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The Internet of Things (IoT) is expected to improve the individuals’ quality of life. However, ensuring security
and privacy in the IoT context is a non-trivial task due to the low capability of these connected devices.
Generally, the IoT device management is based on a centralized entity that validates communication and
connection rights. Therefore, this centralized entity can be considered as a single point of failure. Yet, in
the case of distributed approaches, it is difficult to delegate the right validation to IoT devices themselves in
untrustworthy IoT environments. Fortunately, the blockchain may provide decentralization of overcoming the
trust problem while designing a privacy-preserving system. To this end, we propose a novel privacy-preserving
IoT device management framework based on the blockchain technology. In the proposed system, the IoT
devices are controlled by several smart contracts that validate the connection rights according to the privacy
permission settings predefined by the data owners and the stored record array of detected misbehavior of each
IoT device. In fact, smart contracts can immediately detect the devices that have vulnerabilities and have been
hacked or pose a threat to the IoT network. Therefore, the data owner’s privacy is preserved by enforcing the
control over the own devices. For validation purposes, we deploy the proposed solution on a private Ethereum
blockchain and give the performance evaluation.
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1 INTRODUCTION
The Internet of Things (IoT) connects and shares data collected from smart devices in several
domains, such as smart home, smart grid, and healthcare. According to Cisco [6], the number of
connected devices is expected to reach 500 Billion by 2030. Such a rise will undoubtedly improve
the quality of people’s lives by providing them with better facilities on various daily applications.
However, the low computing capability of the IoT devices may incur security and privacy issues in
the IoT systems. Thus, several adversaries can violate data owners’ privacy by compromising the
existing IoT devices to gain illegal access to sensitive resources.
There is no single universally accepted definition of privacy. For instance, [7] introduced four

dimensions to describe privacy. First, the privacy of personal information, which involves the right
to control when, where, how, and with whom, the data are shared. The second dimension is the
privacy of the personal behavior, which involves the right to keep secret any knowledge of the
activities and choices. The third dimension is the privacy of the communication, which involves the
person’s right to communicate without surveillance, monitoring or censorship. The last dimension
is the privacy of the person, which includes the right to control the integrity of the body, including
the medical devices. Although the privacy of personal information, behavior, and communication
are the most addressed dimensions by privacy laws, the last dimension is very important and
therefore, should be considered in the IoT context. Thus, privacy should be preserved by enabling
IoT device management instead of trying to preserve it at the consumer’s side.
On the other hand, traditional IoT device management models are conducted by a centralized

entity, such as a cloud server the role of which is to manage the right validation of each IoT device
in order to communicate with other IoT devices. However, these centralized models are not suitable
for the IoT domain due to the difficulty of scale and the centralized entity, which can be considered
as a single point of failure. In this context, multiple distributed approaches have been proposed to
tackle the IoT device management issue with centralized solutions. Therefore, the right validation
is performed by the IoT devices rather than by a centralized entity. However, well-known security
and privacy techniques tend to be very expensive when running on devices with limited computing
capabilities in the IoT domain. Moreover, adversaries can easily compromise IoT devices, as they
intrude into the IoT network, and take control of the IoT systems. Thus, such a distributed right
validation cannot be trusted due to the resource-constrained IoT devices. Consequently, the IoT
device management requires a distributed and trustworthy right validation. On the other hand,
the blockchain technology has the potential to overcome the aforementioned challenges thanks
to its distributed, secure, and private nature however its application in the IoT domain is not
straightforward due to the high bandwidth overhead and the delays involved by classic blockchains.
To this end, a lightweight blockchain that eliminates the proof-of-work used for mining new blocks
into the classic blockchain can be exploited in the IoT context.
Motivated by the drawbacks mentioned above, we focus on the IoT device management to

preserve privacy in a private area network using the blockchain technology. The objective of this
work is to propose a smart contract-based IoT device management solution that enables the data
owner to control the IoT devices firstly, by defining the privacy permission settings about how each
device must behave then, by logging the communication between the devices in a private area in a
private blockchain and finally, by checking the IoT device behavior before making it communicate
with other devices.

This paper is organized as follows. Section 2 analyses the existing solutions to the problem of
preserving privacy in the IoT domain. Then, Section 3 deals with preliminaries while Section 4
defines the proposed system model. As for Section 5, it presents the proposed privacy-preserving
IoT device management framework. Security analysis and performance, which are illustrated by
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experiments, are detailed in Sections 6 and 7, respectively. Finally, Section 8 concludes the paper
and presents some future endeavors.

2 RELATEDWORK
There are many researchers who have studied how to preserve privacy in the IoT domain by
using the management of the IoT device access right validation. Reading through the related
work, we categorized the proposed solutions in three aspects focusing on: (i) managing the IoT
devices through a centralized cloud server [2], (ii) delegating the access right validation to the
requested IoT devices [12] [11] [3] [13], and (iii) managing the IoT devices using the blockchain
technology [8] [16] [14] [10].
According to [2], current IoT ecosystems rely on centralized and brokered communication

models. Thus, all devices are identified, authenticated, and connected through cloud servers that
support huge processing and storage capacities. Therefore, the management of the connections
between the IoT devices is conducted by one centralized entity through the internet. Despite its
high computing capability, a cloud server can turn out to be a single point of failure and disrupt
the entire network, especially with the increase of the expected number of connected devices in
the years ahead. Moreover, the centralized solutions are not well-suited for IoT due to the difficulty
of scale and the many-to-one nature of the traffic.
Therefore, to overcome the centralized model issues, some solutions [12] [11] [3] [13] were

proposed to delegate the access right validation to the requested IoT devices themselves. For
instance, Hernandez-Ramos et al. [12] proposed a set of lightweight authentication and authorization
mechanisms in order to embed authentication and authorization functionality on constrained IoT
devices. After that, a Distributed Capability-based Access Control, called DCapAC model [11] was
proposed, which was directly deployed on resource-constrained devices. Meanwhile, DCapAC was
extended to a flexibility trust-aware access control system for IoTs, called TACIoT [3]. The DCapAC
allows smart devices to autonomously make decisions on access rights, based on authorization
policy, and shows advantages in scalability and interoperability. However, neither the capability
revocation management and delegation were discussed, nor the granularity and context-awareness
were considered. For their part, Hussein et al. [13] proposed an access control framework using a
community-based structure to define the notion of access rights in a distributed IoT environment.
However, the IoT devices can be easily compromised due to their limited memory and energy
resources and thus cannot be trusted as access right validation entities.

