
HAL Id: hal-03033635
https://hal.science/hal-03033635v1

Submitted on 11 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FOWLA, A Federated Architecture for Ontologies
Tarcisio Farias, Ana Roxin, Christophe Nicolle

To cite this version:
Tarcisio Farias, Ana Roxin, Christophe Nicolle. FOWLA, A Federated Architecture for Ontologies.
Rule Technologies: Foundations, Tools, and Applications. RuleML, 9202, pp.97-111, 2015, Lecture
Notes in Computer Science, �10.1007/978-3-319-21542-6_7�. �hal-03033635�

https://hal.science/hal-03033635v1
https://hal.archives-ouvertes.fr

FOWLA, a Federated Architecture for Ontologies

Farias1, M. T., Roxin2, A. & Nicolle2, C.

1Active3D, Dijon, France
t.mendesdefarias@active3D.net

2Checksem, Laboratory LE2I (UMR CNRS 6306), University of Burgundy, Dijon, France
{ana-maria.roxin,cnicolle}@u-bourgogne.fr

Abstract. The progress of information and communication technologies has

greatly increased quantity of data to process. Thus managing data heterogeneity

is a problem nowadays. In the 1980s, the concept of a Federated Database Archi-

tecture (FDBA) was introduced in the field of database management as a collec-

tion of components that, by means of loosely coupled federation, share and ex-

change information. Semantic web technologies mitigate the data heterogeneity

problem, however due to the data structure heterogeneity the integration of sev-

eral ontologies is still a complex task. For tackling this problem, we propose a

loosely coupled federated ontology architecture (FOWLA). Our approach allows

the coexistence of various ontologies sharing common data dynamically at query

execution through Horn-like rules. To show the benefits of using FOWLA, we

have implemented this architecture for the integration of 2 ontologies, having

more than 2500 concepts and properties. We also identify the advantages

FOWLA over other existing initiatives, notably its reduced data redundancy and

modularized maintainability.

Keywords: SWRL, Horn-like rules, Federated Ontology Architecture, Seman-

tic web, OWL.

1 Introduction

With advances of the information and communication technologies the amount of data

to process and share has exponentially increased. Consequently, there is a growing de-

mand for information interoperability. Indeed, with the advent of the personal computer

in the 1980s, data interoperability first became an issue, then with the advent of the

Internet has risen the need for more principled mechanisms for interoperability. When

considering enterprise information systems, three layers of interoperability exist. Phys-

ical interoperability (first level) concerns the levels of the ISO/OSI network hierarchy

and has been solved through network protocols such as Ethernet, IP, TCP and HTTP.

The second level concerns syntactic interoperability, namely the form of the messages

exchanged in the information system. This issue has been solved through syntactic

standards such as XML, HTML, WSDL, SOAP, etc. Finally, the third level of interop-

erability addresses the meaning of the exchanged messages and is called semantic in-

teroperability. When implemented, semantic interoperability allows automatic machine

mailto:cnicolle%7d@u-bourgogne.fr

processing of information (selection, composition, reasoning, etc.). These advances are

really important in the context of enterprise information integration (EII) [XX], build-

ing information models [XX] and more in general in semantic web [XX]. Ontologies

defined using standard ontology languages such as OWL represent the building bricks

for achieving such semantic interoperability. Indeed, as interoperability at the data

model level has been pointed out as a solution to information integration [XX], and the

usage of ontologies allows having data exchanges respecting the same original schema

meaning (i.e. semantics).

Nevertheless, semantic heterogeneity remains a problem when integrating data from

various ontologies which model the same information in different ways. Indeed, even

if an ontology is defined as an “explicit and shared specification of a conceptualization

of a given knowledge domain” [REF], different ontologists (i.e. ontology designers)

can produce different ontologies for a same knowledge domain. Thus, just adopting

ontologies, like just using XML [XX], does not eliminate heterogeneity for good: it

elevates heterogeneity problems at a higher level. As noted by Alon Y. Halevy in [XX],

semantic heterogeneity exists whenever there is more than one way to structure a body

of data (i.e. schema).

Therefore, in order to address the problem of semantic interoperability by means of

ontologies, we propose a loosely coupled federated architecture for OWL ontologies.

This architecture is based on ontology alignments, logical rules and inference mecha-

nisms. The article at hand is structured as follows: Section Erreur ! Source du renvoi

introuvable. gives the scientific background for our work; Section Erreur ! Source

du renvoi introuvable. presents most important related work in the considered domain.

Section Erreur ! Source du renvoi introuvable. details our approach, notably the

components and underlying processes of the FOWLA architecture. Numerical results

in terms of query time execution improvement are illustrated in Section Erreur !

Source du renvoi introuvable.. Finally, we conclude this article by identifying several

additional works that could be undertaken.

