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ABSTRACT

For the development of a new porous material such as catalytic carrier, the control of

the textural properties is of fundamental importance. In order to move towards rational

synthesis, it is necessary to better understand the physical phenomena that generate a

defined solid structure. A contribute to this purpose can be achieved by studying the

aggregation process inside colloidal suspensions, leading to porosity generation: this

phenomenon can be described with a Brownian dynamics model that, for any set of

chemical parameters, enables to evaluate the mass distribution and the fractal dimension

of colloidal aggregates. However, this model cannot be used for the simulation of large

colloidal systems, due to its high computational time, limiting comparison with analytical

methods, which probe the whole multi-scale system. This problem is solved by develop-

ing a new aggregation morphological model, wherein the fractal dimension is tuned with

two compactness parameters. An efficient simulation algorithm is proposed in case of

spheres, for which the fractal dimension of the generated aggregates varies between 1.2

and 3. Brownian dynamics results are used to parametrize this purely geometric model,

in order to constrain the size and the morphology of the aggregates created. The large

numerical solid will be representative of the textural properties of a real solid and will

enable to obtain more information on the porous network. It could be used, for example,

to simulate diffusive transport coupled with chemical reaction and to study the impact of

the geometry of the porous system on the catalytic performance.
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INTRODUCTION

In catalytic carriers and absorbents field, the control of textural properties is of fun-

damental importance. The void fraction, the pore size distribution and the pore’s in-

terconnection affect the mass and heat transport inside the solid structure. The textural

properties are the result of the preparation process: most of meso- and/or macroporous of

industrial interest, such as silica (Iler, 2004) and alumina (Euzen, 2002), exhibit a multi-

scale porosity based on particles stacking. For instance, a γ-alumina support consists of

elementary crystallites (often nanometric platelets (Chiche, 2008), whose size and shape

result from the alumina precursors, such as boehmite AlOOH). These crystallites aggre-

gate to form aggregates of a few tens of nanometers generating mesoporosity. Further,

these aggregates can then agglomerate to form agglomerates of a few microns, generating

macroporosity. This complex assembly process is not random and results from the inter-

particles interactions during the different preparation steps. This interactions can be

largely tuned: for instance, pH, ionic strength and concentration have strong impact on

the solid formed during the agglomeration process of a boehmite suspension in Brownian

conditions (Anovitz, 2018). Such suspension agglomeration is encountered for instance

during the boehmite synthesis or the shaping process. There is also a need to increase

competences and knowledge of the fundamental mechanisms involved in the aggregation

processes.

The final dried porous solid has a multi-scale structure that can be experimentally

characterized by several techniques like Small Angle X-Ray Scattering (SAXS) (Sasanuma,

1989) and Nitrogen physisorption (Munhoz, 2014). A simple way to extract physical

information is to compare the results of these experimental characterizations to those

of the numerical simulation of the porous solid structure: indeed, the description of

the agglomeration kinetics with physical models, such as DLVO (Verwey, 1948) theory

enables to estimate the size distribution and fractal dimension of colloidal agglomerates

for any set of pH, ionic strength and concentration. Nevertheless, comparison with

analytical data can only be performed on large numerical porous system: the generation of
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a realistically large porous numerical twin can not be achieved on the sole basis of DLVO

dynamics modelling, due to high computational cost. In this context, the development

of simpler aggregation morphological model, with less parameters and able to mimic a

physically plausible porous system, is required.

In this work, a Lagrangian Brownian dynamics model is used to simulate the growth of

a colloidal network. The interaction potential amongst particles is described by the DLVO

theory (Verwey, 1948), while hydrodynamic contributions are not taken into account. The

mass distribution and the aggregate fractal dimension can be extracted from the resulting

arrangement of aggregates. In order to reduce the considerably large computational

time required for the simulation of large colloidal systems, a new aggregation model

with tunable compactness is proposed. By adjusting only three parameters, this model

enables to build the same aggregates obtained with Lagrangian Brownian dynamics. The

parametrization of the aggregation model is achieved in terms of the fractal dimension

and the mass distribution that have been obtained from a Lagrangian Brownian-DLVO

dynamic model.

The paper is organized as follows. The contribution of physical models such as the

DLVO model to describe the aggregation process of colloidal systems is first discussed.

The mathematical formalism of the Lagrangian DLVO-Brownian model is then detailed

and a simulation is presented in order to obtain a realistic representation of system after

an aggregation process controlled by chosen physico-chemical parameters. It enables to

determine the distribution of structural parameters (number of particles constituting the

aggregates, fractal dimension) necessary for a realistic description of colloidal systems.

