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France
4)CEA, CESTA, F-33116 Le Barp, France

(Dated: November 27, 2020)

A new fluid model describing backward stimulated Raman scattering (SRS) is presented based on parametric
three-wave coupling in multidimensional geometry. It takes into account kinetic effects in the description of
the plasma wave via a non linear frequency shift due to trapped electrons. The model is valid in the regime
of hot and weakly inhomogeneous plasmas under conditions relevant for inertial confinement fusion with the
plasma parameter kLλDe >0.25 (kL standing for the plasma wave number and λDe for the Debye length).
Benchmarks of the model have been performed against the Maxwell-particle-in-cell (PIC) code Emi2D in order
to calibrate the adjustable parameters controlling the non linear frequency shift. Two major configurations
have been tested, one in a homogeneous plasma, with the onset of laser pump depletion and the other in an
inhomogeneous plasma, producing auto-resonant growth. Good agreement between fluid and PIC simulations
has been found for both configurations, in particular for the growth of SRS, and further on in time for the
average backscatter level. The model is a promising tool to be implemented in multi-dimensional laser-plasma
interaction packages coupled to hydrodynamics codes in order to compute SRS in mm-size volumes, usually
inaccessible with PIC codes.
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I. INTRODUCTION

Experiments conducted on the US National Ignition
Facility (NIF)1 and on the Ligne d’Intégration Laser
(LIL) facility in France2 exhibited very large levels of
stimulated Raman backscattering (SRS) - up to 50% in
the NIF’s inner cones - being far above the estimations
from predictions based on linear theory. SRS is a para-
metric instability3, in which a coherent electromagnetic
(EM) ‘pump’ wave, characterized by its frequency and
wave vector (ω0, k0), scatters off an electron plasma wave
(ωL, kL) (or ‘Langmuir’ wave), resulting in a scattered
EM light wave (ωR, kR). This three-wave coupling pro-
cess satisfies the following matching conditions for fre-
quencies and wave vectors:

ω0 = ωR + ωL , k0 = kR + kL .

As other laser-plasma instabilities, SRS is highly detri-
mental for inertial confinement fusion (ICF), for both the
direct and indirect drive approaches, in the sense that it
modifies the laser energy deposition needed to achieve an
efficient fuel compression, enabling ignition. Although
SRS in the context of ICF has been extensively studied
over several decades, the modelling of SRS is still an un-
solved issue to find reliable assessments of the amount of
the scattered light, and of the level of the plasma wave
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amplitude that supports the instability, beyond a ps time
scale and for mm-size plasma volumes needed for mod-
eling realistic laser beams. Besides the difficulty of the
various spatial and temporal scales involved, it is the
non-linear evolution of laser-driven electron plasma wave
that constitutes a major problem due to the complex-
ity of the different processes that take place and their
adequate modelling.

The different nonlinear regimes of electron plasma
waves (EPW) can be classified using the kLλD ∼ vth,e/vφ
plasma parameter, where λD is the Debye length, vth,e

the electron thermal velocity and vφ the Langmuir wave
phase velocity. Generally, for values kLλD > 0.25 the
likelyhood of trapping of electrons in the potential wells
of the wave increases. For this reason, this regime is of-
ten denoted ‘kinetic regime’ of electron plasma waves4,5,
while the regimes with kLλD < 0.15 and with 0.15 ≤
kLλD ≤ 0.25 are associated with processes, like the Lang-
muir decay instability and cascading6,7, related to strong
and weak turbulence, respectively, although kinetic ef-
fects may also be present. These two regimes are gener-
ally described with models based on fluid-type equations.
In the context of ICF, for electron temperatures 1-3 keV
and electron densities in the range 3% to 15% of the criti-
cal density nc for a 351 nm laser wavelength, the value of
kLλD is situated in the interval 0.25. . .0.45, for which lin-
ear theory predicts a strong increase of Landau damping8

with (kLλD)2, eventually preventing the common EPW
mode to develop (so called Landau cutoff9).

Electron trapping in the potential wells of the EPW
leads to a deformation of the electron distribution func-
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tion around the wave phase velocity vφ, which results in
a change of the EPW dispersion. The latter arises, due
to the flattening of the distribution around vφ, in a de-
crease of the Landau damping, and in a non linear shift
of the wave frequency. As elaborated in Refs.10–12, a fre-
quency shift results, with a negative sign with respect
to ωL of the linear dispersion, that depends on the wave
amplitude, which is therefore denoted as non linear fre-
quency shift. Both the change in the Landau damping
and the non linear frequency shift appear to be crucial for
the understanding of SRS. Their study and modelling is
challenging mainly because of the fast evolution towards
non linear regimes related to the important modification
of the electron distribution function.

