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In Medical Body Area Sensor Networks (MBASNs), the body medical sensors are deployed on or in the patient's body and communicate using wireless interfaces. This communication mode makes the network more vulnerable to attacks. An intruder can encrust in the network and eavesdrop, inject or replay medical data. The sensors must be able to exchange secure medical information of the patient. The security mechanisms based on biometric features allow to hide and generate keys to be shared among the sensors. In this paper, we propose an electrocardiogram-based authentication scheme for MBASNs, in which we develop a new mechanism of biometric feature extraction. This mechanism extracts with a high precision the electrocardiogram-based features and achieves higher efficiency of authentication among the sensors. Through the security analysis, we demonstrate the robustness of our scheme against attacks. Moreover, we demonstrate the reliability of our solution in terms of communication overhead and processing time with comparison to concurrent schemes.

Introduction

Medical Body Area Sensor Networks (MBASNs) are networks of wireless medical sensors, implanted/placed directly or close to the body. These sensors are able to measure the characteristics of the human body (e.g. heart rate), its external environment (e.g. temperature) and movements for remote medical assistance to improve conventional health systems [START_REF] Bao | Physiological Signal Based Entity Authentication for Body Area Sensor Networks and Mobile Healthcare Systems[END_REF]. However, real-time patients data access is a challenging issue in telemedicine so that health professionals can diagnose anomalies in the patient's body and treat them quickly. The integrity of the measured data on the patient's body must be assured. Otherwise, the diagnosis will be erroneous and the treatments may be inappropriate, which can endanger the the patient's health. Also, the disclosure of patient's medical data can lead to social stigma and negative discrimination when they concern psychiatric disorders, for example. They can also have economic value and be sold to the media. The confidentiality of medical data is important, not only to protect the health of the patient, but also to protect his privacy [START_REF] Appari | Information Security and Privacy in Hhealthcare: Current State of Research[END_REF]. In MBASNs, multiple sensors can be within range even if they are not deployed in the same body. The interferences between sensors of different MBASNs is another threat to consider [START_REF] Johny | Body Area Sensor Networks: Requirements, Operations and Challenges[END_REF]. Indeed, the interferences may have an impact on the remote diagnosis leading to adverse drug interactions or a suppression of necessary treatment procedures. Mobile and healthcare systems can be subject to several other issues yet to be solved [START_REF] Johny | Body Area Sensor Networks: Requirements, Operations and Challenges[END_REF].

Several solutions have been proposed to secure inter-sensor communications. Some solutions are mainly based on the use of the symmetric encryption which requires a pre-deployment phase. However, given the progressively increasing size of MBASNs, these solutions may potentially involve considerable latency during the network setup or any subsequent adjustments, due to their need for pre-deployment [START_REF] Venkatasubramanian | PSKA: Usable and Secure Key Agreement Scheme for Body Area Networks[END_REF]. Besides, it is also needed to achieve simple key establishing phases and to minimize memory consumption for the sensor nodes. Considering the quick responses required for emergencies in MBASNs, symmetric encryption is, however, more suitable than asymmetric encryption. On the other hand, biometrics combined to cryptography is claimed to be a good approach for authentication and generation of random keys in MBASNs as explained by Poon et al. [START_REF] Poon | A Novel Biometrics Method to Secure Wireless Body Are Sensor Networks for Telemedecine and M-Health[END_REF]. According to them, heart rate can be an excellent generator of biometric features to secure the MBASNs. In fact, the measured signals from heart rate are of a chaotic nature [START_REF] Radojicic | On the Presence of Deterministic Chaos in HRV Signals[END_REF]. Interpulse Interval (IPI) [START_REF] Poon | A Novel Biometrics Method to Secure Wireless Body Are Sensor Networks for Telemedecine and M-Health[END_REF] is obtained from the electrocardiogram (ECG) and can be used to generate random biometric characteristics and then the cryptographic-keys. They can also be used to distinguish between sensors of the same patient's body and those belonging to another body as it is the case for [START_REF] Bao | Physiological Signal Based Entity Authentication for Body Area Sensor Networks and Mobile Healthcare Systems[END_REF]. In addition, the ECG signal can be collected from several parts of the patient's body at a reasonably low cost [START_REF] Poon | A Novel Biometrics Method to Secure Wireless Body Are Sensor Networks for Telemedecine and M-Health[END_REF]. However, errors may occure when measuring the ECG signals due to the dynamic nature of the human body [START_REF] Poon | A Novel Biometrics Method to Secure Wireless Body Are Sensor Networks for Telemedecine and M-Health[END_REF]. Using the extracted features directly to generate symmetric-keys and authenticate the sensor nodes will increase false rejection (FRR) and false acceptation rates (FAR). The Enhanced FFT (Enhanced Fast Fourier Transform) [START_REF] Venkatasubramanian | PSKA: Usable and Secure Key Agreement Scheme for Body Area Networks[END_REF] extraction method have been proposed to decrease FRR and FAR, but this method is still not suitable for emergencies due to the high overhead which generates in terms of both time and storage. Many schemes have attempted to resolve this problem by using the "fuzzy vault" scheme [START_REF] Venkatasubramanian | PSKA: Usable and Secure Key Agreement Scheme for Body Area Networks[END_REF][START_REF] Kishore | An Efficient and Secure Key Agreement Scheme Using Physiological Signals in Body Area Network[END_REF][START_REF] Hu | OPFKA: Secure and Efficient Ordered-Physiological-Feature-based Key Agreement for Wireless Body Area Networks[END_REF] which consists on adding chaff points to the biometric features in order to hide them before exchanging the "fuzzy vault". Unfortunately, these schemes require high memory to store the chaff points. The lack of energy resources, computation and storage of the sensors presents a hard challenge, which should be addressed by establishing a tradeoff between the security and the efficiency.

