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A B S T R A C T

This study aims at investigating the effect of defect on the high cycle fatigue behavior of polycrystalline ag-
gregates. An explicit virtual microstructure finite element model is created to conduct fatigue simulations.
Different stress-based criteria frequently applied in fatigue assessment are tested with a combination of the non-
local methods. Two realizations of the non-local method are used and compared. Simulation results are com-
pared to experimental results of 316L. From the parametric simulations, better qualitative understandings on the
choice of non-local method as well as its parameters are obtained. The effect of Kitagawa-Takahashi can be
reproduced and explained by this proposed framework of microstructure modeling-simulation.

1. Introduction

The numerical simulation of metallic polycrystalline aggregates has
developed quickly in the past decades [1–3]. Its application to the fa-
tigue predictions is more and more valued for the efficiency and cost-
saving as the fatigue experiments are very time consuming and require
massive efforts on the devices’ setting up and specimens’ preparation. In
the high cycle fatigue regime, it is well known that the strength is
highly influenced by the defects, especially the ones on (or close to) the
free surface [4]. The defects in the metallic materials are frequently
encountered due to the manufacturing process or the material nature,
e.g. shrinkage pores in cast aluminum alloys with large grain size [5],
gas pore or lack-of-fusion defects and fine microstructure for materials
from additive manufacturing process [6]. More investigations on arti-
ficially induced defect [7] or surface irregularities [8] are reported too.
Even though anisotropy and stochasticity of microstructure can be
displayed by advancing experimental instruments such as SEM, EBSD
and AFM, sometimes definitive conclusions from experiments are
hardly achievable due to the restrictions as sample number, fabrication
reproducibility, etc. Since fatigue is a local phenomenon, micro-
structure impacts obviously the initiation and propagation of fatigue
crack from inherent defect by acting as the main source of scatter in
fatigue test results. Vincent et al. found that the critical defect size has a
connection with characteristic microstructural dimension other than
actual physical length for different steels [9]. But the converse

conclusion is reported by Bracquart et al. for aluminum alloy [10].
When dealing with the issue of microstructure/defect competition in
fatigue, a simulation would be reliable if the microstructure is explicitly
taken into consideration.

The effect of defect size on reducing the high cycle fatigue perfor-
mance of a material is often schematically shown by the Kitagawa-
Takahashi (K-T) diagram [11] (see Fig. 1). El Haddad et al. [12] pro-
posed a single curve for all defect sizes by using the short crack cor-
rection. Two main mechanisms are presented by the two lines. The
horizontal line represents that, within a certain range, the defect size
does not change the high cycle fatigue limit while the other line in-
dicates that the fatigue limit drops linearly on the log-log scale as the
defect size increases. Based on the good prediction of Linear Elastic
Fracture Mechanics on fatigue performance of specimen having a long
crack, the second line can generally be related to the stress intensity
threshold. In the K-T diagram, the non-damaging cracks do not affect
fatigue performance, as well as the long cracks, lead to a strong de-
crease of fatigue limit. From the perspective of industrial application, it
is of great importance to explore the transition region where the short
crack has an influence but does not play the dominant role.

Microstructural features such as grain boundaries and crystal-
lographic orientations play important roles in the fatigue damage pro-
cess [13]. For a crack with the length on the order of several grains, the
microstructure governs its propagation which cannot be predicted by
LEFM using macroscopic variables [14]. A framework of explicit
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microstructure sensitive modeling is for instance proposed by McDo-
well et al. [15] to estimate fatigue behavior from microstructural per-
spectives. The introduction of defects and microstructure to the nu-
merical model can bring a great amount of stress heterogeneity, i.e.
local stress concentration and local stress gradient. Stress concentration
will affect strongly the local mechanical response which causes dis-
location or deformation leading to fatigue failure. Theoretical stress
concentration factor Kt defined by the ratio of the local maximum stress
and the nominal stress is commonly used to characterize the stress
concentration in the vicinity of the defect. In terms of fatigue behavior,
another parameter Kf which is the ratio of fatigue strength of a smooth
specimen to that of a notched specimen presents more clearly the in-
fluence brought by a stress concentrator [16]. However, Kf is always
less than Kt because of the effect of stress gradient and size. For de-
fective materials, the critical point at the notch root always over-em-
phasizes the effect of stress concentration which leads to an under-
estimation of fatigue performance. Additionally, the extreme value
from finite element model is highly dependent on the mesh size without
further treatment.

In order to investigate the effect of defect and microstructure as well
as their competition, the non-local method is implemented under the
framework of microstructure sensitive modeling in this study. The
concept used is the critical distance theory [17]. The idea of the critical
distance theory is assuming there is a small zone with the size of several
grains in which the grains affect each other mutually leading to fatigue
initiation. This method has been successfully applied in several pieces
of research on the fatigue performance of defective materials. But in the
applications, the definition of the critical distance is somehow vague.
Taylor gives an explicit expression of the critical distance parameter L
[18] which is a function of material’s threshold ΔKth and fatigue limit
σ0. This model works well in the life assessment as it can give the
prediction of fatigue life within the same order of the experimental
observation [19]. But considering the microstructure, the result is not
that satisfactory since the parameters are macroscopic and cannot re-
present what happens locally. Even if we calibrate these parameters
locally in the hot spot, a local calibration for a non-local method seems
to be unreasonable. A more frequently encountered treatment is to give
a suitable Lcr without further explanation [20]. Besides the concept of
Lcr, an alternative realization using microscopic parameters (layer
depth) was proposed and tested [21].