Consequently, an IoT device management requires a distributed and trustworthy right validation.
In fact, several solutions [8] [16] [14] [10] have been proposed to address this issue using the
blockchain technology. For instance, Dorri et al. [8] proposed a local blockchain with a policy
header, which stores access control policies to control all the access requests related to a smart
home. The authors proposed a custom, blockchain technology, where the home gateways hold the
role of the miners. Such a solution is hard to be deployed since it requires a “critical mass”. As it
seems relevant to new IoT solutions, it is worth building on the existing technologies in order to be
compatible with the already available libraries and wallets. For their part, Maesa et al. [16] proposed
an approach based on blockchain technology to publish the policies expressing the right to access
a resource and allow the distributed transfer of such right among users. According to the authors,
the policies and the rights exchanges are publicly visible on the blockchain. Consequently, any user
can at any time know the policy paired with a resource and the subjects that currently have the
rights to access the resource. Although this solution enables auditability, the blockchain analysis
allows adversaries to deduce personal behaviors, habits and preferences. However, in both [8] [16],
the blockchain is only served as an immutable storage for access control policies and therefore
cannot provide a dynamic right validation according to the behavior of each IoT device. For their
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part, Košt’ál et al. [14] proposed an architecture for the management and monitoring of IoT devices
using a private blockchain. Their proposed network has administrators that authenticated in the
network by using digital signatures. In fact, the administrators modify the configuration of the
devices in the blockchain. After the configuration is added to the blockchain, all the managed
devices get informed then, the device applies the downloaded modifications by decrypting them
using its private key. On the other hand, for smart city networks, Gong et al. [10] proposed a
blockchain-based device management framework for efficient device management and firmware
updating. Then, the whole management history of each device is stored in the blockchain and
the firmware transmission between the vendor and the management node is conducted through a
smart contract for security and resilience against an attack.

Unlike all the prior research studies, our work does not embed security and privacy into the IoT
devices but instead it moves it to the blockchain network managed under external control using
smart contracts. The reason behind the smart contract use is to (i) enforce a common agreement
between several untrusted parties without the involvement of a trusted third party, (ii) verify
the privacy permission settings predefined according to the IoT device owner’s privacy choices
before allowing any IoT device to communicate with other devices, and (iii) prevent any malicious
intrusion attempts by analyzing the IoT device behaviors in order to detect any malicious attempt
and rapidly block the detected devices.

3 PRELIMINARIES
As mentioned above, the proposed solution is based on the blockchain technology and smart
contract, which are introduced in this section.

3.1 Blockchain technology
The blockchain technology is a distributed computing paradigm that successfully overcomes the
problem related to the trust of a centralized party. Thus, in a blockchain network, several nodes
collaborate among them to secure and maintain a set of shared transaction records in a distributed
waywithout relying on any trusted party. Moreover, specific nodes in the network, which are known
as miners, are responsible for collecting transactions in blocks, solving challenging computational
puzzles in order to reach a consensus, and adding the blocks to a distributed ledger known as the
blockchain.
The first proposed system based on this technology was Bitcoin [17], which enables users to

securely transfer the cryptocurrency (bitcoins) without a centralized regulator. Bitcoin uses a stack-
based bytecode scripting language that offers a very limited ability of creating a smart contract
with rich logic [15]. Indeed, a smart contract is an executable code hosted in the blockchain, which
stores information, processes inputs, and writes outputs thanks to its predefined functions.
Since then, several blockchain-based development platforms have been proposed offering the

ability to host/use smart contracts, such as NXT [18], Ethereum [4], and Hyperledger Fabric [1].
For instance, NXT [18] is an open-source blockchain platform that relies entirely on a proof-
of-stake consensus protocol. It has barebones support for smart contracts. However, it is not
Turing-complete, meaning that only the existing templates can be used and no personalized smart
contract can be deployed. Currently, Ethereum [4] is the most popular blockchain platform for
the development of smart contracts. It supports advanced and customized smart contracts with
the help of Turing-complete virtual machine, called Ethereum virtual machine (EVM). The EVM
is the runtime environment for smart contracts where every node in the Ethereum network runs
an EVM implementation and executes the same instructions. Moreover, Hyperledger Fabric [1]
is an open-source enterprise-grade distributed ledger technology platform, proposed by IBM and
supports the smart contracts. The main differences between Ethereum and Hyperledger Fabric
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smart contracts are the used programming languages as well as how and by whom the smart
contract code is executed.

3.2 Smart contract
A smart contract is likely to be a class that contains state variables, functions, function modifiers,
events, and structures [4]. Besides, it can even call other smart contracts. We represent the smart
contract, which is denoted as 𝑆𝐶 , as a tuple that has the following form:

𝑆𝐶 =< 𝑠𝑡𝑎𝑡𝑒𝑠, 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 >

• States: they are variables that hold some data or the owner’s wallet address (i.e., the address
in which the smart contract is deployed). We can distinguish between two state types, namely
constant states, which can never be changed, and writable states, which save states in the
blockchain.

• Functions: they are pieces of code that can read or modify the states. We can distinguish
between two function types, namely read-only functions, which do not require 𝑔𝑎𝑠 1 to run
and write functions that require 𝑔𝑎𝑠 because the state transitions must be encoded in a new
block of the blockchain.

Moreover, a smart contract is hosted in the blockchain by invoking its constructor function
through a transaction submitted to the blockchain network, then the constructor function is
executed, and the final code of the smart contract is stored on the blockchain. Once deployed, the
creator of the smart contract got the returned parameters (e.g., contract address), then users can
invoke any available smart contract’s function by sending a transaction. Based on the immutable
blockchain technology concept, smart contracts cannot be modified once added to the blockchain.
Once started, all running of the contract is based on its code. No one can affect it, even the creator [5].
The only way to remove the bytecode from Ethereum is by using the self-destruct function. Usually,
only the smart contract owner can remove the contract by invoking this function. The remaining
cryptocurrency stored at the address of the smart contract is sent to a designated target and then
the code is removed from the state, but the contract remains part of the blockchain history [19].

4 SYSTEMMODEL
This section includes both the main goals of the system model and its description.

4.1 System model main goals
Several researchers adopted the blockchain for non-monetary applications, such as managing IoT
devices in order to enhance the data owner’s control over the own smart objects. However, applying
the blockchain technology to the IoT context is not straightforward, therefore, several challenges
need to be addressed. First, the proof-of-work needs to be eliminated in order to decrease the
transaction processing overhead. Indeed, this computationally expensive consensus is important
for cryptocurrency to prevent double spending, which is not considered for IoT device management.
For this purpose, a private blockchain that restricts who is allowed to participate in the network,
can execute the consensus protocol, and maintain that the shared ledger can be used to eliminate
the proof-of-work while maintaining most of the classic blockchain security and privacy benefits.
Because the network of a private blockchain is usually not exposed to a hostile public internet
environment, the requirements on cost of immutability are weaker. Moreover, the blockchain does
not have to be guarded by the the proof-of-work thus, the hash chains and replicas owned by
different parties are sufficient for ensuring immutability integrity. Second, to enforce the data
owner’s control over the own IoT devices, a behavior tracking is required in order to detect any
1gas: it is a unit that measures the amount of computational effort that it will take to execute certain operations.
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possible misbehavior. In this context, a smart contract can be explored to enforce the data owner’s
privacy preferences about how the IoT devices must behave.