The purpose of our work is to protect the communication between the sensors by ensuring authentication when sharing cryptographic-keys without any pre-deployment phase. In this paper, we have first proposed a new method of ECG-based feature extraction which reduces latency in measuring the ECG signal and extracting the biometric features. Second, we have proposed a secure and efficient biometric based scheme for authentication. In our solution, we use the Elliptic Curve Diffie-Hellman (ECDH) protocol in order to establish a pairwise key between the sensor nodes and avoid pre-deployment so that the remote treatment process will not be delayed by updating the MBASN, which is very useful in case of emergency. The use of ECDH provides a high level of security with shorter keys. It also avoids the transmission of the private-key and reduces the computation power, memory, bandwidth and energy consumption compared to [START_REF] Venkatasubramanian | PSKA: Usable and Secure Key Agreement Scheme for Body Area Networks[END_REF][START_REF] Kishore | An Efficient and Secure Key Agreement Scheme Using Physiological Signals in Body Area Network[END_REF][START_REF] Hu | OPFKA: Secure and Efficient Ordered-Physiological-Feature-based Key Agreement for Wireless Body Area Networks[END_REF]. When a sensor node joins the network for the first time, an initialization phase is executed in order to compute its private-key and other parameters for the key exchange. In a synchronized manner, the sensor nodes extract the ECG-based features. We use the ECDH key agreement protocol to generate the keys among the sensor nodes. Finally, the sensor nodes exchange a part of their biometric features and compare it with the other one using the Hamming distance. Through the security analysis, we demonstrate the robustness of our scheme against attacks. Moreover, we use FRR and FAR to demonstrate the reliability of our method for extracting the ECG-based features in comparison with the Enhanced FFT method. We also demonstrate through simulations the efficiency of our protocol in terms of communication overhead and processing time. The contribution of this paper is double:

(1) We propose an efficient method of ECG-based feature extraction. We analyze its best setting in terms of the number of MBSs (Most Significant Bits), and then, its efficiency is tested over a real samples of patient ECG files. The results indicate a considerable reduction in terms of required iteration number, features vector lengths, extraction duration, FRR and FAR.

(2) We propose a secure and efficient ECG-based scheme for authentication in MBASNs. The scheme is secure against the impersonation, man in the middle, session hijacking, Sybil, replay and brute force attacks. The scheme is efficient in terms of communication, time processing and storage overheads. Its efficiency is tested through simulations with comparison to all the reviewed solutions in this paper.

The remaining of this paper is structured as follows. In Section 2, we review the related works aiming to secure inter-sensor communication using physiological signals. In Section 3, we present the attack and system models, and in Section 4, we give the detailed description of our scheme operations.