However, from the concept of the critical distance theory, the non-
local parameter should have a connection with the critical defect size
and the microstructure. Inspired by the findings of Vincent et al. [9]
that the critical defect size is relative to the microstructural attributes,
two different realizations of the non-local method are proposed and
evaluated in this study. One is the critical radius method which doesn’t
make explicit reference to microstructure. Another one is the neighbor
layer method characterized via microstructural attributes.

It is also important to point out that this study is an extension of
previous researches dealing with microstructure sensitive modeling.

Based on the explicit microstructure sensitive modeling framework,
Robert et al. tested both elastic and plastic material behavior models
under different types of loading to simulate the meso-mechanical re-
sponse in the polycrystalline aggregate [22]. The predominant role of
elastic anisotropy on simulations in the HCF regime, which is in
agreement with the finding of Sauzay [23], authorizes the simplifica-
tion of neglecting crystal plasticity in HCF prediction for some mate-
rials. Hor et al. [24] evaluated several multi-axial stress-based fatigue
criteria statistically at the grain scale of polycrystalline aggregate.
Guerchais et al. [21] firstly introduced the neighbor layer method in his
investigation of the effect of defects. Though the predictions from his
probabilistic and non-local determinant criteria are in line with the
experimental findings, the identification of parameters is not explained
which remains unclear in the simulation perspective.

The aim of the present study is to enrich the fatigue modeling of
defective materials by investigating the effect of defects under the
framework of microstructure sensitive modeling. We focus on the
parametric study of non-local method in its application to the micro-
structure sensitive modeling. This work is purely numerical and the
results are compared to the experimental results from Guerchais et al.
[25]. An explicit virtual microstructure finite element model is built up
and used. Modifications of fatigue criteria by introducing non-local
method are explained and evaluated to qualitatively explore the con-
nection between critical distance and the defect size or the micro-
structure. To better reveal the value of the non-local method, further
investigations concerning grain morphology and grain size are con-
ducted. It is expected that the proposed realizations of the non-local
method are compatible with general simulation scenarios.

2. Explicit microstructure model and fatigue prediction approach

2.1. Finite element model

The objective numerical model is an explicit microstructure sensi-
tive model which contains the quasi-realistic forms of grains and the
organized distribution of grain orientations. A frequently used and
realistic way of generating the microstructure of polycrystalline is to
use Voronoi polyhedral to tessellate the microstructure [26]. The con-
ceived model should be three-dimensional. But for the models con-
taining defects that can be of tens of the grain size, the three-dimen-
sional models are not feasible considering the computation expense. For
instance, a 316L steel having a mean grain size of 15 µm will be divided
into more than 200,000 grains even if the studied volume is set to only
1 mm3. The 2D model is acceptable for its approximated results and a
lower expense of computational resources. The simulations in this study
are performed by a two-dimensional square-shaped domain partitioned
by convex polygons [27]. Three batches of models are built up and are
summarized in Table 1. The models in the first batch have the same
average grain size corresponding to the cited experimental research
which serves as the reference results. In the second batch, equiaxed and
non-equiaxed grain distribution are used and compared. The equiaxed
case is represented by a normal distribution of grain size which is in
good agreement with the conventional fabricated steel and the non-
equiaxed cases are described by the uniform distribution or the log-
normal distribution. More grain sizes are examined by the models of the
third batch. The loading type is tension-compression fatigue loading
with a ratio R = −1. The left end of the FE model is pinned while the
bottom is restrained from vertical displacement. The loading is applied
to the right end. The top surface is considered as the free surface.
Several illustrations are presented in Fig. 2.

For the benchmark model, which has a 2 * 1 mm2 studied area with
an average grain size of 15 µm, approximate 9000 grains are used to
discretize the space. The mesh generator Gmsh [28] is used. The re-
duced 3-ordered triangular element is employed in the mesh. Previous
research about the numerical methods for the modeling of poly-
crystalline materials points out that the yielded results change with an

Fig. 1. Schematic of Kitagawa-Takahashi diagram.
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increasing mesh resolution [26]. The convergence is not always
achieved in the finite element model, but the error is assumed to be
insignificant with a fine mesh. Convergence tests of the non-local re-
sponses which will be presented in the following section are performed
to choose an appropriate mesh size. The characterized lengths of 2 µm
in the vicinity of the defect and 5 µm in the rest part are applied. i.e. the
grains near the defect are each discretized on average with 50 elements
while 10 elements for the remote grains. The model has approximately
two million degrees of freedom. The finite element model is two-di-
mensional, but the slip direction is in a three-dimensional space. The
generalized plane strain hypothesis is used to take the deformation in
the third direction into account. Isotropic texture is used in this model,
which means this crystallographic aggregate can be considered as
having no preferential orientations (see Fig. 3).

2.2. Material constitutive laws and fatigue approach

2.2.1. Crystal cubic elasticity
The anisotropy of metallic polycrystalline aggregates is due to its

microstructure. The anisotropy of the material has two main sources
that are the elastic anisotropy and the plastic deformation in the slip
systems. To better describe the contribution to the anisotropy of elastic
part and plastic part, Fig. 4 presents an investigation on the mechanical
response in polycrystal copper which shows an anisotropy factor of 3.26
[22]. In all the loading types, the cubic elastic model produces highly
scattered results (gray scattered points in Fig. 4a) compared to that of
the isotropic elastic model (black straight line in Fig. 4b). Even though
the addition of crystal plasticity part to the cubic elastic model can
slightly reduce the maximum shear stress in the highest value range, the

Table 1
Characteristics summary of the different configured model.