Before describing our approach, and in order to high-
light our work, we propose a brief review of the main
results obtained in the field of the non linear saturation
of SRS, starting by large amplitude waves and trapping.
Frequency shift as a consequence of trapping was inves-
tigated first by the seminal papers from Morales and
O’Neil12 and Dewar10,11, and revisited exhaustively with
the help of mono-dimensional (1D) Vlasov simulations
by Berger et al.13. They showed that this non linear fre-
quency shift δωNL is proportional to the square root of
the wave electrostatic potential φ, or equivalently to the
wave amplitude δne: δω

NL = |ω − ωL| = ηωL
√
δne/N0,

where N0 here is the local equilibrium density (see equa-
tion (9) further in the text). From analytic theory, the
parameter η results in the following form:

η = ηev
3
φ

(
∂2f0

∂v2

)
vφ

,

where f0(v) is the electron distribution function, disre-
garding fast oscillations of electrons in the wave elec-
tric field. The numerical factor ηe depends on the way
used to initialize the wave, either suddenly or adiabati-
cally, whose value takes respectively 0.823 or 0.544. Note
that in Refs.10,12, an initial Maxwellian distribution is as-
sumed. But this assumption it not valid on a longer time
scale, because of the heating of the overall distribution
function, as it can be easily checked in kinetic simula-
tions. The parameter η is therefore a parameter that, on
a slow temporal scale, adjusts to the evolution of the av-
erage distribution function, and therefore is not constant
in time. Its value obtained from the above expression
for f0 with the initial Maxwellian yields usually merely
a lower bound. Also, it is worth noting that a non linear
damping is associated to the frequency shift.

This fundamental work is particularly relevant to laser
fusion research where we expect large amplitude EPWs
excited by SRS. In this context, the laser-driven Lang-
muir wave evolution was investigated with the help of
kinetic simulations using Maxwell-’particle-in-cell’ (PIC)
and reduced-PIC (RPIC) simulations4,14–20 or Maxwell-
Vlasov codes21–24, in one and higher spatial dimensions.
In particular, Vu et al.4 established the so-called ki-
netic inflation corresponding to a trapping induced de-
crease of Landau damping, leading to larger EPWs am-

plitudes that saturate by dephasing due to non linear
frequency shift. This work was extended by taking colli-
sions into account25 and later in 1D PIC simulations26,
modifying the inflation threshold. Then Yin and co-
workers extended this work to two- (2D) and three-
dimension (3D), first in different kLλD regimes14 ex-
hibiting beam acoustics modes in the trapping regime,
then showing the bowing15,20 of EPW resulting from non
spatially-uniform trapping and trapped particle modu-
lational instability, further addressing the threshold of
trapping16, the destabilization17,18 of under-threshold
speckles by higher intensities speckles, and detrapping19

mechanisms by side-loss or collisions. Note that B-field
generation due to Weibel instability has been identified
in [20]. In addition, saturation of SRS by sideband in-
stability was investigated in 1D and 2D with Maxwell-
Vlasov simulations21–23. This instability was also inves-
tigated with 1D PIC code27. Non linear kinetic effects
were investigated also in the context of backward Raman
amplification28–30 with 1D Vlasov code, leading to ana-
lytic expressions for the nonlinear damping and non lin-
ear frequency shift. Well-suited for dedicated studies in
homogeneous plasmas, typically the length of one speckle
and few ps, the investigation of SRS with kinetic codes is
out of reach for describing realistic mm-large focal spot in
mm-long plasmas on long time scale (typically hundreds
ps), particularly when a multi-dimensional approach is
required.

The stability of a large amplitude EPW in a homo-
geneous plasma is in itself a rich topic, but consider-
ing a more realistic plasma with spatial inhomogeneity
adds even new effects. It is known that the action of
trapped particles can destabilize the EPW, and therefore
enhance SRS by allowing for growth in an inhomogeneous
plasma slab beyond the resonance region bounded by the
turning points. This broadening of the resonance region
is due to spatial autoresonance31–33 and has to be ac-
counted for in a realistic model. Note that autoresonance
due to trapped electrons compensates the dephasing of
the plasma inhomogeneity for profiles increasing along
the propagation direction, which is different from non-
linear detuning mechanisms originating from harmonic
generation27,34,35 and relativistic effects36.