2 Background

Semantic Web technologies constitute one of the most promising trends for the future

Web, notably as they come with the promise of making existing data machine-under-

stadable. The architecture of Semantic Web comprises several layers and components.

The RDF (Ressource description Framework) data model is the reference component.

On top of it, three components exist [REF]:

• Components for ontologies: several standard languages for specifying ontologies ex-

ist, from the most basic (RDF Schema) to the most expressive Web Ontology Lan-

guage (OWL) and its inheritor OWL 2. Ontology languages allow specifying

knowledge pertaining to a given domain, according to the Open World Assumption.

This assumption states that the facts that are not defined in the knowledge base are

not false, but unknown. Ontology languages rely on Description Logics (DL) for-

malisms; an ontology concept is defined through several necessary and sufficient

conditions.An knowledge base comprises a terminological model (formal definitions

of the concepts) and an assertional model (instantiation of these concepts). The ter-

minological model is called TBox, and the assertional model is called ABox. In this

work, we use the term ontology or knowledge base for referring to the whole TBox

and ABox.

• Components for queries: the equivalent of SQL for databases is the SPARQL lan-

guage. SPARQL allows querying RDF graphs and OWL ontologies, along with sev-

eral possibilities for results processing (e.g. limit, order, offset). A SPARQL query

comes in the form of a triple pattern <Subject, Predicate, Object>, in which the user

defines the known term values and specifies the other as unknown. A triple matches

the query pattern if its terms correspond to the ones specified in the query. Main

drawbacks of SPARQL queries regard path expressions, expressions for transitive

closure, rules or updates computing.

• Components for reasoning: With the Open World Assumption, queries over the data

present in a knowledge base are often incompletly answered. Moreover, when ap-

plying reasoning over such data, conclusions cannot be drawn. The Close World

Assumption states that knowledge that cannot be derived from existing data is con-

sidered to be false. With this assumption, and by means of logical rules (expressed

using rule languages), one can perform rule inference on top of ontology-based

knowledge specifications. Rules are expressed with terms defined in ontologies.

Rule languages have been developped since 2000, with the RuleML initiative [9],

which is based on the Logic Programming paradigm and implements a RDF syntax.

The Semantic Web Rule Language (SWRL) [8, 10] is based on Logic Programming

as well, but combines OWL and RuleML. SWRL allows defining conjunctive rules

over the concepts and relationships present in an OWL ontology.

Besides the above considerations and for a better understanding of the work presented

in this paper, we provide the following terms definition:

Definition 1. (Ontology matching) When determining if two ontologies have the

same meaning (adressing the issue of semantic interoperability), an ontology matching

process has to be implemented. Matching is the process of identifying correspondences

between entities of different ontologies Erreur ! Source du renvoi introuvable..

Definition 2. (Ontology alignment) An alignment is a set of correspondences be-

tween one or more ontologies. The alignment is the output of the process of ontology

matching Erreur ! Source du renvoi introuvable.. In this wpaper, we consider that

such alignment is expressed by means of Horn rules (rule axioms).

Definition 3. (Rule or rule axiom) A rule is composed of a rule head (also called

consequent) and a body (also called antecedent). If the head of a rule is true, then its

body is derived as a new assertion.

Definition 4. (Horn clause) A Horn clause is an implication from an antecedent

(set of atomic formulae), to a consequent (single atomic formula) Erreur ! Source du

renvoi introuvable..

Definition 5. (Target and source ontology) When considering a positive Horn rule,

its body generally comprises terms from ontologies different than the ones referencing

terms in the rule’s head. Indeed, when considering semantic interoperability by means

of ontologies, one usually shares data from several source ontologies to one target on-

tology. In this context, an ontology is considered as a source or a target ontology de-

pending on the syntax of rules in the alignment and depending onto which the consid-

ered query is adressed.

3 Related Work

Many efforts were done since the 1980s to interoperate different database schemas,

for instance, Sheth and Larson in [XX] classify the multi-database systems into two

types: non-federated database systems and federated database systems. An example of

a non-federated database is a centralized database which means a single integrated da-

tabase schema. The expression Federated Database Architecture (FDBA) was first in-

troduced by Heimbigner and McLeod in 1985 as a “collection of components to unite

loosely coupled federation in order to share and exchange information” using “an or-

ganization model based on equal, autonomous databases, with sharing controlled by

explicit interfaces.” [XX]. Despite of our work being inspired on such definition of

federated architecture; we define FOWLA as an architecture based on autonomous on-

tologies (including TBox and ABox) with sharing described as a rule-based format con-

trolled by inference mechanisms (e.g. SWRL engine associated to OWL reasoner).