Model Configurations Number of simulations

Defect size Grain morphology Grain orientation Grain size

Batch1 6 values 4 kinds 24 sets 1 576
5, 15, 30, 60, 120, 200 µm Voronoi tessellations*4 Isotropic*24 15 µm

Batch2 6 values 4 kinds 24 sets 1 576
5, 15, 30, 60, 120, 200 µm Uniform tessellation, Voronoi tessellation, Log-normal Voronoi tessellation *2 Isotropic*24 15 µm

Batch3 3 values 4 kinds 12 sets 2 288
15, 60, 200 µm Voronoi tessellations*4 Isotropic*12 30,100 µm

Fig. 2. Example of finite element models used.
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results with or without crystal plasticity are still in quite good agree-
ment as the distribution fits well the regression line. Even though the
mechanism of fatigue is still linked to plastic deformation, the crack
initiation is mostly local slip-driven, as is pointed out by Gao et al. [29].
More specifically, inherent surface defect, for instance, pores induce the
slip dislocation and stress concentration [30]. Nevertheless, the aim of
the numerical model is to use mechanical quantities to indicate fatigue
initiation. Since stress concentration actives the slip dislocation, stress
can be considered a relevant indicator of fatigue initiation. In terms of
simulated mechanical responses under the HCF regime, especially the
calculated stresses, the crystal plasticity part has limited influence. For
the sake of simplicity, the constitutive model is characterized by crystal
cubic elasticity in this study. The accuracy loss due to the missing of
crystal plasticity is expected not to affect the main tendencies observed
in our simulations.

Material used is the austenitic stainless steel 316L. On one hand,
austenitic steel shows a Face-centered cubic (FCC) crystal structure
having limited slip systems number (12 slip systems) compared to other
microstructures which reduce the computation time. On another hand,
austenitic steel has been widely used for several decades. Abundant
related researches can be found in the literature. The anisotropic elas-
ticity material constitutive law contains 3 independent coefficients
describing the crystal stiffness tensor C1111, C1122 and C1212. The

anisotropic factor has a value of 3.64 which is close to the value 3.26 of
the copper studied by Robert et al. [22]. Teklu et al. [31] calibrated
these values for the Fe-18Cr-14Ni steel which are listed in Table 2. They
are in good agreement with the parameters for the pure ɣ-Fe [32]. All
the grains share the same parameters while each of them has a different
crystallographic orientation. Isotropic elasticity characterized by
Young’s modulus and Poisson’s ratio is used to describe macroscopic
homogeneity. The cubic elastic model is homogenized to make sure that
it is equivalent to the isotropic elastic model for the isotropic textured
situation at the macroscopic scale.

2.2.2. Fatigue criteria
As will be shown in the next part, the local stress state at the scale of

the grains is most of the time multiaxial even if the macroscopic applied
loading is a uniaxial one. To deal with these multiaxial states of stress
and their effects on fatigue crack initiation, it is proposed to make use of
multiaxial stress criteria detailed hereafter.

To reflect the oriented nature of fatigue crack initiation, stress cri-
tical plane criteria have been proposed by many authors in the litera-
ture [33]. They aim at reducing a multiaxial stress state to an equiva-
lent uniaxial one and very often combine normal and shear stress
parameters on a critical plane. Three representative stress-based criteria
are used in this study: Matake [34], Dang Van [35], Papadopoulos [36].

2.2.2.1. Matake criterion. From many observations in the literature
dealing with the fatigue of metallic materials, shear is the
overwhelming mechanism of fatigue initiation. Matake proposed a
criterion assuming that fatigue damage of material is due to the
maximum shear stress amplitude τa,max along with the normal stress
σn,max in the plane of maximum shear stress.

The criterion is formulated as follows:

Fig. 3. Pole figures of (a) 100, (b) 111 orientation for the crystallographic or-
ientations implanted in numerical models.

(a) Effect of cubic elasticity 

(b) Effect of crystal plasticity 

Fig. 4. Comparison of the maximal shear stress (a) between isotropic elasticity (Iso. E.) and cubic elasticity (Cub. E.). and (b) between cubic elasticity (Cub. E.) and
cubic elasticity + crystal plasticity (Cub. E. + CP.) [22].

Table 2
Parameters of the constitutive models.

Isotropic elasticity cubic elasticity

E (GPa) ν C1111

(GPa)
C1122

(GPa)
C1212

(GPa)
anisotropic factor
2*C1212/(C1111-
C1122)

194 0.284 197 125 122 3.64
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+ ≤τ α σ βa max mat n max mat, , (1)

αmat and βmat are material parameters identified from tension and tor-
sion fatigue limit (s-1 and t-1) by following equations:

= − =−

−
−α t

s
β t2 1;mat mat

1

1
1 (2)

2.2.2.2. Dang van criterion. The Dang Van criterion is widely used for
its multi-scale approach. He proposed that there are two parameters
involved in the fatigue process, namely the microscopic shear stress in
grain area and the microscopic hydrostatic stress, both assessed in the
elastic shakedown state. The former is responsible for crack nucleation
along with slip bands and the later influences the crack opening
process. The criterion is mathematically formulated as follows:

+ ≤max max τ n t α σ t β{ [‖ ^ ( , )‖ ^ ( )]}
t n

dv hyd dv_ _
_ (3)