In Section 5, we analyze the security of our scheme, and in Section 6, we evaluate its performances with comparison to other schemes. Finally, we conclude the paper in Section 7.

Related work

The MBASNs are faced to several challenges and many solutions have been proposed [START_REF] Johny | Body Area Sensor Networks: Requirements, Operations and Challenges[END_REF][START_REF] Patel | Applications, Challenges and Prospective in Emerging Body Area Networking Technologies[END_REF]. The security is considered as one of the most important issues since the transmitted data are not only private, but can also be misused putting the patient's life in danger [START_REF] Poon | A Novel Biometrics Method to Secure Wireless Body Are Sensor Networks for Telemedecine and M-Health[END_REF]. Among the proposed solutions in the literature, some of them allow the sensors to generate a secret-key from the biometric features, while others use these features to facilitate the key exchange.

Most of the proposed schemes employs IPI [START_REF] Poon | A Novel Biometrics Method to Secure Wireless Body Are Sensor Networks for Telemedecine and M-Health[END_REF] to generate the cryptographickeys. IPI supports many physiological signals [START_REF] Poon | A Novel Biometrics Method to Secure Wireless Body Are Sensor Networks for Telemedecine and M-Health[END_REF], but an experimental study [START_REF] Venkatasubramanian | PSKA: Usable and Secure Key Agreement Scheme for Body Area Networks[END_REF] indicated that the average Hamming distances between two keys obtained from the same patient and different patients are 60 and 65, respectively. To address this problem, Venkatasubranmanian et al. [START_REF] Venkatasubramanian | PSKA: Usable and Secure Key Agreement Scheme for Body Area Networks[END_REF] have proposed to use the fuzzy vault method in their scheme, called Physiological Signal-based Key Agreement (PSKA). In PSKA, the fuzzy vault is used to hide a vector of the extracted features from a physiological signal by adding chaff points to the features vector before sending them to the receiver. While PSKA uses the fuzzy vault only to exchange keys, Kishore et al. [START_REF] Kishore | An Efficient and Secure Key Agreement Scheme Using Physiological Signals in Body Area Network[END_REF] have proposed to use the fuzzy vault to hide a features vector and to generate a cubic spline from which a key is extracted. However, the security of these schemes strongly depends on the size of the vault. This increases the probability that the chaff points added by the transmitter overlap with the characteristics of the receiver. Therefore, false rejections are conducted, in addition to increasing energy consumption and complexity of storage and computation. Hu et al. [START_REF] Hu | OPFKA: Secure and Efficient Ordered-Physiological-Feature-based Key Agreement for Wireless Body Area Networks[END_REF] have proposed to use "simple noisy data" as chaff points to construct a "coffer" where the data are hidden and from which, the receiver constructs a vector of indices to indicate to the sender the positions of the overlapped features that form the secret-key. Instead of using additional points to hide the information, Jammali et al. [START_REF] Jammali | PFKA: A physiological Feature based Key Agreement for Wireless Body Area Network[END_REF] have attempted to encrypt the features vector of the sender F s with a randomly generated vector F . Upon receiving, the sensor node uses its extracted features vector F r to find F . Afterwards, each sensor node concatenates its respective features vector with F and obtains the secret-key. However, the features vector may be not identical and the obtained secret-key by each sensor node may be different. In [START_REF] Zhang | ECG-Cryptography and Authentication in Body Area Networks[END_REF], Zhang et al. have used a monic polynomial with a degree s whose coefficients are extracted from the ECG signal, and a secret-key is generated at the sender based on the ECG features. The encrypted data and t coefficients are sent to the receiver with a hash value. The receiver then, uses a "Reed Solomon" encoding to recover the key based on the t received coefficients from the sender. However, it has been proved that the "Reed Solomon" structure can be completely recovered with a polynomial algorithm [START_REF] Sidelnikov | On Insecurity of Cryptosystems based on Generalized Reed-Solomon Codes[END_REF].