Many of the studies mentioned are 1D, and although
the non linear detuning and damping depend on the local
parameters, 2D effects have also proven to be of first im-
portance: wave front bowing, multispeckles laser beam,
seeding of neighboring speckles, side losses due to escap-
ing trapped particles, transverse modulations and pos-
sibly EPW filamentation37. Because kinetic codes are
not suitable for routinely simulate multidimensional ICF
relevant plasmas on a long time scale (tens of ps), we
aim at developing another way that we detail in this
article. Our goal is to model the nonlinear develop-
ment of SRS in an inhomogeneous plasmas by means
of a nonlinear wave coupling which describes the reso-
nant energy exchange between the incident laser beam,
the reflected light beam and the EPW. The validity of
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our model is assessed by comparison to PIC simulations
on well-controlled test problems. Such a three-wave cou-
pling model for inhomogeneous plasmas in 2D/3D is com-
patible with mesoscopic laser interaction codes such as
PF3D38, HARMONY39 and HERA40,41. Although this
article will focus on 2D physics, we recall that our model
was first elaborated in 1D42, allowing to elaborate the nu-
merical scheme, and to check that classical results, such
as the Rosenbluth amplification, auto-resonance and non-
linear frequency shift, are recovered. Such reduced mod-
eling has already been attempted in numerous publica-
tions, usually in 1D4,20,25,28,30,43 with some variations re-
garding the non linear frequency shift parameter. We also
emphasize the long-standing work from Bénisti and co-
workers summarized in [44] where they develop a multi-
dimensional three-wave coupling model. In contrast to
this work, our model equations have been derived in ap-
plying consequently the linear dispersion relations, which
is adequate in the context of driven plasma waves. For
this reason, all potentially arising non linear wave fea-
tures will occur in the wave amplitudes and not in the
local wave coefficients as the wave numbers. Comparing
all those models together is largely beyond the scope of
this paper.

The present work is mainly focused on the nonlinear
frequency shift arising from trapped particles. But de-
trapping mechanisms may occur in order to restore the
Mawxellian electron distribution function, such as col-
lisions and side-losses13,45. Collisions are naturally in-
cluded in the EPW damping term of the Langmuir wave
propagator and may increase the instability threshold or
help restoring a Mawxellian EDF. However, it has been
shown that for low-Z ICF plasmas, side-loss from speckles
is the dominant mechanism45. Collisions are neglected
throughout this paper both in fluid and PIC simula-
tions. Side-loss becomes significant when the time to es-
cape the width of a laser speckle, given approximately by
τside ∼ (f#λ0)/vth, is shorter or similar to the bounce pe-
riod, τB = 2π/ωB of trapped electron, with vth denoting
the electron thermal speed and ωB ∼ ωpe|δne/N0|1/2 the
bounce frequency. The resulting criterion for the onset of
side loss can be expressed as a condition for the Langmuir
density perturbations, |δne/N0| ≤ (k0λD/f#)2 which is
consistent with the criterions given in [45]. Inspecting
this criterion one finds that side loss would appear only
for density perturbation much smaller than the ones ob-
served in our simulations, while it could be a more per-
tinent effect for higher temperatures and lower densities
(say for Te > 4 keV and N0/nc ≤ 0.05). Therefore, we
neglect both detrapping effects. Note that side-loss and
collisions may also be taken into account in our model46.

We turn now to the key point of our work, that is es-
timating the electron distribution function modifications
for evaluating the non linear EPW frequency shift and
Landau damping, without consistently resolving f0 with
kinetic simulations. On this basis, for a given value of η,
we develop a model that includes the non linear frequency
shift δωNL of EPWs in the 3-wave coupling for SRS, by

calculating (∂2f0/∂
2
v)vφ in such a way that our model

is able to reproduce the main instability features de-
duced from PIC simulations. Based on this model with a
kinetic non linearity for SRS, we have conducted numer-
ical simulations that currently allow to describe plasmas
of thousand wavelengths in length and several hundred
of wavelengths in width. Similar work has, to our knowl-
edge, yet only been done in configurations different from
ours, namely 1) for EPWs without self-consistent SRS-
coupling, and in the frame co-moving with the EPW by
Brunner21, and 2) by Bénisti et al.43 in homogeneous
plasmas, by comparing simulation results with kinetic
simulations taken from the literature, extended later for
spatial inhomogeneity44. Here, we directly compare 2D
simulations from our 3-wave model with 2D PIC sim-
ulations for the same, well-prepared plasma and laser
beam conditions using the code Emi2D47,48. As dis-
cussed above, 2D effects such as side losses due to es-
caping trapped particles, diffusion effects in the phase
and configuration space, may play a role but should not
be too strong in our configuration. However, EPW front
bowing (fluid simulation) / EPW bowing (PIC simula-
tion) is expected to be important.

This article is organized as follows. In Sec. II we de-
rive the three-wave enveloped equations in a weakly in-
homogeneous plasma in the linear regime. Section III is
devoted to the nonlinear frequency shift derivation and
the nonlinear Landau damping expression. Comparison
and benchmarks with 2D PIC simulations are presented
in Sec. IV. The results are discussed in Sec. V.