In which, τ
_

denotes resolved shear stress and ̂σhyd denotes hydro-

static stress. As the cyclic loading changes with time, both τ
_

and ̂σhyd

are time-dependent and are expressed in time functions. n
_

is the slip

systems in a grain. αdv and βdv are material parameters identified from
tension and torsion fatigue limit (s-1 and t-1) by following equations:

=
−

=− −

−
−α t s

s
β t2

3
;dv dv

1 1

1
1 (4)

2.2.2.3. Papadopoulos criterion. In the case of the specimen subjected to
a load below the fatigue limit, small cracks are often observed and do
not propagate. Generalized shear stress amplitude (Ts a, ) and the
maximum value of normal stress (Σn) are combined to predict the
fatigue failure in the Papadopoulos criterion.

Instead of using the maximum value of resolved shear stress and
normal stress, Papadopoulos chose the integral values of shear stress
and normal stress along all the slip systems and slip planes. The cri-
terion is given in the following equations:

+ ≤T α max t β[ Σ ( ) ]s a pap
t

n pap,
2

∫ ∫ ∫=
= = =

T
π

T dχsin θ dθdϕ5 1
8

( )s a ϕ

π

θ

π

χ

π
s a,

2
2 0

2

0

2

0

2
,

2
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= = =

t
π

t dχsin θ dθdϕΣ ( ) 1
8

Σ ( ) ( )n ϕ

π

θ

π

χ

π
n2 0

2

0

2

0

2

(5)

where αpap and βpap are material parameters identified from tension and
torsion fatigue limit (s-1 and t-1) by the following equations:

= − =−

−
−α t

s
β t3 3 ;pap pap

1

1
1 (6)

The values of parameters mentioned above in these criteria are
listed in Table 3.

2.2.3. Non-local method
In this research, the non-local method is based on the well-estab-

lished “critical distance” theory. It supposed that there exists an effec-
tive zone in which the grains affect each other mutually and lead to
plastic deformation during the fatigue crack initiation [18]. Regarding
its application to the numerical simulations there exists different ways
to apply this theory, i.e. point method, line method, area method and

volume method [19]. In terms of the area method, which is used in this
study, the determinant criterion mentioned above is adapted to the
following form:

∫ ≤( )σ dS S β
S FIP (7)

in which, σFIP, S and β are fatigue indicating parameter, the effective
zone, and the fatigue limit, respectively.

The critical distance is often determined by the effective crack
length l0 introduced by El Haddad or an empirically derived value.
Successful applications were reported [37,38] on the homogeneous
models. It is expected that the critical zone has some connections with
the microstructure. Particularly, the explicit microstructure modeling
contains the sources of scatter e.g. the crystallographic orientations, the
grain size, the grain morphology which is omitted in the homogeneous
models.

Two types of non-local approaches are examined in this paper: the
critical radius method and the neighbor layer method. The sensitivity of
the parameters to the microstructure features are evaluated. Two non-
local parameters are proposed: R* and N*, which denotes the radius of
this effective zone or the depth of neighbor layers respectively. These
two different implementations of the non-local method stand for two
different fatigue initiation mechanisms: critical radius method empha-
sizes an effective area within a certain range without explicit con-
sideration of actual microstructure configuration; neighbor layer
method shows the interaction among adjacent grains and characterized
by microstructural features as grain shape and grain size. Two sche-
matic diagrams are shown in Fig. 5. The critical zones for the two
methods are defined in Eq.7. In the literature, the non-local method is
often applied locally, i.e. only the most stressed element or grain is
chosen as the critical spot to which the non-local treatment is applied.
The implementation of the non-local method in this study is a global
treatment over the whole model. So, the extreme value can be obtained
not only at the singular point of defect edge but also at several potential
positions in the vicinity of defect which corresponds to the experi-
mental finding.

= ≤ ∈

= ≤ ∈

∗

∗

V element dist element e R element FEmodel
V grain neighbor grain g N grain FEmodel

{ | ( , 0) , }
{ | ( , 0) , }

e

g

0

0 (8)

Identification and calibration of the non-local parameters can be
laborious and are not the point of this research. We make a compromise
on the accuracy of results by only trying several possible values. For the
N*, 2,3,5,9 and 13 are tested representing the first layers, the first two
layers, etc. This neighbor layer parameter is assumed to be of the same
order of magnitude as the grain size. For the R*, five different values are
tested in the following analysis, 15 µm, 30 µm, 60 µm,120 µm and
180 µm representing one, two, four, eight and twelve times of grain
size, respectively.

3. Results

3.1. Application and evaluation of non-local method based on experimental
results

The evaluation is based on 576 circular defected models with
equiaxed morphology and 15 µm average grain size. These 576 models
contain 6 different sizes denoted by the radii of circular defects: 5, 15,
30, 60, 120, 200 µm, respectively (shown in Fig. 6). For each defect, 4
different realizations of grain shapes combined with 24 grain orienta-
tions are applied. Among the 6 defect sizes, the 5 and 15 µm defects
represent the defect within the range of one or two grains. The 30 and
60 µm defects represent the defects’ sizes on the order of several grains.
The 120 and 200 µm defects represent the defects pass through a lot of
grains.

Table 3
Parameters of the fatigue criteria for a 316L steel.