Table 1: Overall comparison (: conscientiously addressed, : not or partially addressed)

[8] [1] [4] [5] [6] Security Biometrics extraction Energy awareness Computation and storage

In Table 1, we give an overall comparison of the reviewed schemes based on the following criteria:

(1) Security: the network must be secure against any type of attack affecting the patient's private life and the success of the remote treatment process (such as impersonation, man in the middle, replay, etc.). ( 2) Biometrics extraction: when two sensors measure the same physiological signal at the same time, the two sets of extracted features are not always identical. The schemes must address this problem by minimizing both of FRR and FAR. (3) Energy awareness: the battery of the sensors has a very limited capacity. The schemes must minimize the power consumption in order to prolong the network lifetime.

(4) Computation and storage: the sensors have a very limited memory and computational capacities. The storage must be optimized in key management. In other hand, a complex algorithm may compromise the efficiency of the targeted application in terms of delay.

System and attack models

In MBASNs, the sensor nodes have the ability to measure health parameters (ECG, PPG, EEG, etc.) on the patient's body. These data can be transmitted either directly or via a sensor-head responsible for sending the information to the data hub. The data hub then transmits the patient's data to the central processing center or to the information server of a hospital, where the healthcare professionals can establish a diagnosis. We assume that all the sensor nodes are within range and are deployed on or in the patient's body. Only the sensor nodes installed by the physician or the surgeon are considered as legitimate. They are the only sensors which are able to measure the patient's physiological signals. An intruder can be in the form of an attacker within range of the legitimate sensor nodes seeking access to the exchanged patient's medical information in the MBASN. It could be also a sensor worn by another patient which is within range of the legitimate sensor nodes. We assume that the network is exposed to several attacks, namely [START_REF] Lupu | Main types of attacks in wireless sensor networks[END_REF][START_REF] Newsome | The Sybil Attack in Sensor Networks: Analysis and Defenses[END_REF][START_REF] Dave | Brute-force Attack "Seeking but Distressing[END_REF]:

(1) Impersonation: an attacker may steal the identity of a legitimate sensor in order to do what only the sensor members are authorized to do. (2) Man in the middle: an attacker may secretly mediate between two communicating sensors, and hence, try to perform the role of both of them. (3) Session hijacking: an attacker may expect from two sensors to initiate a communication session before it takes the place of one of them. (4) Sybil: an attacker may usurp the identity of several sensors in order to collect privileges and/or to compromise the network. ( 5) Replay: an attacker may reutilize past exchanged messages between the sensors in their encrypted form in order to be authenticated as a legitimate sensor member. (6) Brute force: an attacker may cryptanalyze the exchanged messages in order to get information about the secret-keys and/or the private patient data.

The proposed scheme

The purpose of our work is to develop a secure and efficient ECG-based authentication scheme that enables each pair of sensor nodes to exchange an encryption-key. With the latter, the sensor nodes will be able to authenticate each other and protect the exchanged medical data. The key exchange is processed using the ECDH protocol [START_REF] Anoop | Elliptic Curve Cryptography an implementation tutorial[END_REF]. However, this protocol does not guarantee the authentication during the key exchange process. Hence, we propose to enhance the process by integrating an authentication phase to ensure that only the sensor nodes of the same MBASN can access to patient's data.

The authentication between the sensor nodes is performed using a biometric technique based on the measurement of the ECG signal. According to Poon et al. [START_REF] Poon | A Novel Biometrics Method to Secure Wireless Body Are Sensor Networks for Telemedecine and M-Health[END_REF], time information about heart beats can be an excellent biometric feature for securing MBASNs due to the chaotic nature of heart rate variability. Indeed, the time interval between two successive heart beats at a given instant, is the same for all the sensor nodes measuring the same ECG signal, but is different for each individual [START_REF] Poon | A Novel Biometrics Method to Secure Wireless Body Are Sensor Networks for Telemedecine and M-Health[END_REF]. Therefore, the ECG signal can be efficiently used to authenticate the sensor nodes of the same MBASN, as well as to obtain sufficiently random encryption-keys [START_REF] Poon | A Novel Biometrics Method to Secure Wireless Body Are Sensor Networks for Telemedecine and M-Health[END_REF]. As illustrated in Figure 1, the key exchange and authentication process of our scheme requires four main phases, namely:

(1) Initialization phase, where both the sensor nodes agree upon the parameters to consider in the key exchange and authentication process. (2) Feature extraction phase, where the ECG signal is measured and used to generate biometric features. (3) Key exchange phase, where the key is computed and shared according to the ECDH protocol. (4) Authentication phase, where the biometric features of the two sensors are checked.