4.2 System model description
In order to manage the IoT devices, a data owner can introduce some privacy permission settings
that define how each IoT device must behave according to the produced data. However, these
permission settings need to be enforced to keep the data owner’s control over the own devices.
We aim at addressing this dilemma by proposing a system model that monitors the IoT devices by
allowing or blocking actions according to the device behaviors. Thus, our system model is based
on (i) a lightweight blockchain, called Private BC that eliminates the proof-of-work in order to be
supported by the resource-constrained IoT devices, (ii) a smart contract, called Ownership that
stores the addresses of the IoT devices possessed by a data owner, (iii) a smart contract, called
PrivacyPermissionSetting that verifies the privacy permission settings before allowing any device
to communicate with other devices, and (iv) a smart contract, called BehaviorControl that analyzes
the IoT device behaviors to detect any malicious attempt and rapidly block the detected devices.
As shown in Figure 1, the system model is a smart space network, such as a smart home, a

hospital, or a smart building that is considered as a private area network. It consists of several smart
devices owned by a smart home owner or a hospital manager and monitored by multiple miner
nodes through the replicated private BC, which hosts three types of smart contract. The role of the
private blockchain is to log the communication of the smart devices, while the storage node stores
the collected IoT data (e.g., location, energy consumption, etc.) to increase the data owner’s privacy.
It consists of four components, namely smart device, miner, private BC, and smart contract.

Therefore, the detailed description of these components is as follows:

• Smart device: it is an IoT device equipped with sensing and communication capabilities
that allow it to collect environmental data, communicate with other devices, or connect to
the Internet. In an IoT environment, we distinguish several devices, such as RFID readers,
sensors, actuators, embedded computers, and mobile phones. However, the memory and
storage capabilities differ from one device to another. In this work, the smart devices are
considered as IoT devices with low memory and storage capabilities. Thus, they only store the
relevant information, such as the addresses of the miner nodes and smart contracts, unlike
the miner nodes, which store the whole blockchain.

• Miner: it is a smart device that does not rely on a battery power, such as a computer or a
cloud server. Typically, the miners receive the collected data from smart devices, like sensors
and actuators, in order to remotely analyze them and take appropriate decisions. In order to
enable better control over the smart devices, the data owners require a more flexible way to
define permission settings and guarantee their enforcement. For this purpose, each miner
node aims at computing complicated treatments, such as logging the communication of IoT
devices in a private ledger, monitoring the misbehavior of IoT devices, and blocking the
malicious ones. In this work, the miner nodes are considered as smart devices with high
memory and storage capabilities. Thus, they process every transaction and store a copy of
the entire private blockchain.

• Private BC: it is a local private blockchain that enables the data owner to control his/her
own smart devices. This blockchain logs only the data owner’s smart device communication.
The collected IoT data are stored in the storage nodes to increase the data owner privacy.
In the private BC, blocks are chained together using the hash of the previous block to keep
the blockchain immutable. However, classic blockchains are computationally expensive and
involve high bandwidth overhead and delays, which are not suitable for most IoT devices.
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Fig. 1. The System Model - a smart space network, such as a smart home, a hospital, or a smart building that
is considered as a private area network. It consists of several smart devices owned by a smart home owner or
a hospital manager and monitored by multiple miner nodes through the replicated private BC, which hosts
three types of smart contract, namely Ownership, PrivacyPermissionSetting, and BehaviorControl. The role
of the private blockchain is to log the communication of the smart devices, while the storage node stores the
collected IoT data (e.g., location, energy consumption, etc.) to increase the data owner’s privacy.

For this reason, we propose to use a lightweight private blockchain that eliminates the
proof-of-work used for mining new blocks into the classic blockchain. In order to maintain
the correctness, the system instantly validates a new block for every new transaction. There-
fore, we aim at reducing the block validation processing time by creating a new block for
each transaction (i.e., one block only includes one transaction). Thus, each new block will
be validated faster while maintaining most of the classic blockchain security and privacy
benefits. Moreover, by considering off-chain data storage mechanisms, the system reduces
the transaction data size and the redundant storage requirements. The advantages of this
approach is that it can reduce both the transaction fee and the chain size. Hence, throughput
and scalability of the overall system are enhanced. Furthermore, in order to enforce the data
owner’s privacy preferences on how the own IoT devices must behave, the private BC hosts
a set of smart contracts.

• Smart contract: it can be seen as a published agreement within the blockchain that ensures
the compliance of a set of conditions shared between untrusted parties. Therefore, we propose
three types of smart contracts, which aim at addressing the data owner’s control enforcement
over the own smart devices within an environment in which there is no need for participants
to be trusted and no centralized or single point of failure is feared.

After defining the system model core components, we detail below the proposed privacy-
preserving IoT device management framework.
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5 PRIVACY-PRESERVING IOT DEVICE MANAGEMENT FRAMEWORK
According to [7], the privacy of the person is the right to control the integrity of the body and the
wearable IoT devices. In order to guarantee this right, we propose to use smart contracts to define
a blockchain-based IoT device management framework, which aims at enforcing the data owner’s
control over the IoT devices by detecting any possible misbehavior while blocking the detected
devices.

In this section, we describe our proposed smart contracts and the main framework functionality.

5.1 Smart contract description
In order to enable the data owner to define and enforce the privacy permission settings, three smart
contracts are proposed as shown in Figure 1, namely PrivacyPermissionSetting, Ownership, and
BehaviorControl. These contracts enforce the data owner’s privacy preferences on how the smart
devices must behave according to each data output.

PrivacyPermissionSetting smart contract: it is created by the data owner and hosted on
the private BC where each smart device that knows this smart contract address can use it by
invoking its defined functions. The PrivacyPermissionSetting smart contract is designed to enable
the smart devices to ask for permission before communicating with other devices. This smart
contract defines a set of functions, namely: (i) LocalStore function, which enables to verify the
smart device permission and locally stores its collected data, (ii) ExternalStore function that verifies
if the smart device has the permission to send the collected data to be stored on an external storage
node, (iii) Read function that verifies if the smart device has the permission to request data from
other internal or external smart devices after verifying the smart device permissions, (iv) Write
function that enables a smart device to add and/or modify a requested data collected by other
internal or external smart devices if the smart device is permitted, and (v)Monitor function that
enables to verify the smart device permission to receive periodic data from another smart device.

Ownership smart contract: it is created by the data owner in order to store its own IoT device
addresses. In fact, for each IoT device, a set of IoT data outputs is added and a PrivacyPermission-
Setting smart contract is associated. Moreover, the Ownership smart contract is designed to enforce
the data owner’s control over the IoT devices and their outputs. It defines a set of functions, namely:
(i) addNewIoTDevice function, which enables to add a new IoT device by indicating an IoT device
address, an IoT device output, and the address of the associated PrivacyPermissionSetting smart
contract, (ii) modifyIoTDevice function, which enables to modify the description of an existing IoT
device except for the set of its outputs, (iii) removeIoTDevice function, which enables to remove
an existing IoT device, (iv) addIoTDeviceOutput function, which enables to add a new output to
an existing IoT device by indicating a description of the new output, (v) modifyIoTDeviceOutput
function, which enables to modify the description of an existing IoT device output, and (vi) re-
moveIoTDeviceOutput function, which enables to remove an existing IoT device output from an
existing IoT device.

BehaviorControl smart contract: it is created by the data owner in order to define the pri-
vacy settings for each smart device output, verify the permissions before allowing any device to
communicate with other devices, and block a smart device access to a resource in case of sending
too many requests during a very short time. The BehaviorControl smart contract is designed to
rapidly detect any malicious attempt by analyzing the smart device behavior. It defines a set of
functions, namely: (i) privacySettingAdd function, which enables to add a new privacy setting to
a smart device according to its data output by introducing the action to be handled on the data,
its permission, and its allowed frequency threshold, (ii) privacySettingUpdate function, which
enables to modify the permission associated with the action on the output of one smart device,
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(iii) privacySettingDelete function, which enables to revoke the permission from an existing smart
device, (iv) misbehaviorPenalty function, which enables to maintain a record array of the detected
misbehavior of an IoT device and compute the duration time of a smart device penalty when any
misbehavior is detected, and (v) verifyPermission function, which enables to check the smart device
behavior before allowing the transaction sender to access the requested data output.