αmat βmat (MPa) αdv βdv (MPa) αpap βpap (MPa)

0.269 147.5 0.403 147.5 0.171 147.5
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3.1.1. Mechanical analysis
The Von Mises equivalent stress fields for 6 finite element models

with the same microstructures but different defect sizes are plotted in
Fig. 7. The defects in Fig. 7a–f ranges from 5 to 200 µm as introduced
before. As far as the microstructure is concerned, the stress distribution
of loaded polycrystalline is strongly heterogeneous. Even in the remote
area to the defect, a strong loaded grain can have equivalent stress
several times over that from an adjacent grain for their different crys-
tallographic orientations. Moreover, the position of the most stressed
element changes due to microstructure. This heterogeneity also has an
influence on the stress concentration factor. The local stress con-
centration factors from critical elements of all polycrystalline models
are calculated and categorized by the defect size into 6 groups. Each
group contains 96 different microstructure realizations. To present the
scatter of calculated Kt, histograms, as well as distribution curves, are
plotted in Fig. 8. Average values and standard deviations for each group
of models with the same defect are listed in Table 4. Refined meshes for
models with small defects are used to better capture the local stress
concentration. For the isotropic models, the yielded Kt from models
with different defects is close to each other which makes the results
from models containing explicit microstructure comparable. The cal-
culated Kt from polycrystal models is always higher compared to that
from isotropic models because of the interaction among neighboring

grains. For the models containing small defects (5 µm and 15 µm), the
defect may exist within one certain grain while larger defect passes
through several grains which increases the influence of heterogeneity
from grain boundary. Therefore, the Kt from polycrystal models with
small defects are smaller.

The mesoscopic quantities, namely the average shear stress ampli-
tude in a grain (τa,g) and the average hydrostatic stress amplitude in a
grain (σh,a,g), are significant to characterize the fatigue initiation. The
bivariate distributions of these two quantities are plotted for the models
with different defect sizes in Fig. 9. Regarding the distribution of hy-
drostatic stress amplitude, the general appearance looks like a quasi-
normal distribution while for the distribution of shear stress amplitude,
the general appearance is a skewed distribution. The stress state for
each grain can be quite complex. Some grains are in uni-axial stress
state while others are in multi-axial stress state. Even for the macro-
scopic tension loading, there are grains subjected to compression
loading locally. As the defect size increases, the distributions of both
shear stress amplitude and hydrostatic stress amplitude show stronger
dispersion. But a linear tendency can be observed between the shear
stress and hydro-static stress, especially for the extreme value. In terms
of the extreme values, the maximum values in large defect models can
be two times larger than those of small defect models. The change of
extreme value in the critical grain exaggerates the effect of defects on

Fig. 5. Schematic illustrations of non-local methods: (a) critical radius method and (b) neighbor layer method.

Fig. 6. FE models containing semi-circular defects with radii of 5,15,30,60,120,200 µm respectively.
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the fatigue behavior.
The mechanical analysis offers some validity to the hypothesis in

the critical distance theory that the fatigue crack is not only due to one
or several most stressed grain(s). Crack initiation is the mutual effect of
a series of grains.

3.1.2. Fatigue analysis
Experimental research on the effect of defect has been conducted

previously in authors’ laboratory [25]. The results of uni-axial tension
and torsion fatigue tests with respect to different semi-spherical de-
fected specimens are shown in Fig. 10.

These experimental results reveal that the HCF behavior of 316L has

a tolerance of small defect for that the fatigue limit does not change
greatly for a specimen with a defect inferior to several tens of µm.
Moreover, scatter was observed from the test. For specimens with same
defect size, their fatigue strengths may differ due to other influential
factors as defect shape, microstructure, etc.

The Kitagawa-Takahashi diagrams are plotted for different non-
local methods. The predicted fatigue limits of each non-local para-
meters are normalized by the average prediction for the models con-
taining 5 µm defect. This normalization is based on the experimental
observation that non-propagating small defect has no influence on the
fatigue behavior. The geometry parameter Area is chose to describe
the defect size. In order to connect the two-dimensional simulations and
the experimental results of three-dimensional semi-spherical defects,
the artificial defects in 2D models are considered as notches in 3D
models. The method proposed by Murakami [39] to estimate the ef-
fective area for a very shallow circumferential notch and for roughness
is adopted. In this way, the semi-circular defect in the studied model
has an equivalent Murakami parameter calculated by the following
equation:

=Area r10 (9)

In which, r denotes the 2D defect radius.
Fig. 11 shows the predictions of the “local method” for which the

extreme values are from the most solicited elements. Error bars are used
to represent the average value± 1 standard deviation of the scattered
normalized fatigue limits of models with different microstructures. To
eliminate the dependency on the element size of the local integral
point, a convergence test has been conducted. For the current micro-
structure, each grain is discretized by approximate 60 three-ordered

Fig. 7. Von Mises equivalent stress fields in numerical models with same microstructure configuration but different defect size: (a) 5 µm; (b) 15 µm; (c) 30 µm; (d)
60 µm; (e) 120 µm; (f) 200 µm.

Fig. 8. Distribution of maximum local stress concentration factor in models
with different microstructures but same defect size (defect size as legend).

Table 4
Local stress concentration factor with respect to different defect radius.

Defect Radius (µm) 5 15 30 60 120 200

Kt (isotropic model) 2.78 2.81 2.81 2.81 2.78 2.85
Kt (polycrystal models) 3.28 ± 0.50 3.37 ± 0.43 3.79 ± 0.62 3.63 ± 0.46 3.70 ± 0.32 3.88 ± 0.37
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elements. For notched/defected models, it can be seen that the pre-
dictions are always too conservative because of the sensitivity to the
stress concentration.