[1] presents a SPARQL query rewriting approach in the context of implementing

interoperability over various ontologies stored in federated RDF datasets. Queries are

addressed to different SPARQL endpoints and are rewritten based on the alignments

defined among the ontologies. Alignments implement a specific alignment format, as

specifyied by the authors. Still, [1] authors do not clearly justify the need of this align-

ment format. Their approach is further detailed in 3, notably by defining several func-

tions for graph pattern rewriting.

In Erreur ! Source du renvoi introuvable., Correndo et al. present a similar ap-

proach. They perform query rewriting for retrieving data from several different

SPARQL endpoints. However, their algorithm takes into account only information

specified as a graph pattern. It ignores constructs such as constraints expressed within

the SPARQL reserved word FILTER.

When comparing both methods, 1 has the advantage of relying on Description Logic,

and consequently supporting different query types (SELECT, CONSTRUCT, etc.),

along with different SPARQL solution modifiers (LIMIT, ORDER BY, etc.). In this

approach, the query rewritting process does not modify graph pattern operators. Still,

both methods ignore the cases where several source and target ontologies can be in-

volved. Correndo et al. Erreur ! Source du renvoi introuvable. provide a explanation

for SPARQL query rewriting implementation by stating that ontology alignments de-

fined on top of the logical layer implie reasoning over a considerable amount of data

thus compromising query execution time. Approaches presented in 1Erreur ! Source

du renvoi introuvable. represent successful optimizations of query execution times.

Still, their main drawbacks concern adressing the possibility for writing queries using

terms from different ontologies, along with offering extended inference capabilities

(e.g. through reasoners and rule engines).

Despite the extensive studies, to the best of our knowledge, there is no work propos-

ing a federated architecture in the context of semantic interoperability of OWL ontolo-

gies.

4 A Federated Architecture for Ontologies (FOWLA)

For addressing the issue of ontology interoperability, we have developed an approach

based on a federated architecture for ontologies, FOWLA. This architecture contains

two main components: the Federal Descriptor (FD) and the Federal Controller (FC).

The FD component is responsible for describing ontology alignments. The FC module

is executed at query time and allows exchanging data among ontologies according to

FD generated alignment. It is also at query time that we check the data access policy

for federated ontologies. The FOWLA architecture is illustrated in Fig. 1.

Fig. 1. FOWLA, Federated Architecture for Ontologies.

In order to describe ontology federation, we can rely on any alignment format pre-

sent in the literature [2]. However, as the FC is a rule-based controller, it is preferable

to use alignment formats based on rule syntax, as, for instance, SWRL rules. This

avoids to convert alignment formats later on in the process.

As illustrated in Fig. 1, the FD module contains two sub-modules: Federal Logical

Schema (FLS) and Federal Concept Instantiation (FCI). The first sub-module is an en-

semble of logical rules describing the correspondences between ontologies. These map-

pings are expressed as logical rules, such as SWRL. Nevertheless, such logical rules

are not capable of creating new concept instances. This is due to undecidability prob-

lems when integrating OWL and SWRL. Therefore, DL-safe rules are implemented for

regaining decidability [6]. To overcome the drawback of new instances’ inference, we

propose including the FCI sub-module in our architecture.

Indeed, data can be modelled in various ways [XX Alon Y. Halevy]. This implies

schema heterogeneity, and consequently, increases the difficulty for establishing ontol-

ogy interoperability. A first step in mitigating this issue is to use only ontologies spec-

ified with one formal language, such as OWL. Still, the same data can be encapsulated

through several concepts from different and independent OWL ontologies. To illustrate

this, let us suppose we want to achieve interoperability over two OWL ontologies

(Onto1 and Onto2), for which we define an alignment through SWRL rules. For the

sake of simplicity, we consider that the URI’s (Uniform Resource Identifier) namespace

identifying a predicate specifies the ontology containing the predicate’s definition. In

other words, onto1:q1(?x,?y) means that predicate q1 is defined in the ontology Onto1.

We consider the alignment between Onto1 and Onto2 is defined using the SWRL rules

listed in 4.1.

swrl1: onto1:D(?x) → onto2:C(?x)

swrl2: onto2:C(?x) → onto1:D(?x)

swrl3: onto1:D(?x) ∧ onto1:q1(?x, ?y) ∧ onto1:A(?y) ∧ onto1:q2(?y,
?z) → onto2:p2(?x, ?z)

swrl4: onto2:C(?x) ∧ onto2:p2(?x,?z) ∧ onto1:A(?y) ∧ onto1:q1(?x,
?y) → onto1:q2(?y,?z)

(4.1)

where onto1:q1 is an OWL object property; onto1:q2 and onto2:p2 are OWL datatype

properties. swrl1 and swrl2 state that onto1:D is equivalent to onto2:C. swrl3 exempli-

fies a complex alignment that maps a graph pattern from Onto1 to a datatype property

from Onto2(i.e. p2). swrl4 is another complex alignment mapping a graph pattern from

Onto1 and Onto2 to a datatype property from Onto1 (i.e. q2).