In the following part, the contribution of morphological packing models to describe

colloidal systems and porous material is discussed. The formalism of the cluster model

we propose using mathematical morphology is then introduced, focusing on the role of

the compactness parameters. An acceleration of the process is also proposed for the

case of spheres with constant radius. For this case, the strategy for the parametrization

of the aggregation model using the DLVO-Brownian model is presented. Finally, the
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relationship between the structural parameters of the colloidal system and the textural

properties of the final porous solid is exemplified. Conclusions and the perspectives for

future developments of the morphological model are drawn in the end.

CONTRIBUTION OF BROWNIAN-DLVO MODEL

MODELS AND THEORY

The numerical simulation of particle dynamics is of great interest in the material sci-

ence research community (Lu, 2008)(Krinninger, 2016), due to the possibility of studying

the various properties of soft matter systems such as gels (Zaccarelli, 2007), polymers

(Nikunen, 2007) and suspensions (Cerbelaud, 2010). These purely physical methods

strongly integrate or may be an alternative to experimental approaches in exploring the

time-dependent behaviour of silica (Lebdioua, 2020) and alumina (Laganapan, 2015)

colloidal systems, giving micro-structural information (e.g. fractal dimension, porosity

(Hutter, 2000)) that is not always accessible experimentally, for different sets of chemical-

physical parameters (pH, ionic strength, concentration (Cerbelaud, 2010)) and flow con-

ditions. Amongst the different approaches, Brownian Dynamics is largely applied due

to its relatively simple implementation and capability of being easily generalized (Park,

2016). The main drawbacks are that the computational effort scales unfavorably for large

systems (Dugosz, 2011).

To study the boehmite aggregation process it was chosen to use Brownian Dynamics

coupled with the DLVO theory. The model calculates the dynamics of identical spherical

particles by solving the momentum balance

mi ·~ai = ∑
i 6= j

~Fi j +
~FR
i + ~FD

i , (1)

where mi and ai are the mass and the acceleration of the particle i, ~Fi j is the interaction

force between i and the particles j, deriving from DLVO potential, ~FR
i is the random

4/36



FERRI G et al.: Aggregation morphological model with variable compactness

Langevin force, which represents the effect of random collisions with solvent molecules

causing Brownian motion, ~FD
i is the viscous drag force acting on i.

The DLVO potential UDLVO for two identical spheres is the sum of an attractive potential

UvdW (van der Waals potential) and a repulsive potential Uel (electric potential). These

potentials can be calculated for identical spheres ((Hamaker, 1937), (Verwey, 1948)) as

UvdW =−AH

6

(
2a2

r2−4a2 +
2a2

r2 + ln
(

r2−4a2

r2

))
(2)

Uelec =
64πkBT niona

K2
debye

γ
2
Ge−Kdebyeh (3)

with

h = r−2a

γG = tanh
(

eψo

4kBT

)
Kdebye =

(
εkBT
2e2Av

)−0.5√
I

where AH is the Hamaker constant, a is the sphere radius, r is the distance between the

centers of the spheres, kB is the Boltzmann constant, T is the temperature, nion is the ions

number concentration, e is the electron charge, ψo is the electric surface potential, ε is the

solvent electric permittivity, Av is the Avogadro number and I is the ionic strength.

The interaction force between two particles i and j is given by the derivative of the

potential

~Fi j =−∇UDLVO. (4)

The random Langevin force (Langevin, 2008) is described by

~FR
i =

√
2kBT k~W (5)

where ~W is a random vector whose components are independent Gaussian random num-

bers with zero mean and unit variance.

The viscous drag force is

~FD
i =−6πµa. (6)
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where µ is the viscosity of the medium. Once the positions of all the spheres are defined,

the fractal dimension d f can be calculated with

d f =
log
(

N
k f

)
log
(

Rgyr
a

) , (7)

where N is the number of elementary objects that constitute the aggregate, k f is the fractal

pre-factor and Rgyr is the aggregate radius of gyration.