The non-local methods show good tolerance for the small defects,
presented in Fig. 12. For a certain size of the defect, the larger non-local
parameters yield the higher predicted fatigue limits. As the values of
non-local parameters increase, the sizes of error bars decrease. Changes
in the standard deviation demonstrate the different sensitivities to the
microstructure of different values of non-local parameters. All three
criteria yield similar predictions. From a qualitative perspective, the
application of non-local methods gives a good description of the trend
of the defect size effect on the high cycle fatigue behavior. From a

quantitative perspective, the values of non-local parameters can be
evaluated by comparing it to the experimental data. The data are pre-
sented in Table 5 and are plotted in the Kitagawa-Takahashi diagrams.
At first glance, none of the 10 chosen parameters can perfectly fit the
experimental data. The small parameters (i.e. R*=0.030 mm or N*=3)
work well for the small defects but the predictions drop quickly when
the defect size increases. The intermediate values (R*=0.060 mm or
N*=5) can yield good predictions for the large defect size but they
overestimate the performance of the small defect. The large parameters
always overestimate the fatigue limit for the defects in this range. We
may suppose that the non-local parameters have a connection with the
defect size. But the fatigue experiments for defective material, espe-
cially for the material having small defects can be hardly achievable

Fig. 9. Distributions of grain-average hydrostatic stress amplitude and shear stress amplitude in numerical models with same microstructure configuration but
different defect size: (a) 5 µm; (b) 15 µm; (c) 30 µm; (d) 60 µm; (e) 120 µm; (f) 200 µm.

Fig. 10. Results of the fatigue tests conducted on the 316L steel in uniaxial
tension and torsion with a loading ratio R = −1 [25].

Fig. 11. Kitagawa-Takahashi diagrams of local fatigue indicating parameters.
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because the error of artificial defect size can usually be±20 µm. Be-
sides, the scatter in HCF experimental results can be a concern that the
accurate fatigue limit can hardly be obtained. Because of these limita-
tions of experiments, we cannot determine whether the non-local
parameter is a material constant which only depends on the kind of
material or not. Considering that our main objective is to propose a
numerical method to evaluate the effect of common defects which
usually range within several hundreds of micrometers, we may say that
when the N* equals to 5 or the R* equals 0.060 mm, the predictions are
acceptable.

We use the box-and-whisker plot to better present the dispersion in
the fatigue predictions of different criteria (Fig. 13). The box indicates
the first and third quartiles by its upper and lower bound. The band

inside the box represents the median value. Values with 1.5 inter-
quartile range (IQR) of the lower quartile or of the upper quartile are
considered maximum and minimum values shown by the ends of
whisker. The black diamond marker represents the out-of-range value.
Each box in the figures represents the distribution of the predicted fa-
tigue limits from 96 models containing 4 different sets of grain position
and morphology and 24 different crystallographic orientations. All
three criteria show sensitivity to the microstructure. Among the three
criteria, the Matake criterion is apt to yield higher predictions com-
pared to the other two. Apart from the shear stress which is considered
as the principal cause of fatigue failure, the Matake criterion uses the
maximum normal stress, while the other two use the maximum hydro-
static stress, as the subsidiary factor. The difference between Dang Van
criterion and Papadopoulos criterion is the way to calculate resolved
shear stress as Dang Van uses the maximum shear stress from all the slip
systems, while Papadopoulos integrates the shear stress on the slip
systems. There are only minor differences in these tested criteria and we
cannot judge which criterion can be the best because of the restriction
of our limited simulation configurations. The application of fatigue

Fig. 12. Normalized Kitagawa-Takahashi diagrams with the application of (a) critical radius Dang Van criterion; (b) neighbor layer Dang Van criterion; (c) critical
radius Matake criterion; (d) neighbor layer Matake criterion; (e) critical radius Papadopoulos criterion; (f) neighbor layer Papadopoulos criterion.

Table 5
Experimental results for defective steel 316L.

Equivalent Murakami parameter Area [µm] 31 60 229 320

Experimental fatigue limit Σ0 [MPa] 232.5 212.5 180 152.5
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criterion should be based on the mechanism involved in the fatigue
failure. Overall, all three criteria are compatible with the multi-axial
stress state. By comparing the predictions of the neighbor layers method
and the critical radius method, we can see that the neighbor layers
method is more sensitive to the microstructure while the latter can still
present the effect of microstructure. For the defects which are of several
grains size, stronger dispersion can be seen which indicates the com-
petition between the defect and the microstructure. The explicit mi-
crostructure modeling coupled with the non-local fatigue analysis
method can explain well the experimental observation on metallic
polycrystalline aggregate’s high cycle fatigue behavior where the main
source of scatter comes from the microscopic features.

Two microscopic parameters are considered in the explicit micro-
structure sensitive model. In Fig. 14, these two parameters are pre-
sented separately. Each box represents the twenty-four predictions from
Dang Van criterion of different crystallographic orientations. The

concatenated four boxes stand for the four different grain positions
respectively. The effect of grain orientation can be observed in the re-
sults of both methods. Different grain orientations can result in a dif-
ference of 20 MPa of the fatigue limit. As is mentioned before, the grain
morphology is equiaxed in the numerical model. It is expected the
neighbor layer method and the critical radius method would have si-
milar outputs for the same grain arrangement. Surprisingly, the
neighbor layer method is sensitive to the grain position and mor-
phology while the critical radius method gives similar predictions re-
gardless of grain position and morphology. This comparison shows
different application scenarios of the two methods. A further study
about the grain morphology’s effect on the two methods is presented in
the following section.