II. MODEL

A. Three-wave enveloped equations

In the following the laser pump wave (’0’) and the
Langmuir wave (’L’) propagate in positive direction along
the z axis, the Raman backscattered light wave (’R’)
propagates in opposite direction. Thus, E0 and ER de-
note the complex envelopes of the pump and backscat-
tered electromagnetic waves and ẼL is the complex elec-
tric field associated with the electron plasma wave. Let
ω0, ωR, k0 and kR having fixed values and verifying the
dispersion relation: ω2

α = ω2
pe + kαc

2
0, with α = {0 , R},

ωpe the plasma frequency and c0 the speed of light in
vacuum. The EPW frequency ωL and wave vector kL
have fixed values and verify the plasma wave dispersion
relation: ω2

L = ω2
pe + 3v2

thk
2
L, where vth is the electron

thermal velocity.

Using the Slowly Varying Envelope Approximation
(SEVA) and paraxial approximations, the energy ex-
change between these three waves in a stationary, un-
derdense and isothermal plasma, is described by the fol-
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lowing well-known system of equations6:

L0E0 = − ekL
4me

1

ωR
ELERe

iΨ , (1a)

L1ER =
ekL
4me

1

ω0
E0Ẽ∗Le

−iΨ , (1b)

L2ẼL =
ekL
4me

ω2
pe

ω0ωLωR
E0E

∗
Re
−iΨ , (1c)

where e is the electron charge, me the electron mass:

L0 =

(
∂

∂t
+ ν0 + vg0

∂

∂z
+

1

2

∂vg0
∂z
− i c

2
0

2ω0
∇2
⊥

)
,

L1 =

(
∂

∂t
+ νR + vgR

∂

∂z
+

1

2

∂vgR
∂z

− i c
2
0

2ωR
∇2
⊥

)
,

L2 =

(
∂

∂t
+ νL + νcoll + vgL

∂

∂z
+

1

2

∂vgL
∂z
− i vgL

2kL
∇2
⊥

)
.

The group velocities of these waves are denoted as vg0,
vgL (>0), and vgR(<0), and their damping coefficients as
ν0, νR, and νL. In inhomogeneous plasmas, the phase Ψ
appearing in Eqs. (1) for the complex wave envelopes, is
due to the mismatch in the resonance conditions, ∆k =
k0 − kR − kL and ∆ω = ω0 − ωR − ωL, and is defined by

Ψ = −∆ω t+

∫ z

zref

∆k(z′) dz′ , (2)

where zref is an arbitrary reference position where the
resonance conditions are satisfied. As mentioned earlier
and in contrast to other work, e.g. Bénisti44, our model
equations have been derived in applying consequently the
linear dispersion relations, which is adequate in the con-
text of driven plasma waves. For this reason, the non
linear wave features will occur solely in the wave am-
plitudes. The damping coefficients in the set of Eqs. (1)
account for electromagnetic waves’ collisional absorption,
ν0,R, while Langmuir wave’s damping term holds for col-
lisions νcoll and Landau damping νL.

B. Coupling in a weakly inhomogeneous plasma

We consider a weakly inhomogeneous plasma along z,
with density ne(z), and we define a reference point zref ,
such that ne(zref) = Nref , where Nref is a given reference
density around which the density profile is developed.
Consequently the plasma frequency and the dispersion
relations can be developed around this point,

ω2
pe(ne) =

e2Nref

meε0
+

e2

meε0
(ne −Nref) , (3)

By introducing the coupling coefficients:

Γ0 = − ekL
4me

1

ωR
, ΓR =

ekL
4me

1

ω0
, ΓL =

ekL
4me

ω2
pe

ω0ωLωR
,

and the substitution EL = ẼLe
iΨ, one obtains the fol-

lowing set of equations for the 3-wave coupling,

L0E0 = Γ0ELER (4a)

L1ER = ΓRE0E
∗
L (4b)(

L2 + i
(ne −Nref)e

2

2ωLmeε0

)
EL = ΓLE0E

∗
R . (4c)

As worked out by Rosenbluth49, solutions of the pre-
vious system depends on the density profile, via the
i(e2/2ωLmeε0)[ne(z) − Nref ] term. For a linear den-
sity profile, i.e. [ne(z) − Nref ] ∝ κ′z, with κ′ ≡
∂z∆k(z) = (6kLλ

2
DeL∇)−1 with L∇ = Nref(∂zne)

−1,
both the backscattered light and the Langmuir waves are
amplified in a limited zone in between two points, called
”turning points”, from either side of the resonance point
with an amplification ∝ expGR, where GR is the gain
denoted here as ’Rosenbluth gain’ and given by

GR = πΓRΓLE
2
0/ |κ′vgRvgL| , (5)

or, in a more practical expression:

GR = 0.9 · 10−3I15L∇ k
2
L/kR , (6)

where I15 is the intensity expressed in multiple of 1015

W/cm2.