The geometrical gyration radius Rgyr is defined as the mean square of the distances

between the spheres’ centers and the geometrical center of mass of the aggregate. A more

physical definition (Filippov, 2000) contains also a, so that in the limit N = 1, Rgyr = a:

R2
gyr =

1
N

N

∑
i=1

[
(xi− xg)

2+(yi− yg)
2+

+(zi− zg)
2 +a2

]
. (8)

xi, yi and zi are the coordinates of the spheres’ centers and xg, yg and zg define the position

of the center of mass composed by N identical spheres:

xg =
∑

N
i xi

N
; (9)

yg =
∑

N
i yi

N
; (10)

zg =
∑

N
i zi

N
. (11)

AGGREGATED REFERENCE SYSTEM

The objective of this work is to develop a purely geometric model able to mimic the

aggregates arrangement obtained with a Brownian Dynamics simulation. As a conse-

quence, we started by generating a reference physical agglomerated system: Fig.1 shows

the Brownian Dynamics final arrangement of 2048 spheres. We used a surface potential

ψo of 1 mV, a ionic strength I is 0.005 M and a solid fraction of 1%. 27 days of calculation

with a 2.60 GHz CPU were necessary to simulate a time period of 0.278 s. ← insert Fig. 1
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If the positions of all elementary spheres are known, it is possible to define the

aggregates and for each of them to calculate the mass (N) and the fractal dimension

(d f ) using Eq.(7). Fig.2 shows the histogram of the mass distribution and the fractal

dimensions of each aggregate. Isolated spheres were not taken into account. We can

notice that, in number, most of the aggregates have a mass N below 20. In this region, it

can be observed that the fractal dimension have a high variability. We can thus deduce

from this reference aggregated system that the morphological model should be able to

generate fractal aggregates, constituted by a number of particles varying between 1 to

almost 150, and with fractal dimension in the range of 1.2 - 3. From a more global point

of view, this model must be able to tune easily the number of elementary particles, their

size and shape in order to deal with a wide variety of systems (silica or boehmite for

example), but also to allow controlling the fractal dimension within a large range. ← insert Fig. 2

A NEW MORPHOLOGICAL MODEL FOR BUILDING

FRACTAL STRUCTURES

In order to represent the final arrangement of a Brownian Dynamics-DLVO simula-

tion on a larger system, we use a model able of using structural information of fractal

dimension (d f ) and number of elementary objects (N) to build aggregates. The modeling

of fractal aggregates is a key step for the prediction of the physical properties that de-

pend on their structure, coupled with the experimental analysis of systems of aggregates

(Tence, 1986) (Köylü, 1995). The algorithms for the generation of fractal aggregates

can be classified in two categories: deterministic models and statistical models. The

deterministic, or regular, fractals are generated using an iterative procedure that replaces

structural units with small-scale duplicates of the whole cluster Schmidt (1991). This

type of fractals is rarely observed in nature and is not very representative of real systems,

where there is a high degree of disorder. Stochastic algorithms introduce indeed a certain

type of randomisation, and can be classified according to the aggregation mechanism,
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which can be either particle-cluster (Witten, 1983) or cluster-cluster (Meakin, 1983).

All the growth mechanisms of intermediate clusters between these two approaches can

be divided into classes, associated with a limited range of fractal dimension (Schaefer,

1990). The algorithm we need must be able to access the widest possible range of fractal

dimension (ideally between 1 and 3), while the mentioned models are restricted to a

reduced range of generated fractal dimension and, in most cases, by a long computational

time. Another constraint related to the direct application of these algorithms for the

representation of real systems arises from the polydispersity present in nature, and it

is therefore necessary to introduce a corresponding size distribution. This problem has

been considered in previous works (Sorensen, 2001)(Schmidt, 1986). The polydispersity

of primary particles was, for example, included in a cluster-cluster algorithm (Tomchuk,

2020) which was an extension of previous algorithms (Touy, 1996) operating according

to a hierarchical sequential addition, enabling to obtain precisely a fractal dimension, but

requiring high computational effort for the evaluation of all possible sticking positions at

each iteration.

For our case, the computational time should not be limiting. Indeed we would need

to build aggregates starting from elementary objects of any geometry, so that we could

better represent the multi-scale structure of the porous alumina. In addition, the model

must build large systems of aggregates to represent the textural properties of a real solid.

To address these issues our approach uses morphological operations to define the sticking

positions of a particle on a cluster, thus reducing the computational effort with respect to

classical algorithms. Therefore, in our random morphological packing model it is possible

to modify the number of elementary objects (N) and compactness, which will be linked

to the fractal dimension.

RELATED WORKS

Packing models can be classified within several families, according to the modeling

approach of the physics of contact between objects or according to the order in which the
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objects fill the space. First, only models with objects of the same size are considered.

Random Sequential Addition processes (RSA) (Widom, 1996), allow for a sequential

placement of objects in random positions. An object is implanted only if it does not

come into contact with any other object already present. This type of simulation is well

suited for low-density modeling with low computational time. In variants of this model,

already implanted object can be removed to make room for the current object (Matern,

2013). Intrinsic overlapping morphological models can be used for non-overlapping

modelling as the dead leaves model (Jeulin, 2000) if only the non-overlapping objects

are maintained at the end of the simulation. This model produce low-density packings.