After introducing the smart contracts, we explain below the main framework functions.

5.2 Framework’s main functions
Based on the proposed smart contracts, our privacy-preserving IoT device management framework
includes the following functions: (i) registering a new smart device to the IoT system, (ii) adding
privacy permission settings to each smart device, and (iii) enforcing the privacy permission settings.
The dynamic aspect of the framework that relies on these functions is detailed what follows.

5.2.1 Registering a new smart device in the IoT system. In order to facilitate the management of the
own smart devices, an owner can register new smart devices through the following steps:

• Step 1: Create (i.e., write and compile) a PrivacyPermissionSetting smart contract.
• Step 2: Send a transaction to deploy the created contract onto the private blockchain.
• Step 3: Create (i.e., write and compile) an Ownership smart contract.
• Step 4: Send a transaction to deploy the created smart contract onto the private blockchain.
• Step 5: Send a transaction to call the function addNewIoTDevice defined in the Ownership
smart contract to add a new smart device by indicating an IoT device address, an IoT device
output, and the address of the associated PrivacyPermissionSetting smart contract.

5.2.2 Adding privacy permission settings for each smart device. In order to define the privacy
preferences on how each smart device must behave, the owner can define the privacy permission
settings for each smart device through the following steps:

• Step 1: Create (i.e., write and compile) a BehaviorControl smart contract.
• Step 2: Send a transaction to call the function privacySettingAdd defined in the Behavior-
Control smart contract to add a new privacy permission setting by indicating the action to
be handled on the data, its permission, and its allowed frequency threshold, which is the
maximum allowed request number in a short time period.

Once added, the new smart device received the blockchain address of the PrivacyPermissionSet-
ting smart contract.

5.2.3 Enforcing the privacy permission settings. In order to receive the authorization to execute the
needed operation, the smart device can communicate with its associated PrivacyPermissionSetting
smart contract through the following steps:

• Step 1: Send a transaction to call any function defined in the PrivacyPermissionSetting smart
contract to receive the authorization to execute the needed operation by indicating the needed
target (e.g., IoT device output) and the requested action to be handled on the target.

• Step 2: Call the verifyPermission function defined in the BehaviorControl smart contract
internally by the invoked function in Step 1.

• Step 3: Emit the ReturnRequestResult event with the appropriate decision after verifying the
smart device permission and behavior.

• Step 4: Receive the appropriate decision.
As aforementioned, each IoT device behavior is tracked to authorize the requested action or detect

any possible misbehavior. For this purpose, we introduce the algorithms of bothmisbehaviorPenalty
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and verifyPermission functions defined in the BehaviorControl smart contract, which are detailed
below in Algorithm 1 and Algorithm 2.
Algorithm 1 aims at computing the duration time penalty when any misbehavior is detected

(Line 3) and pushing the received misbehavior into a dynamic array that stores the detected
misbehavior records of each smart device (Line 4). The misbehaviorPenalty Algorithm takes as
input the subject (i.e., smart device blockchain address), the requested smart device output, the
asked action, the misbehavior type, and the time when the misbehavior occurred and returns the
computed penalty. In fact, for each subject, a record array of misbehavior, namely𝑀𝑖𝑠𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝐿𝑖𝑠𝑡

is stored and used to compute the penalty, which is the block duration opposed to the subject in
terms of number of minutes, during which the subject cannot invoke any operation using its smart
contract. Then, the penalty is computed according to the subject record array of misbehavior and
its frequency threshold of invoking a specific action on one device output.

Algorithm 1: IoT device misbehavior judge.
Input: 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡, 𝑑𝑒𝑣𝑖𝑐𝑒𝑂𝑢𝑡𝑝𝑢𝑡, 𝑎𝑐𝑡𝑖𝑜𝑛,𝑚𝑖𝑠𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟, 𝑡𝑖𝑚𝑒

Output: 𝑝𝑒𝑛𝑎𝑙𝑡𝑦
1: Function misbehaviorPenalty(𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 , 𝑑𝑒𝑣𝑖𝑐𝑒𝑂𝑢𝑡𝑝𝑢𝑡 , 𝑎𝑐𝑡𝑖𝑜𝑛,𝑚𝑖𝑠𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 , 𝑡𝑖𝑚𝑒):
2: 𝑙𝑒𝑛𝑔𝑡ℎ =MisbehaviorList[𝑠𝑢𝑏 𝑗𝑒𝑐𝑡].length + 1
3: 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =𝑙𝑒𝑛𝑔𝑡ℎ / privacySettings[𝑠𝑢𝑏 𝑗𝑒𝑐𝑡][𝑑𝑒𝑣𝑖𝑐𝑒𝑂𝑢𝑡𝑝𝑢𝑡][𝑎𝑐𝑡𝑖𝑜𝑛].𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
4: MisbehaviorList[𝑠𝑢𝑏 𝑗𝑒𝑐𝑡].push(Misbehavior(𝑠𝑢𝑏 𝑗𝑒𝑐𝑡, 𝑑𝑒𝑣𝑖𝑐𝑒𝑂𝑢𝑡𝑝𝑢𝑡, 𝑎𝑐𝑡𝑖𝑜𝑛,𝑚𝑖𝑠𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 ,

𝑡𝑖𝑚𝑒, 𝑝𝑒𝑛𝑎𝑙𝑡𝑦))
5: return 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

6: End Function

Algorithm 1 is used by Algorithm 2 in case of any misbehavior detection. Indeed, Algorithm 2
aims at checking the smart device behavior before allowing it to handle the requested action
on the device output. Thus, it is executed each time a smart device invokes a function of its
PrivacyPermissionSetting smart contract. The verifyPermissionAlgorithm takes as input the subject,
the device output, the asked action, and the time when the smart contract function is invoked. It
also returns the request result and the authorization message. First, a defined privacy permission
setting that introduces the action for the couple of one subject and the device output needs to exist.
Otherwise, one misbehavior is detected, stored on the subject’s record array of misbehavior, while
its request is denied (Lines 2-6). If a privacy permission setting exists, both the subject and the
output are verified to see if they are blocked or not (Lines 8-13). In case of unblocking, both the smart
device privacy permission setting and the smart device behavior are checked. If the permission
is allowed and no misbehavior is detected, the verifyPermission Algorithm authorizes the action.
Otherwise, a penalty is computed, the subject is blocked, and the permission is denied (Lines 38-42).
Several misbehavior types can be detected by the verifyPermission Algorithm, such as sending
requests to invoke unauthorized action on a device output (Lines 4-6), sending requests during the
penalty duration time (Lines 11-13), and sending multiple requests in a short period of time (Lines
20-24). The device output can also be momentarily blocked to be protected from a possible attack
when receiving multiple requests from multiple subjects in a short period of time (Lines 28-34).