Fig. 13. Fatigue limit intervals of 96 models containing the same defect but different microstructure from the criteria: Dang Van, Matake, Papadopoulos. (a) critical
radius method (b) neighbor layer method.

Fig. 14. Fatigue limit intervals of 24 models containing the same defects and grain shapes but different grain orientations from the criterion: Dang Van. (a) critical
radius method (b) neighbor layer method.
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3.2. Further investigation of the non-local method on the microstructure
effect

Several characteristic features are often used to describe the mi-
crostructure of polycrystalline, i.e. grain morphology, grain size, and
grain texture. These microstructural parameters are usually determined
by the fabrication process and affect both the mechanical and fatigue
responses. To expand the application of the proposed non-local
methods, it is of great value to study the effect of microstructural
parameters. Considering the conventional fabricated metallic materials
are often isotropic textured, only the effects of grain morphology and of
grain size are investigated in the present study.

3.2.1. Effect of grain morphology
In the previous polycrystalline FE models which served as the

benchmark, Voronoi polygon tessellation is employed for its simple
implementation and quasi-reality as many other pieces of research did
[13]. Theoretically, the distribution of Voronoi polygons’ equivalent
size fits the Gaussian distribution, which is an approximation of many
experimental observations on EBSD cartography of metallic poly-
crystalline aggregates [40]. The average grain size 15 µm is used as
position parameter (µ) for Gaussian distribution while the shape para-
meter (σ) is 35% of the grain size. A histogram representing the dis-
tribution of the Voronoi polygon tessellated models is shown in Fig. 15.
To explore the effect of grain morphology on the proposed non-local
methods, more different configurations are implemented for compar-
ison. The quadrangle tessellated model (shown in Fig. 15b and Fig. 16b)
is chosen as the simplest description where all the grains are identical in
size and form. This tessellation is the most efficient modeling method
although it loses some fidelity of microstructure. Additionally, the

manufacturing process affects the sizes and shapes of grains. Log-
normal distribution was adopted in previous report [41] to describe the
grain size distributions obtained by full re-crystallization or additive
manufacturing. As our objective is to test the non-local methods’
compatibility with different kinds of microstructure but not to re-
produce the experimental results, two log-normal distributions
(Figs. 15c, d, 16c and d) with different artificial parameters are used in
the following simulations. Both have an average grain size of 15 µm.
But the latter is more deviated distributed which leads to the appear-
ance of more small grains.

The predictions from the fatigue criteria of two non-local methods
are shown in Fig. 17. Regarding the sensitivity of the grain morphology
for small defects where the defect size is within the range of two grains,
the uniform distributed tessellation gives the highest prediction. The
Gaussian distributed tessellation has the intermediate result. For the
log-normal distributed tessellation, the more deviated is the distribu-
tion, the lower is the prediction. Hence, for small defect, both the
neighbor layer method and the critical radius method lessen the pre-
dictions if more and more small grains are involved in the effective
zone. Comparing the numerical values of prediction, the difference of
averages generated by different tessellation is about 1% in the neighbor
layer method’s prediction and does not exceed 5% in the critical radius
method’s prediction. Both predictions can be considered stable.

When the defect size increases to several grains’ size, different
trends are observed for the two methods. The critical radius method
gives similar predictions for all the four tessellations which means only
the defect size has an influence on the fatigue performance compared to
the grain morphology. The neighbor layer method shows the compe-
tition between defect and grain morphology. For instance, the differ-
ence between the prediction of the second log-normal distributed model

Fig. 15. Histograms of grain size for different grain morphology configurations: (a) Gaussian distributed Voronoi polygon (b) uniform distributed quadrangle (c) log-
normal distributed Voronoi 1 (d) log-normal distributed Voronoi 2.
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and the square tessellated model for a 120 µm defect is more than 20%.
Fig. 18 shows the effective areas considered in the two methods from
different tessellated models. Effective area in neighbor layer method is
very dependent upon the microstructure (size and shape of grains)
while the area in critical radius method is independent of the grain size
and morphology.

The analysis reveals that when using the neighbor layer method, the
microstructure should be considered while a simple tessellation can be
used with the critical radius method without changing predictions.

Unlike conventional fabricated materials where equiaxed grains are
frequently encountered, in additive manufacturing, as-built parts often
have elongated grain morphology along with the presence of very fine
grains near the surface. The neighbor layer method could be a better
choice in this situation because it can reflect more microstructural
characteristics.

3.2.2. Effect of grain size
Regarding the explicit microstructure modeling, the role of grain

size should be explored. Based on the simulations presented in the
previous section, two more batches of numerical models representing
coarse grains having the size of 30 µm and 100 µm, respectively, were
built up and tested. Fig. 19 shows the schematic of numerical models
with different grain sizes.

It is generally accepted that the fatigue or endurance strength of
planar slip materials, such as steel and brass, is increased by refining the
grain size, whereas, in wavy slip materials, such as pure copper and
pure aluminum, the fatigue strength is unaffected. For example, ex-
periments of alpha brass indicated the decreasing grain size acts to
increase fatigue life while the copper and aluminum show the opposite
tendency that grain size has a negligible effect on fatigue behavior [42].
For the defective materials, it is reported that the critical defect size
varies linearly with grain size for steel [43]. The plot of effective defect
size against the average grain size is presented in Fig. 20. Nevertheless,
the exact relation between fatigue phenomenon and defective mate-
rials’ microstructure remains an open question because of limited lit-
erature.