If low density models are relatively trivial to simulate, this is no longer the case when a

high density of objects is desired. Concerning dense simulations, some models (Delarue,

2001) start from an optimal dense arrangement removing randomly some objects to create

holes, then add perturbations on objects close to the voids, taking into account collisions.

(Lubachevsky, 1990) follows a sequential placement as for the RSA models, and when

a new object touches a previously implanted one, collisions enable to modify the objects

already present. It is also possible to use a first non-dense RSA-type model, which is

then compressed into a smaller volume (Baranau, 2014), or completed with a non-random

placement of spheres (Zhang, 2013). These families of models also require calculations of

collisions between objects. Although the number of possible interactions remain limited,

the calculation time can quickly become important. A last family of models, with a higher

computational time, simulates the filling of a volume through collision during object fall

(Seyed-Ahmadi, 2019). They allow extremely realistic simulations, by simulating objects

falling into the volume and gradually filling it.

Models with objects of variable size are now considered. The same described approaches

can be used. There exist models based on the union of spheres for creating packings

of fibers (Altendorf, 2011) or any other objects (Donev, 2005). For models with a wide

size distribution of objects, with a high ratio between small and large objects size, it is

possible to simulate dense packings even with RSA processes (Adamczyk, 1997), or dead

leaves models (Jeulin, 2019). The reduction of the number of collision tests via a suitable
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computational method is often limited to spherical objects (Torquato, 2010). Most of

these models define the object locations using real coordinates. However, collision calcu-

lations can be simplified with discretizations (Zhang, 2013). There are very few complete

approaches based on approximations on discrete grids. It should also be noted that most

of the publications concern spherical objects, sometimes ellipsoids.

Our contribution is a new aggregation model, which can be classified within the family

of sequential additions, with the originality of proposing a calculation of collisions using

a formalism on discrete grids and mathematical morphology. The model is generalized to

all geometries of elementary objects. The size of the aggregates formed will depend on

the number of elementary objects and on the fractal dimension, the fractal dimension will

be tuned by means of two compactness parameters.

AGGREGATION MORPHOLOGICAL MODELS WITH VARIABLE

FRACTAL DIMENSION

A dense simulation model without object overlap is proposed. The objects are either

in contact or at a controlled repulsion distance. Using the locations of the implanted

objects, the simulation calculates the possible positions for the next object. This model

will be completed by the definition of concave points, that enable to further densify the

packing.

The probability that the next object is positioned on a concave point depends on a pa-

rameter called α and the probability that the concave point is the closest to the cen-

ter of mass of the aggregate depends on a β parameter (Fig.3). For a more didactic

illustration, morphological operations for the generation of the aggregates are defined

starting from the simplest version of the packing model. The version that produces the

least compact aggregates (Hard Core Low Compactness model) where the next object

is only constrained to the aggregate dilation (α = 0, β = 0) is first reported. After

that, the version that produces intermediate compactness aggregates is illustrated, here

compactness is regulated only by placing or not the next object in a concave point of the
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dilation (1 < α < 0, β = 0). Finally, in the complete version of the model (Hard Core

High Compactness model) the next object can also be placed in the concave point closest

to the center of inertia (0 < α < 1, 0 < β < 1).

A fast calculation method will be proposed in the case of simulation with spheres of

constant radius on a discrete grid.

Hard core Low Compactness model (HCLC)

Basic morphological operations on sets are recalled. Considering X defined by a set of

points z in R3, its complementary set is written as Xc = {z ∈ R3,z /∈ X}. The position of

X is denoted as the position of one of its points in R3. The morphological dilation δX(Y )

and erosion εX(Y ) of the set Y by X are respectively Serra (1988):

δX(Y ) = {z : X̆z∩Y 6= /0} (12)

εX(Y ) = ∩{Yz,z ∈ X̆}. (13)

Where Xz is the set translated at point z, Xz = {x+ z;x ∈ X}; and X̆ is the transposed set

of X , X̆ = {−x,x∈ X}. Dilation δX(Y ) can be seen as the locus of the possible z positions

of the X̆z transposed element when this latter intersects Y . Erosion εX(Y ), on the other

hand, can be seen as the location of the possible z positions of the Xz element when this

latter is contained in Y (Serra, 1988).