6 SECURITY AND PRIVACY ANALYSIS
After detailing the privacy-preserving IoT device management framework, we highlight and analyze
in this section both the security and privacy properties.
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Data Privacy Based on IoT Device Behavior Control Using Blockchain 11

Algorithm 2: IoT device misbehavior detection.
Input: 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡, 𝑑𝑒𝑣𝑖𝑐𝑒𝑂𝑢𝑡𝑝𝑢𝑡, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑡𝑖𝑚𝑒

Output: 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑅𝑒𝑠𝑢𝑙𝑡 , 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑠𝑠𝑎𝑔𝑒

1: Function verifyPermission(𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 , 𝑑𝑒𝑣𝑖𝑐𝑒𝑂𝑢𝑡𝑝𝑢𝑡 , 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑡𝑖𝑚𝑒):
2: privacySetting= privacySettings[𝑠𝑢𝑏 𝑗𝑒𝑐𝑡][𝑑𝑒𝑣𝑖𝑐𝑒𝑂𝑢𝑡𝑝𝑢𝑡][𝑎𝑐𝑡𝑖𝑜𝑛]
3: outputSetting= outputSetting[𝑑𝑒𝑣𝑖𝑐𝑒𝑂𝑢𝑡𝑝𝑢𝑡]
4: if ( ! privacySetting.exists) then
5: 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑐ℎ𝑒𝑐𝑘 = false ; 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑠𝑠𝑎𝑔𝑒= “Wrong subject specified”
6: 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =misbehaviorPenalty(𝑠𝑢𝑏 𝑗𝑒𝑐𝑡, 𝑑𝑒𝑣𝑖𝑐𝑒𝑂𝑢𝑡𝑝𝑢𝑡, 𝑎𝑐𝑡𝑖𝑜𝑛, “Unauthorized action attempt”, 𝑡𝑖𝑚𝑒)
7: else
8: if (TimeofDeviceOutputUnblock[𝑑𝑒𝑣𝑖𝑐𝑒𝑂𝑢𝑡𝑝𝑢𝑡] ≥ 𝑡𝑖𝑚𝑒) then
9: 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑠𝑠𝑎𝑔𝑒= “Device Output are still blocked”
10: else
11: if (behaviors[𝑠𝑢𝑏 𝑗𝑒𝑐𝑡].TimeofSubjectUnblock ≥ 𝑡𝑖𝑚𝑒) then
12: 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑐ℎ𝑒𝑐𝑘 = false ; 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑠𝑠𝑎𝑔𝑒= “Subject is still blocked”
13: 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =misbehaviorPenalty(𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 , 𝑑𝑒𝑣𝑖𝑐𝑒𝑂𝑢𝑡𝑝𝑢𝑡 , 𝑎𝑐𝑡𝑖𝑜𝑛, “Successive failure”, 𝑡𝑖𝑚𝑒)
14: else
15: if (privacySetting.permission == “𝑎𝑙𝑙𝑜𝑤”)) then
16: 𝑝𝑟𝑖𝑣𝑎𝑐𝑦𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝐶ℎ𝑒𝑐𝑘 = true
17: end if
18: if (𝑡𝑖𝑚𝑒 - privacySetting.lastRequest ≤ privacySetting.minInterval) then
19: privacySetting.frequentRequestsNumber++
20: if (privacySetting.frequentRequestsNumber ≥ privacySetting.frequencyThreshold) then
21: 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑐ℎ𝑒𝑐𝑘 = false ; 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑠𝑠𝑎𝑔𝑒= “Subject is blocked”
22: 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =misbehaviorPenalty(𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 , 𝑑𝑒𝑣𝑖𝑐𝑒𝑂𝑢𝑡𝑝𝑢𝑡 , 𝑎𝑐𝑡𝑖𝑜𝑛,“Too frequent request”, 𝑡𝑖𝑚𝑒)
23: behaviors[𝑠𝑢𝑏 𝑗𝑒𝑐𝑡].TimeofSubjectUnblock = time + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

24: end if
25: end if
26: privacySetting.lastRequest = time
27: privacySetting.requestResult = (𝑝𝑟𝑖𝑣𝑎𝑐𝑦𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝐶ℎ𝑒𝑐𝑘 and 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑐ℎ𝑒𝑐𝑘)
28: if (𝑡𝑖𝑚𝑒 - outputSetting.lastRequest ≤ outputSetting.minInterval) then
29: outputSetting.frequentRequestsNumber++
30: if (outputSetting.frequentRequestsNumber ≥ outputSetting.frequencyThreshold) then
31: TimeofDeviceOutputUnblock[𝑑𝑒𝑣𝑖𝑐𝑒𝑂𝑢𝑡𝑝𝑢𝑡]= 𝑡𝑖𝑚𝑒 + outputSetting.frequencyThreshold
32: 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑠𝑠𝑎𝑔𝑒= “Data output are blocked”
33: end if
34: end if
35: outputSetting.lastRequest = 𝑡𝑖𝑚𝑒

36: end if
37: end if
38: if (𝑝𝑟𝑖𝑣𝑎𝑐𝑦𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝐶ℎ𝑒𝑐𝑘 and 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑐ℎ𝑒𝑐𝑘) then
39: 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑠𝑠𝑎𝑔𝑒= “Action authorized”
40: else if (!𝑝𝑟𝑖𝑣𝑎𝑐𝑦𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝐶ℎ𝑒𝑐𝑘 and 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑐ℎ𝑒𝑐𝑘) then
41: 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑠𝑠𝑎𝑔𝑒= “Permission Denied”
42: end if
43: end if
44: return ( (𝑝𝑟𝑖𝑣𝑎𝑐𝑦𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝐶ℎ𝑒𝑐𝑘 and 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑐ℎ𝑒𝑐𝑘), 𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑠𝑠𝑎𝑔𝑒 )
45: End Function
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6.1 Anonymity and pseudonymity
Each smart device has a blockchain address used to communicate with other devices. Thus, the
anonymity aims at tying the smart devices in order to obfuscate the data owner’s habits and
personal behaviors.

To break this anonymity, an attacker may try to link anonymous transactions and other available
information to find the data owner’s real identity. On the other hand, to protect itself against such
linking attack, the blockchain addresses of all the smart devices are periodically updated. Indeed,
by using different pseudonyms, an attacker will be prevented from linking the real world identities
and the pseudonyms.

6.2 Authentication and privacy permission setting control
Each smart device has a blockchain address and a set of privacy permission settings, which define
how each smart device must behave, such that where it can store its produced data, with which
devices can communicate, and with which frequency per second executes each operation.
In order to enforce the privacy permission settings, each smart device has a set of permissions

that include the authorized operations defined according to the privacy preferences of the data
owner.
Moreover, to break up authentication and smart device control, an attacker may take control

of one smart device and start to use the predefined functions on the smart contract to attack the
network. On the other hand, in order to address this attack, our design employs behavior monitoring
that detects smart devices misbehavior thanks to the BehaviorControl smart contract. Moreover,
the miner node controls all the transactions in the network. Then, to protect the smart devices
from malicious requests, the transactions are filtered and limited to the authorized transactions by
the BehaviorControl smart contract. Therefore, the miner node forwards only the requests sent to
the devices by the accepted transactions to be executed.