The choice of non-local method parameters for this batch of models
cannot be quantitatively verified due to the lack of experimental results.
So, R* and N* are set to 60 µm and 5 respectively from the previous
calibrations from benchmark models. The hypothesis behind the choice

of R* is that a circular area with a radius of 60 µm is effective when
fatigue crack initiates. And the choice of N* implies 5 layers of adjacent
grains contribute together to result in fatigue initiation. The effective
defect size is defined as the critical size where the predicted fatigue
limit drops 10% compared to the prediction of the smooth model. Due
to the geometrical size of our finite element model, effective crack
length defined by Haddad [12], which corresponds to a defect causing
fatigue strength drop to 70%, is not achievable. The value is linearly
interpolated from the Kitagawa-Takahashi diagram based on the
threshold stress intensity theory. As can be seen in Fig. 21, the critical
radius method shows a strong sensitivity to the grain size. It corre-
sponds to the experimental trends for the steels. Unlike the critical ra-
dius method, the neighbor layer method yields similar results when the
grain size changes when the value of N* is fixed at 5. These tests re-
garding grain size reveal that for a non-local parameter whose value is
pre-fixed, the effective area considered for critical radius method or for
neighbor layer method may vary if the microstructure is changed. The
critical radius method emphasizes the influence of defect size while the
neighbor layer method pays more attention to microstructural factors.
Considering the realities in experiments, both methods have their ap-
plication scenario, but care must be taken when choosing the parameter
value. Under certain circumstances where exact calibrations of non-
local parameters are not attainable, for materials like the steel of which
a linear relationship between critical defect size and grain size was
reported, an approximate value of R* can be applied as it displays
sensitivity to the change of grain size. For other materials like cast
aluminum alloy where the microstructure is often characterized not by
grain size but by dendrite arm spacing, similar N* may be used because
of its independence of the specific size of grain.

4. Conclusions

The effect of defects and microstructure, as well as their competition
on the fatigue behavior of polycrystal aggregate, are investigated by the
non-local method along with the finite element method.

By creating an explicit virtual microstructure finite element model,
the local mechanical response from elements and mesoscopic grain-
average characteristic stress distribution are obtained. It is revealed by
the mechanical analysis that the microstructure introduces a strong
heterogeneity as the defect brings a strong stress concentration. To

Fig. 16. Illustrations of different grain morphology configurations: (a) Gaussian distributed Voronoi polygon (b) uniform distributed quadrangle (c) log-normal
distributed Voronoi 1 (d) log-normal distributed Voronoi 2.

12



Fig. 17. Fatigue limit intervals of 24 models containing same defects but different grain morphology from (a) critical radius Dang Van criterion; (b) neighbor layer
Dang Van criterion; (c) critical radius Matake criterion; (d) neighbor layer Matake criterion; (e) critical radius Papadopoulos criterion; (f) neighbor layer
Papadopoulos criterion.
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better assess the effect of defects on fatigue behavior, the micro-
structure is an essential factor.

However, a local approach cannot reflect the Kitagawa-Takahashi
effect properly during numerical simulation since the LEFM theory does
not work well in the fatigue crack initiation stage. Overemphasized
results are obtained from the local approach in this study.

By introducing the non-local method, the fatigue prediction based
on both defects and microstructure can be achieved. In terms of the
influence of changing defect size on fatigue performance, the simula-
tions and experiments are in good agreement in the qualitative aspect.
The tolerance of small defect and the perceptible influence of larger
defects can be clearly shown with the application of the non-local
method. The dispersion of results due to microstructure attributes are
shown and discussed. Especially, for the medium-sized defect, the wide
dispersion demonstrates the competition between defect and local mi-
crostructure.

Three multi-axial stress-based fatigue criteria are used and eval-
uated. All three criteria can present the Kitagawa-Takahashi effect that
a very small defect has a negligible influence on high cycle fatigue
strength. Matake criterion always provides the most elevated fatigue
limit. Because the secondary parameter initiator is normal stress in
Matake criterion and is hydrostatic stress in the other two criteria.
Further comparison between Dang Van and Papadopoulos criteria
shows the influence of stochasticity in microstructure, the maximum
resolved shear stress in slip directions in Dang Van criterion is not al-
ways higher than its integrated counterpart in Papadopoulos criterion.

Regarding the realizations of the non-local method, the neighbor
layer method is more sensitive to the microstructure. Stronger scatters
can be seen in the results of different configurated models from the
neighbor layer method compared to those from the critical radius
method.

Further investigations on grain morphology and grain size distin-
guish the difference between the proposed critical radius method and
neighbor layer method. The sensitivity to the grain size is also depen-
dent upon the non-local model employed. Each method has its ad-
vantages in different application scenarios. With an appropriate choice

of non-local parameter as well as understandings of materials’ sensi-
tivity to microstructure, it is expected the non-local method can be
applied to different metallic materials.

Fig. 18. Effective areas of critical radius method and neighbor layer method in different studied microstructures: (a) uniform distributed grains and (b) log-normal
distributed grains.

Fig. 19. Illustrations of different grain size configurations: (a) 30 µm; (b) 100 µm.

Fig. 20. Relationship between grain size and effective crack length (replot from
[12]).
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