III. MODELLING OF THE NON LINEAR LANGMUIR
WAVE

The equation for the SRS-driven Langmuir wave en-
velope as used in Eq. (4c), does not account for non
linear effects arising during its propagation. In the fol-
lowing we develop a fluid-type model for Langmuir waves
that takes into account the fact that trapped electrons
are generated when the Langmuir wave amplitude grows.
Our model relies on previously developed models by other
authors10,12,29, partially for the case of stimulated Bril-
louin scattering50,51 off ion acoustic waves.

When EPW grows in amplitude, the population of elec-
tron trapped in the potential wells increases leading to
a modification of the dispersion relation. This increase
results in a flattening of the electron distribution func-
tion around the phase velocity mainly due to the effect of
electron trapping in the EPW. Thus, two important non-
linear consequences arise: i) the modification (decrease)
of the electron plasma wave frequency and ii) the de-
crease or even the cancellation of Landau damping. Pri-
marily these effects are one-dimensional, but collisions
and gradients in the fields in the longitudinal and trans-
verse dimension can lead to escaping and detrapping of
particles out of the region of resonant wave-wave inter-
action. We discuss in the following those two features of
our model: the non linear frequency shift as a possible
mechanism of saturation due to a loss of resonance and
a possible mechanism of autoresonace in an inhomoge-
neous plasma, and the non linear Landau damping that
is responsible of kinetic inflation.
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A. Non linear frequency shift

The following modelling for the frequency shift induced
by electron trapping is adapted from a model developed
by Divol and Williams50,51 for the case of stimulated
Brillouin scattering in 1D homogeneous plasma. They
suggest a parametrized expansion of the particle distri-
bution function f(v) up to the second order derivative
in velocity around the plasma wave phase velocity, vϕ,
introducing the parameter δ. This parameter accounts
for the width of the plateau created by trapping effects.
The parametrized distribution reads:

f(v) =f0(v) + β1f1(v) + β2f2(v) (7)

where f0(v) = exp{−v2/(2vth)}/[(2π)1/2vth] stands for
the unperturbed Maxwellian distribution function; the
terms β1f1(v) and β2f2(v) are a development follow-
ing the argument of Ref.12 in separating the non linear
part from the linear contribution to the dispersion, via
ε(k, ω) ≡ ε(k, ω)|ω=ωL + (∂ε/∂ω)|ω=ωLδωNL in Poisson’s
equation for δfNL ≡ β1f1(v) + β2f2(v),

ik

(
∂ε

∂ω

)
ωL

δωNLEL(k) = −N0e

ε0

∫ ∞
−∞

δfNL(k, v)dv .

(8)
As introduced before, Morales and O’Neil’s

expansion12 obtained in the sudden case, up to
second order, of δfNL ≡ f0(v + ∆v) − f0(v) yields
to a frequency shift δωNL

M proportional to the bounce
frequency ωB :

δωNL
M ' −1.63

ωB
kL

v2
φ

(
∂2f0

∂v2

)
vφ

(
∂ε

∂ω

)−1

ωL

= −ηMωL

∣∣∣∣ δnN0

∣∣∣∣1/2 ,
(9)

i.e. being proportional to square root of the electrostatic
field, ωB = |eELkL/me|1/2 or, equivalently, to the Lang-
muir wave density perturbation, ωB = ωL|δn/N0|1/2,
with ηM = 0.823v3

φ(∂2f0/∂v
2)vφ .

The ansatz by Divol and Williams50,51 follows this
expansion by considering that the distribution function
has a plateau around the phase velocity, with a width
δ ≡ |v − vφ|, such that f1(v) ≡ v exp{−v2/(2δ2)} and
f2(v) ≡ ζ(v2 − δ2)δ exp{−v2/(2δ2)}. The parameters
in Eq. (7) are the 1st and 2nd order derivates of f0,
namely β1 = −(∂f0/∂v)vφ and β2 = −(∂2f0/∂v

2)vφ.
From the dispersion relation Eq. (8) only the second
order term contributes to the integral so that, with
(∂ε/∂ω)|ω=ωL ≡ 2/ωL, the non linear frequency shift
δωNL results in

δωNL

ωL
= −8ζ

√
2πvφ

(
∂2f0

∂v2

)
vφ

δ ≡ −η δ
vφ

. (10)

The comparison with Morales/O’Neil’s expression, Eq.
(9), gives a direct relation between the width, δ, in the

plateau of f and the electrostatic field EL,

δ ' 1.63

16ζ
√

2π

∣∣∣∣ eELmekL

∣∣∣∣1/2 vφ= 0.04ζ−1ωB
kL

vφ . (11)

To get equivalence between ηδ/vφ ≡ ηM |δn/N0|1/2, the
value of ζ has to be ζ = 0.04. From this ansatz, the
kinetic energy related to trapped particles can be com-
puted from both f1 and f2