In Table 2, we present the important notations used in this paper, and in the following subsections, we give the description of each phase.

Initialization phase

Initially, two sensor nodes agree, in a public manner, on an elliptic curve E(a, b, p) defined over a finite field F p . The equation of the elliptic curve E is defined as [START_REF] Anoop | Elliptic Curve Cryptography an implementation tutorial[END_REF]: Where, the integers a and b verify the condition:

y 2 mod p = x 3 + ax + b mod p. (1) 
4a 3 + 27b 2 mod p = 0. (2) 
The two sensor nodes also agree on a point generator G(x g , y g ) of the curve, which is used for the key computation. The ECDH requires from each sensor node i to randomly choose a number d i from N * as a privatekey. Then, each sensor node i, computes its public-key Q i where:

Q i = d i • G. (3) 
The computation of the private-key d i requires a random number generator algorithm. This generates additional costs regarding the time complexity and energy, especially in the case of frequent key updates. Therefore, we propose to use the extracted biometric features from the ECG signal as a private-key. The features used previously for the authentication can be subsequently reused as the new private-key. Indeed, if the authentication is successful, then the biometric features form the new private-key d i . Otherwise, the sensor node measures the ECG signal at a random time and extracts the new private-key.

Feature extraction phase

Each sensor node measures the ECG signal in a synchronized manner and divides it into severals windows, which are first submitted to a Fast Fourier Transformer (FFT) then to an integral computation. The results of the integral computation are converted into binary strings and concatenated to form a vector of biometric features I. The purpose of using the integral computation is to consider all the points of the curve forming the signal and thus, take full advantage of the chaotic nature of heart rate variability, compared to the Enhanced FFT method [START_REF] Venkatasubramanian | PSKA: Usable and Secure Key Agreement Scheme for Body Area Networks[END_REF], which uses a limited number of points. The feature extraction phase of our scheme is illustrated in Figure 2.

In order to obtain usable biometric features for authentication, it is necessary for both sensor nodes to be synchronized. The sensor node A sends to B a request containing ID a , ID b and a period T a , chosen randomly. Then, the sensor node B responds with T b , chosen randomly. Afterwards, both A and B compute s = |T a -T b |. Finally, the sensor nodes A and B wait for a period of time equivalent to s before starting to measuring the ECG signal 

d a • Q b = d a • d b • G = d b • d a • G = d b • Q a . ( 4 
)
then the secret-key is:

SK ab = d a • Q b = d b • Q a . ( 5 
)
The key exchange phase is illustrated in Figure 4. 

Authentication phase

This phase, which is illustrated in Figure 5, identifies whether the generated key will be used or not to secure the communication. This phase is executed as follows. The sensor nodes A and B divide their biometric features vectors into two parts, a left side I l i and a right side I r i , where i ∈ {a, b}. The sensor node A sends I l a SK ab , the left side of its features vector encrypted with the shared key SK ab to the sensor node B. Upon receiving, B decrypts the block using SK ab . Although I l a and I l b may seem slightly different, if the sensor nodes are synchronized and use an efficient feature extraction method, the difference between the two vectors does not exceed a threshold. Thus, we use a threshold h to authenticate the two sensors. Let h be the Hamming distance between I l b and I l a . If H(I l a , I l b ) > h, then the sensor node B rejects the authentication request. Otherwise, B responds with the right part of its features vector encrypted with SK ab to A. Upon receiving, the sensor node A proceeds in the same way. In the case of H(I r a , I r b ) h, A sends a positive acknowledgment to B. Otherwise, the authentication process fails.

The constant variation of the ECG signal is advantageous since it is very difficult for an attacker to generate it. As for the legitimate nodes, since they are on the same body, they have to be synchronized in order to measure the ECG signal at the same time and obtain similar features, which will be used for the authentication process of our method. Once the session expires, the ECG signal cannot be reused for future authentication sessions since they are no longer valid. Thus, a replay attack using these features would be detected.

Security analysis

In this section, we analyze the security of our proposed scheme by showing its resistance against the attacks described in Section 3.