In our approach, these rules are part of the FLS sub-module. When considering swrl4,

sharing the data values of onto2:p2 to Onto1 implies creating the necessary instances

for concept onto1:A. This is the case because these data values are represented (i.e.

encapsulated) in a different way by Onto1. Nevertheless, defining an alignment rule

such as “onto2:C(?x) ∧ onto2:p2(?x,?z) → onto1:q1(?x, ?y) ∧ createInstances(?y,

onto1:A) ∧ onto1:q2(?y,?z)” is not possible due to undecidability issues.

To tackle this limitation, the FCI sub-module previously creates instances of neces-

sary concepts from the target ontology to encapsulate the data shared by the source

ontology. In other words, the FCI sub-module creates a graph pattern in the Knowledge

Base (KB) by means of class instantiation and property assertion. Doing so, the data

for onto2:p2 is represented with vocabulary terms from Onto1 based on previously de-

fined alignment rules.

For the rules listed in 4.1, the FCI sub-module only considers class instantiation and

property assertion for predicates in the swrl4’s body. Therefore, for each instance Ci of

type onto2:C (which becomes also an instance of type onto1:D when applying swrl2),

one onto1:q1 property is asserted to Ci having as value one newly created instance Ai

of type onto1:A. Once this assertion performed, the SWRL rule engine is capable of

inferring the value of onto1:q2 for Ci by applying swrl4. In addition to what has been

said, the data value of onto2:p2 is not materialized for onto1:q2 by the FCI sub-module.

This, however, is inferred by the rule engine. Fig. 2 illustrates the process of class in-

stantiation and property assertion (in bold), as implemented when sharing the data value

of onto2:p2 to ontology Onto1, based on rule swrl4.

Fig. 2. Class instantiation and property assertion (in bold) for interoperability.

The FC module performs the bulk of necessary inferences to satisfy a data request

from a system based on one or more federated ontologies. To do so, FC contains the

following sub-modules: a Rule Selector (RS) and a Rule Engine associated to an OWL

reasoner. These components are responsible to control the interoperation among the

considered ontologies based on an ensemble of rules (contained in the FLS sub-module)

and some description logic formalism (e.g.: OWL).

The Rule Selector (RS) sub-module is responsible for improving backward-chaining

reasoning. Indeed, when considering the context of executing queries over complex and

numerous alignments, the number of SWRL rules highly impacts query execution time.

The RS module attempts to select the necessary and sufficient ensemble of rules to

answer a given query. This avoids the reasoner to perform unnecessary inferences

which would considerably slow down query processing. Further details of the function-

ing of the RS sub-module are presented in section 4.2.

We motivate our choice of a backward-chaining (or hybrid) reasoner for the FC

module by the fact that interoperating several ontologies with forward-chaining rea-

soner requires storing a considerable amount of materialized data. Besides, any ontol-

ogy modification can imply a re-computation of all inferred data.

Our implementation of the FOWLA architecture comprises two phases (see Fig. 3):

a pre-processing phase and a query execution phase.

Fig. 3. FOWLA: pre-processing and query execution phases.

The pre-processing phase is responsible for creating the FD. The query execution

phase relies on the FC module for retrieving data from the federated ontologies. These

two phases are detailed in the sections 4.1 and 4.2, respectively.

4.1 Pre-processing Phase

For a full ontology interoperation, several complex alignments can be necessary. The

ontology matching process is a fastidious and time consuming task. Because of this, we

recommend the use of automatic ontology matching tools such as ASMOV [7] to sup-

port the alignments’ conception (i.e. matching results). Nevertheless, these automatic

matching solutions depend on the level of user involvement when verifying and vali-

dating the output alignments. Moreover, such solutions are not able to output complex

alignments, such as the one listed in 4.2, where a sub-graph of Onto2 is mapped to a

sole Onto1 property. Therefore, the user involvement in the ontology matching process

is crucial as it was also noticed by Shvaiko and Euzenat in [7].

onto2:C21(?x1) ∧ onto2:C22(?x6) ∧ onto2:C23(?x3) ∧ onto2:C23(?x7) ∧
onto2:C24(?x5) ∧ onto2:C25(?x4) ∧ onto2:C26(?x2) ∧ onto2:p21(?x4,
?x5) ∧ onto2:p22(?x5, ?x6) ∧ onto2:p23(?x2, ?x4) ∧ onto2:p24(?x2, ?x1)
∧ onto2:p25(?x2, ?x3) ∧ onto2:p28(?x7, ?x8) ∧ onto2:p26(?x5, ?x7) ∧
onto2:p27(?x6; ‘‘Category”) ∧ onto2:p28(?x3; ‘‘ProductResource”) →
onto1:p11(?x1; ?x8)

(4.2)