E = E1 + E2 , (12)

yielding

E1 =
√

2πmene

(
∂f0

∂v

)
vφ

vφ δ
3 , (13)

E2 = ζ
√

2πmene

(
∂2f0

∂v2

)
vφ

δ5 . (14)

For

ζ

∣∣∣∣∂2f0

∂v2

∣∣∣∣
vφ

δ2 �
∣∣∣∣∂f0

∂v

∣∣∣∣
vφ

vφ ,

which is usually the case, the second term E2 plays a
negligible role in the energy variation in time, so that it
is well approximated by

dE
dt
' dE1

dt
=

√
8

π
νL,0

men
2
e

ωLvφ

dδ3

dt
(15)

in which the linear Landau damping coefficient, νL,0 eval-
uated for the initial distribution fe(v) ≡ f0(v)

νL,0 =
π

2
ωL

ω2
pe

k2
L

1

ne

∂f0

∂v

∣∣∣∣
v=vφ

, (16)

occurs. Comparing this to the the local electrostatic en-
ergy for the plasma wave, given by

WEPW =
ε0

4

(
∂ωε

∂ω

)
ωL

|EL|2 =
1

2
men

2
e

ω4
B

ω2
pek

2
L

, (17)

where ε is the dielectric function and ε0 the vacuum per-
mittivity, one can determine an effective Landau damp-
ing coefficient, νL,eff via the relation

dE1
dt
' 2νL,effWEPW . (18)

This yields a differential equation for δ3

dδ3

dt
=
νL,eff

νL,0

√
π

8
ωBv

3
tr (19)

where the auxiliary velocity vtr = ωB/kL has been intro-
duced, that is related to the width of the plateau in the
distribution function around vφ due to electron trapping.
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In Refs. 50 and 51, a set of differential equations has
been proposed to describe adequately the evolution of
the quantity δ that determines the frequency shift in the
equation of the EPW, namely

∂δ3

∂t
= H(δ < αvtr)

√
π

8
ωBv

3
tr , (20a)

δ = Max
(

0,
(
δ3
) 1

3

)
, (20b)(

∂

∂t
+ vφ

∂

∂z

)
δ = 0 . (20c)

Equation (20a) uses Eq. (19) under the hypothesis that
the effective Landau damping is equivalent to the linear
Landau damping, νL,eff ≡ νL,0 as long as the width of
the plateau is limited25, i.e. less than αvtr, where α is
a numerical factor of the order of unity (In practice, the
value of α =2 is recommended based on simulations with
kinetic codes25). Once the plateau width δ reaches or
exceeds αvtr, the Landau damping coefficient should be-
come negligible, so that in the model the growth of the
plateau width is interrupted. This cancellation is taken
into account via the Heaviside functionH. The other two
equations in Eqs.(20) describe respectively the positivity
of the plateau width, and its propagation at the phase
velocity due to trapped particles. Divol50 proposes also
a diffusion term in Eq. (20c) to account for side losses.
Work with S. Brunner leads alternatively to a group ap-
proach for side losses52.

B. EPW damping

The different sources of expected damping are electron-
ion collisions and inverse Bremsstrahlung. Given the
plasma parameters, we can estimate their respective fre-
quencies to νei/ωpe ∼ 0.16% and νB/ωpe ∼ 0.04%. In
addition, and as discussed above, as long as side or col-
lisional losses can be neglected, the Landau damping is
the dominant damping effects. In the following, we focus
on the best modelling of this effect but as mentioned in
Part A, collisionnal damping may easily be taken into
account via the νcoll coefficient.

Following Eqs.(20), the model for the non linear fre-
quency shift, the effective Landau damping rate should
abruptly vanish when δ reaches the value defined by αvtr,

νL,eff

νL,0
= H(δ < αvtr) , (21)

acting like a cut off. This method was used in Refs. 50
and 51 for the ion Landau damping contribution, νL,i
to the total damping of ion acoustic waves, νIAW. This
sharp cut off of Landau damping is a drawback for nu-
merical schemes and may cause numerical instability in
multi-dimensional simulations.

Alternative methods were investigated by different au-
thors for evaluating the evolution of the Langmuir damp-
ing rate due to the increasing population of trapped elec-
trons. In Ref 30 the Landau damping rate νL,eff(t) follows

the differential equation

∂

∂t

[
(νL,0 − νL,eff(t)) ω3

B(t)
]

= κνL,eff(t)ω4
B(t) (22)

where νL,0 stands for the linear Landau damping, ωB =

ωpe|δn/N0|1/2 the bounce frequency, δn the plasma wave
amplitude, and κ a free parameter calibrated with kinetic
simulations.