Consider the simulation of a set A obtained by the union of N objects A′, these objects

can have any random shape. The model is sequential: the first object is placed randomly

in R3. The x position of a new object A′i is randomly chosen in the XAi set defined as:

Ai−1 = ∪i−1
1 A′ (14)

XA′i
= F(δA′i

(Ai−1)) (15)

F(X) is the set of points at the border of X , F(X) = {z : Bz∩ X̆ 6=}, with B unit ball.

In the case of a repulsion distance r between objects, the set XAi′ becomes

XA′iδBr = F(δA′iδBr(Ai−1)) (16)
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with Br sphere of radius r. In this way, the new objects will be in contact with or close to

the ones already placed. However, the set of objects formed sequentially can easily form

cavities not accessible to new objects.

Hard Core Medium Compactness model (HCMC)

In this second case, the final compactness of the aggregate can be tuned by placing the

objects either in the concavities, or randomly on the aggregate dilation as for HCLC.

Concave points can be extracted by means of closing operator ϕ , that can be expressed

by dilation and erosion (Serra, 1988)

ϕr(Y ) = εr(δr(Y )) (17)

with r the sphere radius. The greater the value of r, the larger the size of the concavities.

When r tends to infinity, the closure defines the convex envelope, i.e. the totality of the

possible convex points. The set XCV
A′i

denoting locations of concave points is given by

(Fig.3):

XCV
A′i

= F
(

δA′i
(Ai−1)

)
∩F

(
ϕr(δA′i

(Ai−1))

δA′i
(Ai−1)

)
(18)

Consider p the value of a random variable according to a uniform law on [0,1] and α ∈

[0,1]. If p < α , the position x of a new object A′i is chosen randomly in the set XA′i
,

otherwise the position is chosen in the set XCV
A′i

. The α variable enables to tune the

compactness of the set A obtained. Therefore, HCMC can generate an aggregate with

few cavities, but the obtained aggregates can still easily be organized with a more or less

elongated shape. ← insert Fig. 3

Hard Core High Compactness model (HCHC)

In order to build even more compact aggregates, one can consider the concavity closest

to the center of mass of the set of objects already placed. A new set XM
A′i

is defined as:

XM
A′i

= x ∈ XCV
A′i
|infd(x,M) (19)
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where M is the center of mass of ∪i−1
1 A′ and d(x,M) is the euclidean distance between a

point x and the point M. An illustration of the different sets necessary to build this model

is proposed in Fig.3, for 2D case.

Let p be a uniform random variable on [0;1], β ∈[0,1], α ∈[0,1] and α > β . The

position of a new object A′i is randomly drawn in the set XM
A′i

, XCV
A′i

, or XA′i
depending

whether p < β ,β < p < α or p > α respectively. The parameters β and α are used to

control the compactness of the final aggregate. The higher these parameters are, the more

compact the final aggregate is. It is possible to set β as a function of α to reduce the

number of parameters.

Size of aggregate

The size of the final aggregate depends on the one hand on the number of elementary

objects and on the other hand on the alpha and beta compactness parameters on which, as

we will see, the fractal size of the aggregate also depends. Eq. (7),(8) enable to calculate a

size parameter such as gyration radius as a function of the fractal dimension in the case of

spherical elementary particles. The morphological model of aggregation can be used with

all kinds of object geometries in order to be able to represent various colloidal systems

(for example silica or boehmite). Fig.4 shows realizations of aggregates of rectangular

parallelepiped objects modeling alumina nano-platelets derived from Wang (2015), by

varying the compactness parameters keeping constant the number of simulated objects. ← insert Fig. 4

Acceleration scheme for spheres with constant radius

The simulation of an aggregate of spheres of constant radius is a special case where a very

efficient construction algorithm can be defined. A similar scheme is possible for the case

of a disc of constant radius. A discrete orthonormal grid in R3 and a volume of simulation

of finite size is considered. The Euclidean distance to a set Y from the position z is noted

d(z,Y ), which is the smallest distance from the point z to a point of the set Y . In this

discrete space, the morphological dilation of a set Y by a sphere of radius r can be written
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using a distance function:

δr(Y ) = Y ∪{z ∈ Y̆ |d(z,Y )< r} (20)

Smallest possible concavities are considered, i.e. those obtained by a unit size closing.

To construct the sets XA′i
, XCV

A′i
and XM

A′i
, it is important not to browse through the entire

volume to update the sets each time a new sphere is implemented. Consider a new sphere

of radius r to be located at point xC. It affects the considered sets only in a cube of

side 4r centered in xc. Each point of this cube can be assigned according to its previous

assignment. The sets XA′i
and XCV

A′i
can be updated as follows:

- if d(x,xC)≤ r, then x ∈ Ai,

- if r < d(x,xC)≤ 2r and previously x /∈ Ai−1, then

x ∈ δr(Ai)/Ai,

- if d(x,xC) = 2r and previously x /∈ δr(Ai−1), then

x ∈ XA′i
,

- if d(x,xC) = 2r and previously x ∈ XA′i
, then x ∈ XCV

A′i
.