Once we defined the rules forming ontology alignments, if the alignment format is

not a rule-based format such as SWRL, a conversion process is executed (as illustrated

in Fig. 3). The resulting alignments in SWRL rules format are included in the FLS sub-

module. Afterwards, the Query Module (QM) identifies each alignment presenting

schema heterogeneity, and therefore needing class instantiations and property asser-

tions for modelling data from other ontologies. The QM retrieves instances which do

not have property assertions for mapping the data from a source ontology to one target

ontology. For doing so, it relies on SPARQL queries addressed over the knowledge

base (KB). To exemplify this process, let us consider rule swrl4 (see 4.1) as an input to

QM. If a triple onto2:C_1 onto2:p2 “data”^^xsd:string is inserted by an external sys-

tem into the knowledge base, QM materializes the triples onto1:A_1 rdf:type onto1:q1

(i.e. class instantiation) and onto2:C_1 onto1:q1 onto1:A_1 (i.e. property assertion).

Besides, if Onto2 is already populated, QM executes the query Q (see 4.3) over KB

based on swrl4 to retrieve the instances of onto2:C (also onto1:D by applying swrl2)

with no property assertions.

SPARQL Query :
executed

Q : SELECT ?x WHERE { ?x rdf:type onto2:C.
FILTER NOT EXISTS {?x onto1:q1 ?y} }

(4.3)

These properties block the data mapping between Onto2 and Onto1 created when

applying swrl4. Finally, the absent properties are materialized along with new instances

for each one (i.e. object property value).

The pre-processing phase materializes some property assertions if and only if nec-

essary due to schema heterogeneity. This materialized data is deleted when the contents

of the FLS sub-module changes. Besides, if ontology alignments are modified, the QM

is re-executed. The pre-processing phase outputs an ensemble of SWRL rules for the

query execution phase that is described in the following section.

4.2 Query Execution Phase

Once federal description is accomplished, we select the specific rules necessary to an-

swer a given query addressed over the federated ontologies. For addressing this task,

we have developed a SPARQL Query Parser (QP). As shown in Fig. 3, the SPARQL

query is passed to the QP module which parses it and isolates the concepts and proper-

ties it contains. Based on elements such as domain/range restrictions for properties in-

volved in the query, the RS sub-module selects SWRL rules that have to be taken into

account for answering the query. The first action performed by the RS module is to

filter rules in FLS sub-module selecting only those rules that can infer data for the prop-

erties and/or concepts in the query (i.e. query graph patterns QGP as illustrated in Fig.

3). Secondly, for further rule filtering, the RS sub-module identifies the rules which

have the same property in their head and selects only those respecting the domain/range

restriction defined in the query. To exemplify this, let us suppose the query Q’ (see 4.4)

and the same FLS described in (4.1).

Federal Logical
Schema

swrl1: onto1:D(?x) → onto2:C(?x)

swrl2: onto2:C(?x) → onto1:D(?x)

swrl3: onto1:D(?x) ∧ onto1:q1(?x, ?y) ∧

onto1:A(?y) ∧ onto1:q2(?y, ?z) → onto2:p2(?x, ?z)

swrl4: onto2:C(?x) ∧ onto2:p2(?x,?z) ∧ onto1:A(?y)

(4.4)

SPARQL
Query executed

∧ onto1:q1(?x, ?y) → onto1:q2(?y,?z)

Q’ : SELECT ?x ?y WHERE{ ?x rdf:type
onto2:C. ?x onto2:p2 ?y }

Considering query Q’, the RS sub-module selects only the rules swrl1 and swrl3 be-

cause they are the only ones capable of inferring data for onto2:C and for onto2:p2,

respectively. Besides, swrl3 is chosen because it satisfies the domain restriction defined

in the query Q’ (i.e. onto2:C). These rules represent the necessary and sufficient subset

of FLS for answering Q’. Moreover, access policy for interoperation (APIO) is also

used as an input for the RS sub-module (see Fig. 3). This input identifies which rules

are allowed to be considered by the FC module, with respect to data access rights. For

example, if we consider the case where one system is based uniquely on Onto1, such

system could choose not to share the data from onto1:q2. In this case, and if query Q’

is addressed by another system uniquely based on Onto2, RS does not select swrl3. This

is justified by the fact that the system addressing query Q’ is not allowed to have access

to onto1:q2 data values. Finally, our system outputs the eligible set of rules for interop-

erate the federated ontologies. This is called the Activated Rule Set (ARS). We there-

fore execute the initial query over the data contained in the KB and considering only

the rules present in the ARS set.

Therefore, the data present in the KB, for the considered ontologies, is automatically

restructured according to the rules in the ARS. The SWRL engine associated with the

OWL reasoner processes these rules (see Fig. 1). This mechanism allows us to handle

different schemas, thus addressing schema interoperability issue.