Moreover, only the data owner’s blockchain address can update the privacy permission settings
of the own smart devices. Thus, the miner nodes execute only the smart contract code but cannot
modify it or alter the smart device authorizations.

Furthermore, an attacker may introduce many misbehaving IoT devices to misguide the environ-
ment. In order to address this attack, our design is based on a private blockchain where users are
selected and chosen before joining such a private environment. Each user only controls his/her
own smart devices. Thus, if a user introduces many misbehaving IoT devices, only his/her devices
will be blocked and not the whole system. Besides, such a user risks to be excluded from the private
blockchain network if the introduced IoT devices are malicious.

6.3 Availability
Each smart device or IoT resource (i.e., produced data) should be available to legitimate the data
owners. The availability means that the target is accessible when it is needed.

To break up the availability, an attacker may take control of one smart device and send multiple
transactions to one IoT resource. Then, in order to protect against such a denial of service attack,
the BehaviorControl smart contract hosted on the blockchain detects smart devices misbehavior
and blocks their blockchain addresses.

7 EXPERIMENTS AND RESULTS
This section provides experiment details to demonstrate the application of the proposed framework
for privacy-preserving device management in the IoT domain. We first introduce the software and
hardware used in the study, then define a use case for IoT device management, and evaluate the
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performance of the proposed blockchain-based solution. Finally, we compare our proposal with the
existing ones in order to evaluate its efficiency.

7.1 Framework configuration
Ethereum is currently the most common blockchain platform for the development of smart con-
tracts [4]. Hence, we implemented our proposed smart contracts using the Solidity language [19]
and deployed it to the Ethereum test network. In order to deploy a lightweight blockchain, we used
Ganache [9], which is a personal blockchain for Ethereum development. Therefore, we created a
test system using Truffle development framework [20], which is the most popular development
framework for Ethereum, which, among others, generates JavaScript bindings for the smart contract,
enables automated smart contract testing, and includes libraries such as web3.js [21] that facilitates
the communication between the smart contract and the Ethereum clients. In our experiments,
we used the contract events in order to automate the actions taken by the different nodes. Then,
we implemented event callbacks in our testing framework using the web3.js library [21]. All the
experiments were conducted on computers with Intel Core i5 CPU (2.30 GHz and 8GB RAM).

Moreover, we implemented a test system that consists of several nodes, namely 1 data owner, 1
miner node, and 50 smart devices. We associated the smart devices with an Ethereum account to
be represented in the network. In the Ethereum account, each node is identified by a blockchain
address, which can deploy a smart contract in the blockchain, and invoke a smart contract function
by sending a transaction.

7.2 IoT device management use case
Let Emma be a data owner that had a set of smart devices that help her to follow a healthcare
protocol, which consists in practicing some sport activities and eating healthy meals. Then, let the
smart devices be a wearable sensor, a smart treadmill, and a smart phone that Emma owns. These
smart devices collect her heartbeat, steps, and training duration. Let a tablet be a computer that
hosts Emma’s Ethereum account as well as the miner node as one personal computer that has a
high memory and storage capabilities.

7.2.1 Smart device registration. Using her computer tablet, Emma hosted a PrivacyPermission-
Setting smart contract then, an Ownership smart contract that includes her own smart device
blockchain addresses in the private BC. After that, she created a new transaction that invokes
the addNewIoTDevice function defined in the Ownership smart contract by indicating a smart
device address, a smart device output, and the address of the associated PrivacyPermissionSetting
smart contract. The computer tablet Ethereum account signs this transaction and propagates it to
the network to be mined by the miner nodes. In fact, before adding a new smart device, a set of
conditions needed to be satisfied. Firstly, only the first sender of the Ownership smart contract
constructor (i.e., the smart contract owner) can add a new smart device. Secondly, the smart device
address cannot be added if it already exists. In this case, the modifyIoTDevice function can be
used in order to update the smart device permissions. Thirdly, the PrivacyPermissionSetting smart
contract needs to be already published in the blockchain. Then, when all the conditions are satisfied,
a new smart device is added to the Ownership smart contract and the transaction is added to the
private BC. After that, the new smart device can communicate with the rest of the network using
its published PrivacyPermissionSetting smart contract.

7.2.2 Privacy permission setting definition. In order to manage the own smart devices, Emma first
deployed the BehaviorControl smart contract using her tablet computer. Second, she defined the
privacy permission setting of each smart device using the privacySettingAdd function. For instance,
Emma allowed (i) the wearable device to locally store her heartbeat on her personal computer, (ii)
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the smart treadmill to collect her steps and monitor her heartbeat, and (iii) the personal computer
to externalize the collected data to the hospital server. Indeed, during the training, the wearable
device collected Emma’s vital parameters and sent them to her personal computer which when it
received Emma’s sensitive data could send them to the hospital to be stored on Emma’s medical
base, which is regularly checked by her doctor. Moreover, these stored data are analyzed to propose
personalized recommendations for data owners. Hence, a need for a break or water notifications
can be sent to Emma when necessary.

7.2.3 Privacy permission setting verification. Once each smart device receives the blockchain
address of its PrivacyPermissionSetting smart contract, it invokes the appropriate function in
order to be authorized to execute the needed operation. For instance, the wearable device invokes
the LocalStore function defined on the PrivacyPermissionSetting smart contract to be able to
store the produced heartbeat data on Emma’s personal computer. Indeed, in order to enforce the
privacy permission setting of the wearable device, the LocalStore function calls the verifyPermission
function defined on the BehaviorControl smart contract. Thus, the verifyPermission function first
verifies the smart device authorizations, then analyzes the smart device’s behavior, and finally
emits the ReturnRequestResult event with the appropriate decision.

Fig. 2. Blockchain-based smart home test system screen-shot in case of privacy permission setting verification
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In order to check the conformance of the privacy permission setting verification step, we con-
ducted an experiment, which consists in adding a permission only for the first smart device and
sending the same request by 30 smart device blockchain addresses. Then, we randomly generated
conforming and not conforming requests by invoking the LocalStore function by several smart
devices blockchain addresses (30 in our case). Figure 2 depicts the results of this experiment during
the privacy permission setting verification. As expected, all the requests are correctly executed
but only the first smart device is authorized to execute the requested action. The rest of the smart
devices received “Wrong subject specified” as message from the ReturnRequestResult event.
We summarized the conformance checking results in Table 1. For both request types (i.e., con-

forming and not conforming), the obtained correctness is one hundred percent. Indeed, the proposed
smart contracts ensure the conformance of the defined privacy permission settings.

Table 1. PRIVACY PERMISSION SETTING VERIFICATION CONFORMANCE CHECKING RESULTS

Request Type Request Number Correctness
Conforming 1 100%

Not Conforming 29 100%

7.2.4 Privacy permission setting violation attempt detection. Let a Denial of Service (DoS) be an
attack in which an attacker sends a lot of transactions to the same target in a very short time. In this
sense, we conducted two experiments to simulate this kind of attack. The first experiment consisted
in sending many transactions to the same target using one blockchain address. The second one
consists in sending a great number of transactions to the same target using several blockchain
addresses.