The center of inertia M is revised with the set Ai. The updating of the set XM
A′i

is then

performed by traversing the points of the set XCV
A′i

XM
A′i

= x ∈ XCV
A′i
| infd(x,M). (21)

The storage of the points of each set can be carried out with the help of contiguous arrays

allowing to efficiently draw a random position x:

x = lX [p.L] (22)

with p a uniform random variable on [0,1] and L the number of elements of the array lX

listing the points of a set X . The proposed accelerated algorithm is detailed in Appendix
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A.

Simulation of large volumes

The construction of aggregates, even large ones, is extremely fast in the case of disks

or spheres with constant radius. For this reason there is an interest in using this model

to simulate large volumes of porous structures. Examples of simulations with constant

radius of 200000 disks (simulated domain 100002 pixels) and 50000 spheres (simulated

domain 10003 voxels) obtained for calculation times of 4 s and 40 s respectively (CPU

core i7-8850H, 16 Go RAM) are presented Fig.5. The time complexity of the fast scheme

is linear in the number of objects to simulate. The algorithms presented in this paper are

available under plug im! platform (plugim, 2018). ← insert Fig. 5

CONTROLLED STRUCTURAL

PARAMETERS: COMPARISON WITH

DLVO SIMULATION ← insert Fig. 6

The geometrical model has been applied for different particles numbers N and differ-

ent values of compactness factors α and β . The graphs in Fig.6 show the dependence of

the fractal dimension of aggregates on the compactness parameters, for different numbers

of primary spheres N. Rgyr and d f have been calculated using Eq.(9), (8) and (7). The

average d f corresponding to a couple of values for α and β and its relative confidence

interval were calculated on 1000 aggregates. The relatively wide confidence intervals

observed allow simulations that take into account the intrinsic variations of a real system.

The entire range of fractal dimension values obtainable with the model is shown in

yellow on the graph in Fig.2. For each N this range has been defined by the extreme values

of the confidence intervals amongst all the ones attainable for any combination of alpha

and beta. These results show that the morphological aggregation model can reproduce the

same aggregates obtained with Brownian dynamics, i.e with fractal dimensions between

1.2 and 3, for aggregates constituted from 2 to unlimited number of particles.
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The parametrization of the morphological model is achieved using α , β charts to

associate all pairs of d f , N to the α , β couples. In order to draw the α , β chart for a given

N, the average results presented in Fig.6 has to be fit with a two-variable function. This

can be easily done with a third degree polynomial:

d f =p00 + p10 · x+ p01 · y+ p20 · x2 + p11 · x · y+

p02 · y2 + p30 · x3 + p21 · x2 · y+ (23)

p12 · x · y2 + p22 · x2 · y2 + p03 · y3

where x = α , y = β/α and all the coefficient pi, j are a function of N. In order to assign

all the α and β/α couples to an average fractal dimension at a fixed N, Eq.(23) must

be inverted. The detailed calculations are in Appendix B. The resolution of the inverted

Eq.(23) enables to draw an α , β chart like the one represented in Fig.7 for N = 50. ← insert Fig. 7

From now, it is possible to use structural information from Brownian Dynamics i.e.

fractal dimension d f and mass N to constrain the morphological model. The values within

this range can be obtained by tuning the compactness of the aggregates with the two

compactness parameters α and β . In this way, Brownian dynamics simulations acts as a

bridge between physical-chemical parameters and the three cluster model parameters α ,

β and N. At present, the morphological model builds single aggregates, replicating the

Brownian Dynamics aggregates successfully. In a short term, we will directly implement

the mass distribution and fractal dimension function d f (N) within the model, in order to

mimic the final arrangement of Brownian Dynamics on a larger volume.

RELATIONSHIP BETWEEN THE COMPACTNESS PARAMETERS

AND THE PACKING POROSITY

As explained previously, the interest of the proposed morphological model compared

to DLVO simulations is to be able to simulate large systems, representative of porous

materials. Once the system is generated, it is possible to calculate textural properties,

nitrogen physisorption isotherm (Wang, 2015) or SAXS curves (Sorbier, 2019). However,
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the present state of the model enables only a sensitivity study of the packing porosity with

respect to the compactness parameters α and β . ← insert Fig. 8

Indeed, it is easy to create a single aggregate of spheres with a high N and evaluate

the void fraction of a cube contained within it. Compactness parameters are then able

to modify the porosity of the structure. Fig.8 shows the void fraction calculated inside a

200-pixel length cube completely filled with identical spheres with a radius of 10 pixels.