5 Results

The implementation of the FOWLA architecture comes with several advantages for

interoperating several ontologies: (1) it allows inferring new ontology alignments; (2)

it allows avoiding data redundancy; (3) it allows modularizing the maintainability,

thought preserving the autonomy among ontology-based systems, (4) it allows querying

with vocabulary terms issued from different ontologies and (5) it allows improving

query execution time.

For demonstrating advantage (1), let us suppose four ontologies (A, B, C and D) and

the alignments described as FD(A, B), FD(B, C), FD(C, D), FD(A, D) and illustrated

in Fig. 4. FD(X, Y) represents the contents of the Federal Descriptor module between

ontologies X and Y. For each of the considered ontologies, we define an Interoperable

Schema (IS) as the sub-graph of this ontology that contains all schemas necessary for

exchanging data with another ontology. The IS sub-graph is composed of correspond-

ent classes and properties between the two considered ontologies. We note IS(X,Y) the

interoperable schema of ontology X for ontology Y. Allowing the inference of data from

one ontology to others (i.e. rule-based interoperability) reduces the number of align-

ments (i.e. rules) that we need to conceive and, in some cases, the conception of the

whole FD(X,Y) component between two ontologies.

Fig. 4. Case study of four ontologies implementing FOWLA

For example, let us consider that ontology C is already populated and IS(C,B) is

equivalent to the whole ontology C. Therefore, with the complete FD(B,C) component

defined, all data of C is accessible by querying ontology B. Moreover, the definition of

FD(A,B) allows retrieving data from the so populated ontology C by querying A (more

precisely the data modelled using IS(B,A) ∩ IS(B,C)). In this case, we do not need to

define FD(C,A) because A and C are indirectly aligned and totally integrated by the FC

using FD(A,B) and FD(B,C). For further explanation, let us suppose that FD(A,B) and

FD(B,C) respectively contain swrl5 and swrl6.

SWRL rules
swrl5 : ontoA:Aa(?x) → ontoB:Bb(?x)

swrl6 : ontoB:Bb(?x) → ontoC:Cc(?x)
(5.1)

SPARQL Query
executed

Q’’ : SELECT ?x WHERE { ?x rdf:type
ontoC:Cc. }

(5.2)

Inferred fact(s) ontoA:Aa(?x) → ontoC:Cc(?x) (5.3)

Considering a rule engine for interpreting those rules and the SPARQL query Q’’

(5.2), the rule engine infers the transitive relation: ontoA:Aa(?x) → ontoC:Cc(?x) (5.3).

Then, the query Q’’ retrieves all instances which belong to ontoA:Aa, ontoB:Bb and

ontoC:Cc classes. Therefore, we do not need to define the alignment (5.3) in FD(A,C),

because it is inferred by the FC at query execution time. With this example, we demon-

strate that, for a given query, query rewriting approaches such as 1 or Erreur ! Source

du renvoi introuvable. (as presented in Section 3) do not retrieve all pertaining results.

Compared to 1 or Erreur ! Source du renvoi introuvable., FOWLA allows simplify-

ing the ontology matching process when applied to several ontologies adressing similar

knowledge domains (i.e. schemas which aim at modelling similar kinds of information).

The use of backward-chaining techniques by the FC module allows the federated

ontologies to not replicate interoperability data among them. This is because rule infer-

ence is performed at query execution and doesn’t need materializing the same shareable

data. Consequently, the data modelled with one ontology is available (inferred) for oth-

ers by applying rule-based alignments. Then, once data changes in the source ontology,

FC infers the new modified data for the target ontologies. The advantage (2) is illus-

trated in one previous example in the section 4 and illustrated in Fig. 2.

For exemplifying the advantage (3), let us suppose a modification in the ontology

schema A, more precisely in the sub-graph IS(A,D) – { IS(A,B) ∩ IS(A,D) } from our

previous case study represented in Fig. 4. In this case, the sole components which have

to evolve are FD(A,D) and IS(D,A). Doing so, we preserve the full interoperability

among A, D and the other ontologies. The other FDs and ontologies remain unchanged.

Note that only the system based on ontology A has to evolve which is not the case for

systems based on ontologies B, C and D. This is explained by the fact that the underly-

ing schemas for ontologies B, C and D have not been modified. Therefore, besides im-

plementing ontology interoperability, we also preserve each systems’ autonomy.

 For evaluating FOWLA and justifying the advantage (4) and (5), we consider two

OWL-Lite ontologies (Onto1 and Onto2), for which we define the FD(Onto1,Onto2).

Table 1 lists some characteristics of these ontologies. The FLS (i.e. alignments) be-

tween these two ontologies comprises 474 SWRL rules which were manually created

(most of them are complex alignments, involving numerous predicates).