Figure 3 shows the result of the first experiment during the privacy permission setting violation
attempts. Let a wearable sensor that sends several access requests to the heartbeat resource using
its blockchain address. Then, the BehaviorControl smart contract first, authorizes the action then,
it detects the misbehavior, and blocks the address for a few minutes. After that, the penalty (i.e.,
the block duration) is computed according to the detected misbehavior number in the past. During
the blocking time, the wearable sensor cannot access the heartbeat resource, whereas other sensor,
like the smart treadmill, can access to it.
Figure 4 presents the result of the second experiment. Let several blockchain addresses send

several access requests to one target, such that heartbeat resource in our example. The Behav-
iorControl smart contract detects this misbehavior and blocks the access to that target for a few
minutes to protect it.

7.3 Performance Evaluation
In this section, the proposed system performance is evaluated in terms of computation time cost
and scalability overhead.

7.3.1 Computation time cost. In order to evaluate the performance of our solution, we conducted
an experiment to compute the processing time needed by one miner node to validate a privacy
permission setting definition transaction that invokes the privacySettingAdd function and a privacy
permission setting verification transaction that invokes the verifyPermission function defined on
the BehaviorControl smart contract. First, we conducted an experiment to measure the processing
time of invoking both privacySettingAdd and verifyPermission functions. Figure 5a depicts the
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Fig. 3. Blockchain-based smart home test system screen-shot: the case of a denial of service from one
blockchain address

Fig. 4. Blockchain-based smart home test system screen-shot: the case of denial of service from several
blockchain addresses
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computational cost of the two functions for one smart device. Only 150 milliseconds are needed to
add a new privacy permission setting or verify the smart device behavior for one smart device. We
can also observe that the processing time of invoking the privacySettingAdd function is higher
than the processing time of invoking the verifyPermission function. This can be explained by the
necessity to initialize a new state on the smart contract when invoking the privacySettingAdd
function with a lot of information, such as the data output, the action to be handled on the data, its
permission, and its allowed frequency threshold.
After that, we conducted the same experiment while increasing the number of smart devices

managed by one miner node. Figure 5b depicts the computational cost of the two functions while
increasing the smart device number from 1 to 5. The processing time varies from 150 to 750 ms. We
observe that the processing time is equal to the processing time for one smart device multiply by
the smart device number. Thus, the more the smart device number increases, the more the miner’s
computing capabilities are required in order to reduce the processing time.

(a) Computational cost for one smart device (b) Average computational cost for five smart devices

Fig. 5. Average computational cost of privacy permission setting definition and verification of smart devices

7.3.2 Scalability overhead. In order to evaluate the scalability of both the privacySettingAdd and
verifyPermission functions, we made several tests while increasing the number of the managed
smart devices by the miners from 1 to 50. Moreover, we ran the simulation for 60 seconds during
which a total of 554 transactions are created. Figure 6 shows the average of 10 runs of the simulation.
We also observed that the processing time increases with the number of smart devices, which
ranges from 100 to 8000 ms. Therefore, one miner node can manage 50 smart devices in about
8 seconds, which is a short delay time while improving the data owner’s control over the own
smart devices. It is worth noting that in the case of increasing the number of smart devices in the
system, it is recommended to increase the number of miners in order to reduce the processing time.
Moreover, by considering off-chain data storage mechanisms, the IoT produced data are stored in
off-chain databases using storage nodes. This reduces the transaction data size and increases the
number of transactions that can be accommodated within the block. Hence, the throughput and
the scalability of the overall system are enhanced.

7.4 Comparative study analysis
In this section, we introduce a comparative study analysis by comparing our proposed system to the
existing privacy-preserving approaches in the IoT domain in Table 2. Four axes are simultaneously
used to qualify the state-of-the-art, namely the smart contract, IoT data privacy, permission updating,
and misbehavior judging.
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Fig. 6. Average computational cost of privacy permission setting definition and verification for fifty smart
devices

Table 2. A COMPARISON BETWEEN PROPOSED ARCHITECTURE AND EXISTING MODELS

Centralized-
based manage-
ment [2]

Distributed-
based manage-
ment [12][13]

Blockchain-
based manage-
ment [8] [16]

Proposed model

Smart
contract

No No No Three types of
smart contracts

IoT data
privacy

The IoT data
are stored in the
centralized cloud
server

The IoT data are
stored in the stor-
age server

The IoT data
are stored in
the blockchain
database

The IoT data are
stored in the stor-
age devices that in-
creases the privacy
of the data owner

Permission
Updating

Permissions are up-
dated only if they
are authorized by
the centralized
cloud server

Permissions need
to be updated at
each constrained
IoT device

Permissions need
to be updated at
each place where
ever they are used

Permissions are
updated through
the privacySettin-
gUpdate function

Misbeha-
vior
Judging

No No No Judging the misbe-
havior of the smart
device and deter-
mines the corre-
sponding penalty

Being different from the above proposals, the proposed model used smart contracts for self-
execution policies. Moreover, in order to increase the privacy of the data owners, our model stored
the data collected by the smart devices in storage devices. Besides, permissions are updated through
the privacySettingUpdate function defined in the BehaviorControl smart contract.
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Table 2 also shows that the biggest difference in the proposed model is the use of a smart contract
to judge the misbehavior of the IoT devices and determine the corresponding penalty, which is
not used in the existing models. Moreover, the behavior monitoring ensures that the data owner’s
privacy preferences be enforced in an untrustworthy IoT network.

It is therefore worth noting that the misbehavior-judging method was used before by Zhang et
al. [22]. Thus, in order to evaluate our proposal efficiency, we compare it with the access control
system proposed in [22], which is chosen because it is one of the latest approaches offering privacy-
preserving access guarantees to the data owner, besides, it is the closest to our proposal. In [22],
each couple (subject, object) shares an AccessControlMethod smart contract. The authors defined
sending access requests by one subject to the same object too frequently in a short period of
time as misbehavior. Thus, three parameters are defined to characterize this misbehavior, namely
𝑚𝑖𝑛𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 , which is the minimum time interval between two successive requests, 𝑁𝑜𝐹𝑅, which
is the number of frequent requests, and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , which is the maximum frequent request number
in a minimum time interval. In case of any misbehavior detection, the subject is blocked for the
duration of time, called 𝑝𝑒𝑛𝑎𝑙𝑡𝑦, which is computed by the Judge smart contract.
In our case, each object that can be the gateway owned by the data owner defined a Behavior-

Control smart contract to manage several subjects (i.e., smart devices). Moreover, we defined three
misbehavior types, such as (i) sending requests to invoke unauthorized action on one target (e.g.,
device output), (ii) sending requests during the penalty duration time, and (iii) sending multiple
requests in a short period of time. Another difference between the proposed system and [22] is that
our BehaviorControl smart contract maintained a history of the previous queries of each target
thus, it can detect the misbehavior of receiving multiple requests from multiple subjects to the same
target in a short period of time. In this case, the target can be momentarily blocked to be protected
from this attack. In case of any misbehavior detection, the subject (or the target) is blocked for the
computed duration of time, called 𝑝𝑒𝑛𝑎𝑙𝑡𝑦, using the following function:

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑙𝑒𝑛𝑔𝑡ℎ/𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (1)

where 𝑙𝑒𝑛𝑔𝑡ℎ is the number of misbehavior that the subject had exhibited and 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

is the maximum allowed request number in a short time period.
Unlike Zhang et al. [22], who addressed the access control issue, we focused on the IoT device

management by offering new misbehavior types.