The results are given in terms of the average void fraction and its 95% confidence interval.

The void fraction can vary from 0.41 to 0.63. However, in order to represent the real γ-

alumina porous structure (that can reach a void fraction up to 0.7 (Kolitcheff, 2017)) it will

be necessary to introduce the multi-scale within the algorithm of aggregate generation.

This aspect is discussed in the next section.

DISCUSSIONS

Brownian dynamics enables to investigate the effect of chemical parameters on col-

loidal aggregation kinetics. The computational time is, however, prohibitive for the

simulation of large systems to represent real solid properties. For this reason a new

random morphological model was developed, easily implementable and with a reasonably

low computational time. As this model is purely mathematical, it will be necessary to

use the physical information of Brownian dynamics to parameterize the morphological

aggregation model in order to build a physically plausible numerical solid. The Hard

Core High Compactness (HCHC) algorithm can be used to build aggregates composed

of any number of elementary objects as we can see in Fig.9. The figure shows the

aggregates obtained for different α and β values (in which β = 0.5 ·α) and for a number

of elementary objects in the range from 10 to 10000. It is possible to observe that

for higher values of the compactness parameters we obtain more compact structures,

similar to spheres, to which corresponds a fractal dimension close to 3. In addition, the

compactness of the aggregates also increases with N. This is due to the type of growth
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mechanism, which is particle-cluster, indeed at each iteration an elementary particle is

added to the aggregate. This naturally leads to more compact structures than a cluster-

cluster mechanism (Schaefer, 1990). This certainly constitutes a limit in representing the

porous structures of the alumina range, for which it is possible to measure high porosity

(Kolitcheff, 2017).The next essential step will certainly be to introduce the multi-scale

within the model. In practical terms, it will be needed to fix a primary fractal dimension

(d f 1) and a primary mass (N1) distribution in order to build primary aggregates. ← insert Fig. 9

Afterwards, these aggregates will be assembled according to a secondary fractal di-

mension (d f 2) and a secondary mass distribution (N2). d f 1, d f 2, N1 and N2 will be chosen

according to experimental observation and physical simulation. A third parameter will

be required to adjust the probability that an aggregate of mass i is assembled to another

aggregate of mass j. To define this parameter, the results of a physical model will again

be essential.

CONCLUSION

The objective of this work is to study the effect of aggregation parameters on the

final structure of an alumina catalytic support formed within a colloidal suspension un-

der Brownian motion. Brownian Dynamics simulations enable to study the aggregation

dynamics for each set of physical-chemical parameters and the final configuration of the

colloidal network. However, due to its long computational time, using this model to

perform a sensitivity study on large volumes would be impractical. For this reason there

is an interest in developing a new morphological model, purely mathematical and with

a relatively short computational time. It remains of fundamental importance, however,

to use structural information from Brownian Dynamics to constrain the morphological

model in order to simulate a realistic solid. At present, the new morphological aggregation

model enables to simulate single aggregates with a given fractal dimension and number

of elementary objects. By tuning two compactness parameters and the number of primary
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objects, all the fractal dimensions observed in the Brownian Dynamics can be attained. In

the future, this model will be upgraded to receive a mass distribution and its relative fractal

dimension function, in order to simulate the final arrangement of Brownian Dynamics on

a larger volume. The final numerical solid could be used to perform sensitivity analyses.

It will be possible, for example, to study the effect of the aggregation parameters on the

textural properties and to understand the impact on mass and heat transport within the

porous catalyst carrier.
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APPENDIX A:

SIMULATION ALGORITHM OF A CLUSTER WITH CON-

TROLLED COMPACTNESS OF IDENTICAL SPHERES

Here is detailed the simulation algorithm of a cluster with controlled compactness of

identical spheres. X ← x : add point x inside positions table X , X → x: delete point x

from positions table X .

Parameters:

N : number of spheres;

α : compactness parameter (between 0 and 1).

Intialization:

β = f (α);

xC a random position, XA′i
= xc, XCV

A′i
= /0, XM

A′i
= /0, i = 0.