Table 1. Characteristics of Onto1 and Onto2

OWL entities Onto1 Onto2

Classes 30 802

Object properties 32 1292

Data properties 125 247

Inverse properties 7 115

Triples in the TBox 2212 9978

DL expressivity ALCHIF(D) ALUIF(D)

For our experiments, we have used a 2.2.1 Stardog triple store [16] which played the

role of the server and was encapsulated in a virtual machine with the following config-

uration: one microprocessor Intel Xeon CPU E5-2430 at 2.2GHz with 2 cores out of 6,

8GB of DDR3 RAM memory and the “Java Heap” size for the Java Virtual Machine

set to 6GB. We chose Stardog because it provides an OWL reasoner associated to a

SWRL engine and it is based on backward-chaining reasoning [XX]. Indeed, our RS

sub-module only aims at hybrid or backward-chaining reasoning approaches [XX] (as

in forward-chaining reasoning [XX] are materialized all facts entailed). So, Stardog’s

reasoner and the RS sub-module constitute the Federal Controller (FC) module. The

considered triple store contains 4 repositories. Each repository stores the Onto1 and

Onto2 knowledge base (Onto1’s TBox and ABox and Onto2’s TBox and ABox). We

name those repositories KB1, KB2, KB3 and KB4. For the considered example, each

respository’s ABox contains more than one million triples. For testing purposes and for

each repository, we have implemented sets of interoperability rules with different car-

dinalities. Table 2 lists the considered set of rules along with their characteristics.
Table 2. Rules implemented for each knowledge base (KB)

 Number of

rules

Characteristics

KB1 474 All the rules contained in the FLS (all the rules forming the alignment between

Onto1 and Onto2)

KB2 266 All subsumption rules along with all the rules that have elements from Onto1 in

their head

KB3 178 All rules from KB2 minus some of the rules that have elements from Onto1 in

their head (we aimed at reducing the data inferred)

KB4 variable All the rules contained in the Activated Rule Set (ARS) conceived by the RS.

For these tests, we have used a client machine with the following configuration: one

microprocessor Intel Core CPU I5-3470 at 3.2GHz with 4 cores, 4GB of DDR3 RAM

memory at 800MHz and a “Java Heap” size set to 1GB. The client machine executes

the RS sub-module presented in this paper.

Table 3 shows the queries used in our experiments. For the sake of simplicity, we

note Cij the class Cj in ontology Ontoi, respectively pkl the pl property in ontology On-

tok, where i, j, k, l ℕ*. Each one was executed 30 times over the knowledge bases

KB1, KB2, KB3 and KB4. Table 4 shows the results we obtained. The capability of

retrieving results for query Q2 and Q3 demonstrate that our approach allows querying

federated ontologies, treating them as one unique ontology. Because, we can write que-

ries using at same time terms from Onto1 and Onto2. So, this justifies the advantage

(4).
Table 3. List of queries addressed over the considered knowledge bases

Query name SPARQL Query

Q1 SELECT ?x ?y WHERE { ?x onto1:p11 ?y . }

Q2 SELECT ?x ?y WHERE { ?x a onto2:C21 . ?x onto1:p11 ?y . }

Q3 SELECT ?x ?u WHERE { ?x a onto1:C11 . ?y a onto2:C22 .

?x onto1:p12 ?y . ?y onto1:p11 ?x . }

In Table 4, the “#RuleSet” column displays the number of rules as implemented

over the considered KB, at query execution time. The “#Results” column shows the

number of tuples that were retrieved as a result for the considered query (e.g. {?x,?y}

for Q1). In Table 4, “-“ means that no results were retrieved for the considered query

after more than 1 minute waiting time. The reason relies in the fact that the memory

heap size (6GB) for the Java Virtual Machine is exceeded.

Table 4. Query Performance Evaluation

Query

Knowledge

base

Mean execu-

tion time

(in seconds)

Standard

Deviation

() #RuleSet #Results

Q1

KB1 - - 474 0

KB2 - - 266 0

KB3 9.25 12.21 178 1683

KB4 2.23 1.78 16 38318

Q2

KB1 - - 474 0

KB2 - - 266 0

KB3 32.99 0.75 178 74

KB4 0.16 0.04 2 74

Q3

KB1 - - 474 0

KB2 - - 266 0

KB3 71.62 0.95 178 0

KB4 0.88 0.43 5 9

When analyzing results, we can see that, for answering query Q1, our methodology

has selected 16 rules from the initial set of 474 rules (i.e. the FLS). The results also

indicate that without our approach no result is retrieved as long as the entire FLS is

considered, due to memory overload and after about 3 minutes of query execution over