This expression of the Landau damping rate is conve-
nient for numerical simulations as it expresses the damp-
ing value as a function of the history of the bounce fre-
quency ωB (that could be recorded at each time step).
However, as discussed in Ref.53 this description is limited
to an EPW monotonically growing in amplitude. Indeed,
we numerically verify that when the plasma wave stops
growing, this expression can lead to non physical solu-
tions such as negative values or the continuous growth of
the Landau damping rate νL,eff which cannot be correct
because the physics that would allow such evolution (de-
trapping, non linear evolution of the group velocity) was
not taken into account.

Another expression for the effective Landau damping
rate, used in Refs 20, 31, and 32 allows for gradual de-
crease of the damping rate together with the increase of
the trapped particle population via an integral over the
local bounce frequency, namely

νL,eff

νL,0
=

1

1 +
1

2π

∫ t

ωB(t′) dt′
. (23)

Though this last expression is very computationally
convenient, it does not allow the landau damping to
restart. In addition, neither of these models for Landau
damping is consistent with the formulation of the non
linear frequency shift derived here, as these two terms
should both depend on the δ quantity. Thus, we propose
here a new expression for the non linear Landau damping
which explicitly depends on δ:

νL,eff

νL,0
=

1

1 +

(
βδ

vtr

)4 (24)

where β is a numerical parameter whose value will be
determined later (in section IV B) by comparing the value
of the growth rate measured in the fluid simulations to
the one observed in PIC simulations.

We have examined how these models compare to each
other when the Langmuir wave grows in the limits dis-
cussed in Refs. 30 and 53. Thus, we consider an EPW
driven by an exponentially growing driver. Eq. (21) evi-
dently leads to an abrupt jump to zero at a time instant
around which the expressions following Eqs. (22), (23)
and (24) smoothly decay also to zero, in a similar manner,
as shown in Fig. 1. Except the Heaviside treatment of
Landau damping, all the models discussed here present a
similar behavior. Eqs. (22) and (23) were calibrated with
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Figure 1. Four different models of nonlinear Landau damp-
ing, Eqs.(21) (red curve - Heaviside), (22) (green curve), (23)
(blue curve), and Eq.(24) (dotted curves) for different val-
ues of the β parameter, for a EPW under the influence of an
exponentially growing driver applied to Eq.(1c).

homogeneous 1D PIC simulations20,30. The free parame-
ter β in our Landau damping formulation (24) is equally
calibrated with a 2D homogeneous PIC simulation as we
shall see later.

C. Full model

Finally, we propose the following full set of equations:

L0E0 = Γ0ELER (25a)

L1ER = ΓRE0E
∗
L (25b)(

L2 + i
(ne −N0) e2

2ωLmeε0
− iδω

)
EL = ΓLE0E

∗
R (25c)

in which δω = |δωNL| = η (ωL/vφ) × δ from Eq. (10)
is evaluated using Eqs. (20a)-(20c), and where L2

contains the time dependent Landau damping coefficient
νL = νL,eff from Eq. (24).

In a homogeneous plasma, the non linear frequency
shift detunes the three waves coupling, preventing the
exponential growth of the EPW. This saturation mecha-
nism occurs long before the depletion of the pump wave.

In the opposite case as the frequency shift due to elec-
tron trapping is always negative, it could actually com-
pensate the phase mismatch due to the electron density
inhomogeneity. Consequently, in a positive linear density
gradient, the nonlinear frequency shift allows the growth
of the plasma wave far beyond the Rosenbluth gain. This
so called autoresonance phenomena in one dimensional
plasma was studied by Yaakobi36 and Chapman31,32.

The next section is dedicated to the validation of our
full model by comparison with 2D PIC simulations in
well controlled situations.

IV. COMPARISONS WITH PIC SIMULATIONS

A. Simulation methodology

We compare now the results obtained with Siera, our
new paraxial code solving the full set of equations (25a)
- (25c), (24), and (10), and Emi2D47,48, a Maxwell-PIC
code. We consider a 100 µm long and 54 µm large plasma
with a linear electron density profile along the longitu-
dinal z-axis. We use the gradient length L∇ in order to
characterize the plasma inhomogeneity

ne(z) = N0

(
1 +

z − zref

L∇

)
and the reference position is set at the center of the sim-
ulation box with the value N0 = 0.05nc. A homogeneous
plasma corresponds to the infinite gradient length case.
For the sake of clarity and concision, we only present
here 2 cases : a homogeneous and a inhomogeneous
configurations. Few other cases were studied46.

