ can

A120, page 8 of 10

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935247&pdf_id=7


A. Ceau et al.: Kernel detection limits

200 400 600 800 1000

Separation (mas)

102

103

104

C
on

tr
as

t

1.12 · 107 photons, 16nm RMS wavefront drift

TB , MC

TNP , MC

TE , MC

TB , MC with drift

TNP theoretical

TED theoretical

TNP theoretical with drift

Fig. 8. Detection limits at a fixed position angle θ = 315◦: below
the contours the PDET falls below 68% for a fixed PFA of 1%, repre-
sented as a function of the separation and contrast of the companions,
for TE (green), TB (blue), and TNP (orange). The dashed lines repre-
sent theoretical detection limits for TE and TNP (Eqs. (17) and (24))
and the dotted lines present the limits achieved in the MC simulations.
TNP (orange) provides ideal detection limits for a Kernel treatment of a
JWST-NIRISS image and the practical test TB (dotted blue) has contrast
detection limits within a factor of 2.5 of the theoretical maximum. The
solid lines represent the detection limits for TB (blue) and TNP (red)
with a calibration residual corresponding to a 16 nm rms wavefront
drift.
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Fig. 9. Detection limits for test TB (Eq. (31)), in the higher flux regime
(top panel) and the lower flux regime (bottom panel). The solid lines
correspond to contours of PDET = 68% at a fixed PFA = 1%. Detec-
tion limits are represented at three different position angles for the
companion: 0, 45, and 90◦ off the vertical, as orientated in the PSF
shown in Fig. 1. The relative S/Ns (see text) are indicated by dashed
lines. The shot (photon) noise is the main limiting noise in most
cases.

be detected at separations greater that 1.5 AU. An orbit with this
semi major axis would have a period of 40 years, thus a quarter
of an orbit could be captured with repeated observations over the
expected service life of JWST.
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Fig. 10. Detection limits of a possible companion to WISE 1405+5534
at PFA = 1% and PDET = 68%, as a function of contrast (right ordinate
axis) or mass (left ordinate axis) and absolute separation in AU. A one-
Jupiter-mass object is detectable down to 1.5 AU from the primary.
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Fig. 11. Detection limits for the brightest target observable without sat-
uration with JWST NIRISS. Solid lines show detection limits for TB at
PFA = 1% and PDET = 68% applied to the image with the greatest possi-
ble dynamic range, with 20 min total integration time. For the brightest
images, the kernel method with the test TB ideally allows detection of
contrasts up to 105 beyond 500 mas. The dashed orange line represents
detection limits in the presence of a 16 nm wavefront drift.

3.7. Bright limits

For the faint Y-dwarf targets considered thus far, it may have
occurred to the reader that the contrast detection limits are dom-
inated by the effect of the dark current and the readout noise and
not by the photon noise of the central object. We wish here to
complete the description of the properties of our approach with
a bright target scenario that will feature a different behaviour,
thus exhibiting the contribution of the photon noise.

The saturation limit for full-pupil JWST NIRISS using the
F480M filter and a 64× 64 pixels subarray size is 7.6 mag. We
consider a shorter observation sequence, with a total of 20 min
spent on the target of interest and 20 min on a calibrator of sim-
ilar brightness. The detection limits for this observation using
the operational test TB are shown in Fig. 11, at PFA = 1%, and
PDET = 68%.

Unlike the contrast detection limits obtained on the faint
targets, the curves now clearly reveal two different regimes.
Up to an angular separation of ≈500 mas, where the photon
noise is expected to dominate, the contrast detection decreases
as a function of the angular separation. Beyond this point, it
reaches a plateau, as the detection is once again dominated by
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the homogeneous properties of the dark current and the readout
noise.

In this bright scenario, calibration errors induced by a drift
comparable to what was described in Sect. 3.5 will have a
stronger impact on the weak signal of a high-contrast compan-
ion. Sallum & Skemer (2019) feature contrast detection limits
for NIRCam in a similar scenario that takes calibration errors
into account. Under the hypothesis introduced in Sect. 3.2, the
calibration error accounts here for 85% of the total noise vari-
ance of the kernels and therefore results in a degraded perfor-
mance by a factor of approximately 10, as shown by the dashed
curve in Fig. 11.

4. Conclusion

This paper provides a theoretical and numerical analysis of
the performance of various detection tests based on the Kernel
method. The approach provides an upper bound for the achiev-
able detection limits, and an operational detection test whose
performances are close to the upper bound. Furthermore, the
false-alarm rate of these tests is not affected by fluctuating aber-
rations and can be tuned a priori.

The kernel-based detection approach presented in this paper
is not specific to either NIRISS, the 480M band, the full-pupil
imaging mode, or to JWST itself. The method only requires
weak wavefront perturbations and appropriate sampling (i.e. a
small-enough plate scale as compared to λ/D). In particular, the
statistical treatment proposed in this study can also be used for
NRM data.

For JWST-NIRISS in the F480M band, we have shown that
medium-(≈102) to high-(≈103)contrast detections can realisti-
cally be achieved for separations down to half of λ/D on ultra-
cool brown dwarf primary targets. In practice, this means that
a 80 min observation sequence can allow for the detection of a
1 MJ situated 1.5 AU away from a 30 MJ Y-type brown dwarf
at a distance of 8 pc. On brighter targets, kernel-phase analysis
combined with the methods presented in this paper can reveal
companions at contrasts ≈103 down to 0.3 λ/D.

Detection results presented in this paper rely on up-to-date
simulations of JWST-NIRISS frames that take into account all
the noises expected to contribute to kernel-phase uncertainties.
These results can be affected by several factors that are not yet
accounted for, the most critical being probably calibration errors.
Instrumental drifts in the range of a few tens of nanometres,
as predicted by Perrin et al. (2018), are not expected to signif-
icantly degrade performances for Y dwarfs. Another limitation
may come from the algorithmic efficiency in determining the
MLE x̂ in Eq. (29) for the test TB. Overly coarse grid searches
or algorithms too sensitive to local minima will lead to a loss in
detection power and to an increased uncertainty for the estimated
parameters.

The performance reported in this work can therefore be seen
as ideal contrast performance achievable using kernel phases for
JWST NIRISS images. The method can in principle be improved
upon by exploiting the full information available in the image
(present not only in the phase but also, to a lesser extent, in the
amplitude of the complex visibility). Even working solely with
the phase, the calibration problem can be mitigated by using
a more accurate and less idealised representation of the instru-
ment. A significant fraction of the calibration error comes from
the use of a necessarily approximate discrete model to represent
the continuous phenomenon of diffraction. The results reported
in this work were achieved using a dense aperture model to mit-
igate this discretisation error; however, the representation is not

yet optimal. One avenue to improve the overall fidelity for exam-
ple seems to be to take into account a variable local transmission
function to more accurately describe the aperture with the same
grid density. The study of the general aperture modelling pre-
scription will be the object of future work.

The XARA package is regularly updated in the context of the
KERNEL project.
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