KB1. When executed over KB2, Q1 evidences that reducing the cardinality of the initial

rule set to 266 does not prevent memory overload. When executing Q1 over KB3

(which implements less than 40% of FLS rules), Q1 returns less than 5% of all expected

results. This is explained by the fact that several of the relevant rules for Q1 were re-

moved when conceiving our test knowledge bases. Moreover, when compared to Q1

over KB4, Q1 over KB3 has a duration 4 times greater and retrieves 22 times less re-

sults. Indeed, KB4 implements the only rules contained in the FLS, so the results of Q1

executed over KB4 represent the gain (in terms of query execution time and results

retrieved) achieved by implementing our approach. When applied to Q2, the RS sub-

module takes into account the domain restriction defined within Q2 (e.g. ?x a

onto2:C21). It then creates an FLS set containing only 2 rules instead of 16, as it was

previously the case for Q1 (which did not had any domain information for the property

onto1:p11). For the above considered tests, the mean query execution times have been

considerably reduced. The standard deviation for the query response time is much lower

using our RS sub-module, meaning the query response time is more centralized onto

the mean.

6 Conclusion and Future Work

In this work, we focus on schema-level heterogeneity however implementing

FOWLA can reduce also data-level heterogeneity if the Federated Logic Schema is

defined using the SWRL built-ins (e.g. swrlb vocabulary [XX]).

Acknowledgement

This work has been financed by the French company ACTIVe3D1 and supported by

the Burgundy Regional Council2.

7 References

1. Konstantinos Makris, Nektarios Gioldasis, Nikos Bikakis, and Stavros Christodoulakis. On-

tology mapping and sparql rewriting for querying federated rdf data sources. In Proceedings

of the 2010 International Conference on On the Move to Meaningful Internet Systems: Part

II, OTM’10, pages 1108–1117, Berlin, Heidelberg, 2010. Springer-Verlag.

2. J. Euzenat, P. Shvaiko. Ontology Matching, Second Edition, Springer-Verlag Berlin Heidel-

berg, Germany, DOI: 10.1007/978-3-642-38721-0, 2013

3. Konstantinos Makris, Nektarios Gioldasis, Nikos Bikakis, and Stavros Christodoulakis.

Sparql rewriting for query mediation over mapped ontologies. http://www.music.tuc.gr/re-

ports/SPARQLREWRITING.PDF, 2010. [Online; accessed 2015-02-26].

4. Gianluca Correndo, Manuel Salvadores, Ian Millard, Hugh Glaser, and Nigel Shadbolt.

Sparql query rewriting for implementing data integration over linked data. In Proceedings

of the 2010 EDBT/ICDT Workshops, EDBT ’10, pages 4:1–4:11, New York, NY, USA,

2010. ACM

5. Dizza Beimel and Mor Peleg. Using owl and swrl to represent and reason with situation-

based access control policies. Data & Knowledge Engineering, 70(6):596–615, 2011.

6. Boris Motik, Ulrike Sattler, Rudi Studer, Query Answering for OWL-DL with Rules, in

Journal of Web Semantics (Elsevier) 3 (1): 41–60. http://www.cs.ox.ac.uk/bo-

ris.motik/pubs/mss05query-journal.pdf [Online; accessed 2015-02-26].

7. Shvaiko Pavel and Jerome Euzenat. Ontology matching: State of the art and future chal-

lenges. IEEE Trans. on Knowl. and Data Eng., 25(1):158–176, January 2013.

8. Sheth A. P. & Larson J. A.: Federated Database Systems for Managing Distributed, Heter-

ogeneous, and Autonomous Databases. ACM Computing Surveys, Volume 22, N° 3 (1990)

9. The World Wide Web Consortium (W3C), http://www.w3.org/

10. RuleML, http://www.ruleml.org

11. Horrocks, I., Patel-Schneider, P. F., Bechhofer, S. & Tsarkov, D. (2005). OWL rules: A

proposal and prototype implementation. Journal of Web Semantics, 3(1):23-40

12. Gehre, A., Katranuschkov, P., Wix, J., & Beetz, J.: Interoperability of Virtual Organizations

on a Complex Semantic Grid. Dresden: InteliGrid (2006)

13. Allemang, D. & Hendler, J.: Semantic Web for the Working Ontologist. (M. Kaufmann,

Ed.) San Francisco: In Dean Allemang and James Hendler (2008)

1 http://www.active3d.net/fr/
2 http://www.region-bourgogne.fr/

http://www.cs.ox.ac.uk/boris.motik/pubs/mss05query-journal.pdf
http://www.cs.ox.ac.uk/boris.motik/pubs/mss05query-journal.pdf
http://www.w3.org/
http://www.ruleml.org/

14. Dibley, M. J.: An Intelligent System for Facility Management. Wales, UK: Cardiff School

of Engineering, Cardiff University (2011)

15. Tim Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y. & Hendler, J. N3Logic: A logical

framework for the World Wide Web. Theory and Practice of Logic Programming, 8, pp 249-

269 (2008).

16. Stardog version 2.1.3, http://stardog.com/