8 CONCLUSION
In recent years, several researchers have agreed that the combination of blockchain and IoT
generates a peer-to-peer system, in which peers interact in an untrusthless and auditable manner.
However, a few proposed solutions have dealt with the advantage of this technology in order
to preserve the individuals’ privacy by controlling their own smart devices. For this reason, we
have proposed a privacy-preserving IoT device management framework based on the blockchain
technology. In fact, the smart devices are controlled by several smart contracts that validate
connection rights according to the privacy permission settings predefined by the data owners and
the stored record array of detected misbehavior of each smart device. Moreover, we carried out
several experiments in order to demonstrate the efficiency of the proposed solution. Then, both
computation time cost and scalability overhead are analyzed. Finally, we compared our proposal
with the existing approaches.

Moreover, it is worth noting that the blockchain use leads to a storage overhead cost. In future
work, we plan to store only the newer blocks in order to overcome this issue. Indeed, the miners do
not require storing all the blockchain for the long term. Thus, they can only save the hash of the
previous blocks and not the entire blocks to keep the blockchain immutable.

J. ACM, Vol. , No. , Article . Publication date: November 2020.



20 F. Loukil, C. Ghedira-Guegan, K. Boukadi, A-N. Benharkat, and E. Benkhelifa

REFERENCES
[1] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo De Caro, David

Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, et al. 2018. Hyperledger fabric: a distributed
operating system for permissioned blockchains. In Proceedings of the Thirteenth EuroSys Conference. ACM, 30.

[2] Ahmed Banafa. 2017. IoT and blockchain convergence: benefits and challenges. IEEE Internet of Things (2017).
[3] Jorge Bernal Bernabe, Jose Luis Hernandez Ramos, and Antonio F Skarmeta Gomez. 2016. TACIoT: multidimensional

trust-aware access control system for the Internet of Things. Soft Computing 20, 5 (2016), 1763–1779.
[4] Vitalik Buterin et al. 2014. A next-generation smart contract and decentralized application platform. white paper

(2014).
[5] Jiachi Chen, Xin Xia, David Lo, John Grundy, and Xiaohu Yang. 2020. Maintaining Smart Contracts on Ethereum:

Issues, Techniques, and Future Challenges. arXiv preprint arXiv:2007.00286 (2020).
[6] Cisco. 2016. Internet of Things At a Glance. Available online at https://www.cisco.com/c/en/us/products/collateral/se/

internet-of-things/at-a-glance-c45-731471.pdf?dtid=osscdc000283. Last accessed: 2020-06-30.
[7] Roger Clarke. 2006. What’s privacy. In Australian law reform commission workshop, Vol. 28. https://www.rogerclarke.

com/DV/Privacy.html
[8] Ali Dorri, Salil S Kanhere, Raja Jurdak, and Praveen Gauravaram. 2017. Blockchain for IoT security and privacy:

The case study of a smart home. In 2017 IEEE international conference on pervasive computing and communications
workshops (PerCom workshops). IEEE, 618–623.

[9] Ganache. 2016. Ganache: Personal blockchain for Ethereum development. Available online at https://www.trufflesuite.
com/ganache. Last accessed: 2020-06-30.

[10] Seonghyeon Gong, Erzhena Tcydenova, Jeonghoon Jo, Younghun Lee, and Jong Hyuk Park. 2019. Blockchain-based
secure device management framework for an internet of things network in a smart city. Sustainability 11, 14 (2019),
3889.

[11] José L Hernández-Ramos, Antonio J Jara, Leandro Marín, and Antonio F Skarmeta Gómez. 2016. DCapBAC: embedding
authorization logic into smart things through ECC optimizations. International Journal of Computer Mathematics 93, 2
(2016), 345–366.

[12] Jose L Hernandez-Ramos, Marcin Piotr Pawlowski, Antonio J Jara, Antonio F Skarmeta, and Latif Ladid. 2015. Toward
a lightweight authentication and authorization framework for smart objects. IEEE Journal on Selected Areas in
Communications 33, 4 (2015), 690–702.

[13] Dina Hussein, Emmanuel Bertin, and Vincent Frey. 2017. A community-driven access control approach in distributed
IoT environments. IEEE Communications Magazine 55, 3 (2017), 146–153.

[14] Kristián Košt’ál, Pavol Helebrandt, Matej Belluš, Michal Ries, and Ivan Kotuliak. 2019. Management and monitoring of
IoT devices using blockchain. Sensors 19, 4 (2019), 856.

[15] Antony Lewis. 2016. A gentle introduction to smart contracts. Available online at https://bitsonblocks.net/2016/02/01/
gentle-introduction-smart-contracts/. Last accessed: 2020-07-07.

[16] Damiano Di Francesco Maesa, Paolo Mori, and Laura Ricci. 2017. Blockchain based access control. In IFIP international
conference on distributed applications and interoperable systems. Springer, 206–220.

[17] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. . (2008).
[18] Nxt community. 2016. Nxt Whitepaper. Available online at https://nxtdocs.jelurida.com/Nxt_Whitepaper. Last

accessed: 2020-07-07.
[19] Solidity. 2014. Solidity language. Available online at https://solidity.readthedocs.io/en/v0.7.1/introduction-to-smart-

contracts.html. Last accessed: 2020-06-30.
[20] Truffle. 2016. Truffle: Ethereum Development Framework. Available online at https://github.com/trufflesuite/truffle.

Last accessed: 2020-06-30.
[21] Web3. 2017. web3.js - Ethereum JavaScript API. Available online at https://github.com/ethereum/web3.js/. Last

accessed: 2020-06-30.
[22] Yuanyu Zhang, Shoji Kasahara, Yulong Shen, Xiaohong Jiang, and Jianxiong Wan. 2018. Smart contract-based access

control for the internet of things. IEEE Internet of Things Journal (2018).

J. ACM, Vol. , No. , Article . Publication date: November 2020.

https://www.cisco.com/c/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf?dtid=osscdc000283
https://www.cisco.com/c/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf?dtid=osscdc000283
https://www.rogerclarke.com/DV/Privacy.html
https://www.rogerclarke.com/DV/Privacy.html
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://bitsonblocks.net/2016/02/01/gentle-introduction-smart-contracts/
https://bitsonblocks.net/2016/02/01/gentle-introduction-smart-contracts/
https://nxtdocs.jelurida.com/Nxt_Whitepaper
https://solidity.readthedocs.io/en/v0.7.1/introduction-to-smart-contracts.html
https://solidity.readthedocs.io/en/v0.7.1/introduction-to-smart-contracts.html
https://github.com/trufflesuite/truffle
https://github.com/ethereum/web3.js/

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Blockchain technology
	3.2 Smart contract

	4 System Model
	4.1 System model main goals
	4.2 System model description

	5 Privacy-preserving IoT device management framework
	5.1 Smart contract description
	5.2 Framework's main functions

	6 Security and privacy Analysis
	6.1 Anonymity and pseudonymity
	6.2 Authentication and privacy permission setting control
	6.3 Availability

	7 Experiments and results
	7.1 Framework configuration
	7.2 IoT device management use case
	7.3 Performance Evaluation
	7.4 Comparative study analysis

	8 Conclusion
	References