Iterations: while i < N

{

p = ∪[0;1];

if (p < α) xC = random position in XCV
A′i

;

if (p < β ) xC = random position in XM
A′i

;

if (xc is empty) xC = random position in XA′i
;

for each position x in a cube of size 4r centered in xC

{

if (d(x,xC)≤ r) Ai← x ;

if (d(x,xC)≤ 2r) XA′i
→ x, XCV

A′i
→ x ;

if (d(x,xC) = 2r)

{

if (x /∈ XA′i
) XA′i

← x;

if (x ∈ XA′i
) XCV

A′i
← x, XA′i

→ x;

}
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}

Update M with Ai;

Update XM
A′i

with XCV
A′i

and M;

i = i+1;

}

APPENDIX B:

THE CONSTRUCTION OF α ,β CHARTS WITH THE CLUS-

TER MODEL

The parametrization of the morphological model is achieved using α , β charts to associate

all pairs of d f ,N to the α , β couples. In order to draw these charts, the results of the

morphological model are fit with a two-variable 3rd degree function:

d f =p00 + p10 · x+ p01 · y+ p20 · x2 + p11 · x · y+

p02 · y2 + p30 · x3 + p21 · x2 · y+ p12 · x · y2+

p22 · x2 · y2 + p03 · y3 (24)

where x = α , y = β/α and all the coefficient pi, j are a function of N. The Eq.(24) is

solved with respect to α . The resolution gives the intervals β/α that, together with α

enable to build aggregates with an average fractal dimension. The zeros of cubic function

are to be found in x

x3 +a2 · x2 +a1 · x+a0 ·−d f = 0

where

a2 = (p20 + p21 · y)/p30

a1 = (p10 + p11 · y+ p12 · y2)/p30

a0 = (p03 · y3 + p02 · y2 + p01 · y+ p00−d f )/p30.
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Given

q = 1/3 ·a1−1/9 ·a2
2

r = 1/6 · (a1 ·a2−3 ·a0)−1/27 ·a3
2

s1 and s2 are defined as the real numbers

s1 =
(

r+
(
q3 + r2)1/2

)1/3

s2 =
(

r−
(
q3 + r2)1/2

)1/3
.

For a given value of y only real solutions between 0 and 1 are considered within the three

roots of the inverted cubic function:

x1 = (s1 + s2)−a2/3

x2 =−0.5 · (s1 + s2)−a2/3+0.5 · i(s1 + s2)
1/3

x3 =−0.5 · (s1 + s2)−a2/3−0.5 · i(s1 + s2)
1/3.
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Fig. 1: Final cluster arrangement of a BD DLVO simulation. 2048 identical spheres
of radius 40 nm were randomly placed in a cube of length 3800 nm. The interaction
potential is calculated with a ionic strength of 0.005 M and a zeta potential of 1 mV. The
final simulation time is 0.278 s.
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Fig. 2: Mass (N) distribution histogram and fractal dimension (d f , in red) for the
aggregates arrangement obtained with the Brownian dynamics. The yellow area refers to
the fractal dimension range of values that can be obtained via the morphological model.
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next object if p < β

if    < p < αβ

if p > α
A'

cluster

Ai

Fig. 3: Illustration during the simulation process for a two-dimensional domain. In the
left corner, next object A′ to be implanted. In black, set Ai of already located objects.
In gray, dilated zone δA′(Ai). In red, set XA′i

of admissible positions for A′. In blue and
green, sets of concave points XCV

A′i
and XM

A′i
respectively.
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(a) (b)

Fig. 4: Simulation of aggregates of 500 platelets of size 20x8x3 voxels. Compactness
parameters β = 0.05 or β = 0.45 for (a) and (b) respectively. Parameter α = 2β . Volume
size domain is 5003. Simulations are performed and rendered using plug im! (plugim,
2018).
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(a) (b)

Fig. 5: Illustration of simulations using the fast scheme (β = 0.45, α = 2β ). (a)
simulation of 200000 disks of radius 10 pixels, image size is 100002. (b) simulation
of 50000 spheres of radius 10, volume size is 10003. Simulations are performed and
rendered using plug im! (plugim, 2018).
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Fig. 6: Fractal dimension of the aggregates generated with the morphological model for
different α and β/α for N = 5,10,100.Results are presented as mean values of d f and
the relative 95% confidence intervals on 1000 aggregates.
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Fig. 7: Example of α and β/α chart for aggregates of 50 elementary spheres.
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Fig. 8: Void fraction calculated on a 300 pixels control volume filled with identical
spheres of radius 10 pixels, for varying α and β/α . Average value and 95% confidence
interval are calculated on 10 simulations.
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Fig. 9: Aggregates generated with the HCHC model for different α , β = 0.5 ·α
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