Impersonation attack

Biometric authentication is a solution to counter this attack. If an attacker wants to be authenticated as a sensor node belonging to the MBASN, it must obtain the biometric features from the ECG signal. However, only the legitimate sensor nodes are able to measure the ECG signal which are difficult to fake or reproduce given the chaotic nature of heart rate variability. Suppose that an attacker manage to exchange a key with a sensor node A of the MBASN. In the authentication phase, A must receive the left side of the characteristics of the attacker node before sending its right side.

Man in the middle attack

All the sensor nodes of the MBASN are within range. The authentication process will then be performed directly between any pair of sensor nodes without intermediate nodes. An attacker, trying to stand between the two sensor nodes A and B will have no way to impersonate neither A nor B. It is hard to launch a man in the middle attack in such case, because both A and B receive the messages transmitted by the attacker.

Session hijacking attack

Once the two sensor nodes A and B are mutually authenticated, each exchanged message is encrypted with the shared key SK ab . If an attacker wishes to impersonate A after the latter has been authenticated, it must have either the private-key of A or SK ab . However, neither the private-key is communicated, nor is the key SK ab which is only known by A and B. Even if the attacker makes A unavailable with a denial of service attack and then impersonates the sensor node, it cannot retrieve the patient's data from the messages sent from B to A.

Sybil attack

Suppose that an attacker wishes to impersonate two different sensor nodes A and B. To do that, it must first exchange a key with A and another key with B. It can then attempt to obtain the biometric features of B to be successfully authenticated to A and those of A to be authenticated to B. However, neither A nor B would send their biometric features before receiving the other part of the features vector and checking it using the Hamming distance. This also is valid for an attacker who can steal more than two identities, the Sybil attack cannot be successfully achieved.

Replay attack

An attacker cannot reuse messages from a session in another one since the key is frequently updated and the biometric features are time variant. Suppose that an attacker happen to intercept I l a SK ab from A and wishes to be authenticated to B. The attacker will be tempted to use Q a as a publickey and reuse I l a SK ab . However, SK ab and the biometric features I l a are no longer valid since the private-key of B, which is used to compute SK ab , has already been updated and the Hamming distance between the reused biometric features and the recent ones would not be within the threshold, since they have not been extracted from two ECG signals measured at the same time.

Brute force attack

This attack is countered by our scheme thanks to the randomness of the biometric features used in the key exchange and the authentication. Indeed, the chaotic nature of the heart rate does not allow to quickly find the biometric features that can be extracted from the ECG signal, or even infer the next ones. For a sequence of 64 bits, there are about 1.8 × 10 19 possible keys and biometric features to be tested.

Performance evaluation

In this section, we evaluate first the efficiency of our feature extraction method and then we test the performances of our authentication solution with comparison to the concurrent schemes.

Our feature extraction method efficiency

We have used clean ECG data provided by the BEM company ("Bejaia Equipement Médical", Algeria). These data were collected from 11 different patients using Holter monitors. They were basically collected for medical purpose during a period of 24 hours at a sampling rate of 200Hz. We have used about 2s of the ECG data for each subject with a window size of 30 points for h = 22. Figure 6 shows the obtained variation of our scheme in terms of FRR and FAR in function of the number of MSBs (Most Significant Bits) taken from each result of the integral computation. FRR= 0.16 and FAR= 0.17 are the lowest rates and are obtained when we consider MSB = 10bits. In this case, only 60ms of the ECG data are used to obtain a features vector of 128bits

Regarding the Enhanced FTT method, the optimal FRR and FAR rates are obtained when the order of used polynomial is 14 [START_REF] Venkatasubramanian | PSKA: Usable and Secure Key Agreement Scheme for Body Area Networks[END_REF]. In Table 3, we give the obtained results with comparison to our solution. Indeed, our method ensures lower FRR and FAR than the Enhanced FFT method and also shorter ECG signal to compute longer ECG features vector. This is due to the fact that in our feature extraction method, we do not use only peaks to compute the vector, but every single point obtained from the sampling. Thus, the information between two peaks will not be wasted. The biometric features obtained using our method are perfectly usable for both authenticating the sensor nodes and computing random keys. However, those features should not be used directly as a shared key since the Hamming distance is not always null. Otherwise, the keys would not be the same and the symmetric encryption and encryption functions would be erroneous. 

Our authentication scheme efficiency

The implementation of our solution and all the concurrent schemes presented in Section 2 are performed using Java programming language. To evaluate the performances of each scheme, we simulate two sensor nodes which are deployed on a patient's body to monitor his physiological signal. The authentication process operates over biometric features extracted from two physiological signals measured on the patient's body, at the same time, by the sensors. The performance metrics are: (1) the communication cost, which represents the total size of data sent out per sensor node in the mutual authentication session, and (2) the processing time, which represents the required time involved in the execution per sensor node in the mutual authentication session. To estimate the performances. These metrics are evaluated in function of different key sizes regarding the Elliptic Curve Cryptography standards, namely 128, 160, 192, and 224 bits.

Figure 7 shows the obtained results of communication cost. As we can see, the communication cost increases for our proposed scheme and the other schemes when the key size increases. This is expected because more update establishments in the transmitted data traffic are done in the sensor node side with the increase of the key size. We note that the performance results of our proposed scheme are clearly higher than those obtained for the others. This is explained by the less update in the packet sent out from the sender sensor, which leads to achieving better results. Indeed, in the schemes based on the fuzzy vault [START_REF] Venkatasubramanian | PSKA: Usable and Secure Key Agreement Scheme for Body Area Networks[END_REF] [5] and the "coffer" [START_REF] Hu | OPFKA: Secure and Efficient Ordered-Physiological-Feature-based Key Agreement for Wireless Body Area Networks[END_REF], chaff points are used to hide the biometric features, which increases the size of the transmitted messages. Moreover, Message Authentication Codes (MAC) used in the other schemes also increases the message size. In our scheme, neither chaff points nor MAC are needed since the biometric features are encrypted and authenticated with a private-key. Figure 8 shows the obtained results in terms of processing time. We note that the processing time increases by increasing the key size. We can see also that the performances of our scheme is higher than other schemes. In fact, during the synchronization stage and authentication phase of our scheme, the sender sensor performs less relationship establishments and updates with the receiver sensor with less computation, which are necessary to accomplish the mutual authentication process between the two communication nodes. 

Conclusion

In this paper, we have developed a secure and efficient ECG-based authentication scheme for MBASNs. Our scheme allows each pair of sensor nodes in the same MBASN to agree on a secret-key which is exchanged in an authenticated way securing the communication between them. ECDH is adapted to generate a common key, which ensures not only encryption but also the biometric authentication of the sensor nodes in the MBASN. We have demonstrated that our feature extraction method achieves better performances than the Enhanced FFT method since it lessens FRR, FAR and the duration of the ECG signal. We also dedicated a part of this paper to analyze the security of our proposal by presenting different attacks that the MBASN can undergo. Our scheme is suitable for practical applications in mobile healthcare environments since it provides higher security and efficiency. Our future work includes analytical modeling of our protocol ECG-AS as long as expanding the attack model and implementing its operations over a practical platform. Further studies are also needed to improve our feature extraction method and expanding it to other physiological signals such as PPG, EMG and ECC or a combination of them.

Figure 1 :

 1 Figure 1: The phases of our authentication scheme

Figure 2 :

 2 Figure 2: Feature extraction phase

Figure 3 :

 3 Figure 3: Synchronization process

Figure 4 :

 4 Figure 4: Key exchange phase

Figure 5 :

 5 Figure 5: Authentication phase

Figure 6 :

 6 Figure 6: FRR and FAR comparison for the optimal value of MSB

Figure 7 :

 7 Figure 7: Communication cost in the sender sensor side

Figure 8 :

 8 Figure 8: Processing time in the sender sensor side

Table 2 :

 2 Notations

	Notation Description
	ID i	Identity of the sensor node i
	T i	Period chosen by the sensor node i
	F p	Prime field
	E	Elliptic curve
	G	Generator point of E
	d i , Q i	Private/public-key of the sensor node i
	I i	Biometric features vector of the sensor node i
	I r i I l i	Right side of I i Left side of I i
	H	Hamming distance
	SK ab	Shared-key between A and B

Table 3 :

 3 Our method compared to the Enhanced FFT

	Metrics	Enhanced FFT Our method
	Number of iterations	180	100
	Features vector length (bit)	1105	128
	Duration (s)	4	60 × 10 -3
	FAR (%)	0.18	0.17
	FRR (%)	0.23	0.16
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