Typical electron densities span from ∼ 2% to ∼ 8%
over 100 µm corresponding to L∇ = 75.75 µm, see Fig.
2. The temperature is kept constant at 1 keV so the
kLλD parameter equals 0.34 at the center of the box.
The pump wave propagates from the left to the right,
has a gaussian shape with a numerical aperture f# = 16
and a 0.351 µm wavelength corresponding to the third
harmonic (3ω) of a Nd-glass laser. The peak intensity is
set to I0 = 5 · 1015 W · cm−2 at the center of the simula-
tion box. In order to compare kinetic and fluid simula-
tion results, we need to control perfectly when and where
the Raman scattering will occur and grow, and to gloss
over the natural PIC noise. To do this, the instability is
triggered with a counter propagating and monochromatic
seed such as the matching conditions are verified at the
reference density N0. This seed is a plane wave, whose
intensity is Iseed = 2 · 10−3I0 which is willingly high in
order to make the instability rise quickly in the PIC simu-
lation, saving computational time. The PIC simulations
were performed on 2,048 IBM Bluegene Q CPU with 100
particles per cell and the grid was 20,000 × 10,000 cells
corresponding to dx = dy = 0.1k−1

0 .
For all simulations the pump wave is initialized with a

Gaussian beam boundary condition at the left side, and
the right side is an outgoing boundary condition. The
seed is initialized with a plane wave boundary condition
at the right side. The left side is an outgoing boundary
condition. In the fluid simulation, the EPW is the result
of the EM waves coupling and has an outgoing boundary
condition at the right side. In the PIC simulations, the
ions are motionless, which is a valid hypothesis consider-
ing the time scale studied here. The transverse boundary
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Figure 2. Electron density profile (red curve) and linear Lan-
dau damping (blue curve) along the z-axis in the simulation
box for L∇ = 75.8 µm. The reference position, where the
matching conditions are imposed, is represented by a black
bullet. The laser propagates from the left to the right.

condition is periodic but the system is large enough to
be unsignificant. In the longitudinal direction, there is a
void area between the end of the plasma and the end of
the simulation domain: when the electrons arrive in this
zone, an ambipolar electric field is created because of the
charge separation, which leads to a return of the parti-
cles with an opposite velocity. If they left the simulation
domain they would be reflected to mimic this ambipolar
field. The PIC simulation is stopped before these parti-
cles pollute the areas of interest.

The use of a linear density profile allows us to perfectly
control the wave coupling in the sense that the Rosen-
bluth amplification depends solely of the profile slope
(Cf. Eq. (6)). For this case we obtain the low Rosen-
bluth intensity gain GR = 1.9, preventing the instability
saturation by pump depletion.

For a homogeneous plasma (L∇ → ∞), Raman
backscattering will initially show an exponential growth
in time. The SRS growth rate is given by:

γ = −νL,eff

2
+ γ0

√
1 +

(−νL,eff

2γ0

)2

(26)

where γ0 reads

γ0 =
1

4
kL

ωpe
ωRωL

(
eE0

meω0

)
is the linear growth rate, and νL,eff the effective (Landau)
damping.

For the parameters described above, γ0 ∼ 2.4 · 1013s−1

and the linear Landau damping for ne/nc = 0.05 is
∼ 0.03ωpe ∼ 3.6 · 1013s−1. In addition, without the ki-
netic effects, SRS saturation because of the pump deple-
tion is given by the classical Manley-Rowe relation

ISRS

I0
= −ωRvg0

ω0vgR
∼ 0.79

B. The 2D homogenous case: calibration of β parameter

Homogeneous configurations are usually presented as
textbook cases but are actually difficult to handle be-
cause the system easily reaches the stage of pump deple-
tion, with complicated spatio-temporal dynamics. For-
tunately, because the initial growth rate in this config-
uration depends on the effective Landau damping, see
Eq. (26) the homogenous configuration should allow us
to calibrate the β parameter from (24). Indeed, the very
first amplification, up to 0.5 ps, represents the growth
of the SRS instability while the kinetic effects are devel-
oping. At this stage, the Landau damping has strongly
decreased but the detuning of the whole system is not
too strong, and the saturation due to the frequency shift
is not reached yet. That is why the growth mechanism
is similar to the linear one in the no damping limit.

Considering a 2D 5% critical homogeneous plasma
with the simulation parameters previously described, we
compare in Fig. 3 the results obtained with the PIC code
and siera, for different values of β parameter. The η pa-
rameter is set to η = 0.07. This value will be extensively
discussed below, in the inhomogenous part. We recall
that the value of η affects the saturation mechanism but
not the SRS growth rate (contrary to the β coefficient),
that is why the value of η is not important here for the
calibration of β.

As discussed above, the growth rate depends on the
Landau damping via the β coefficient. With β = 1, its
decrease is not fast enough and the EPW damping is too
strong resulting in a too weak effective growth rate for the
SRS instability. β = 1.5, is not suitable for the opposite
reason. From now, we choose β = 1.2 as it appears to be
the best value fitting the PIC simulation. Hence we find
empirically a good agreement between PIC simulations
and the wave coupling model for η = 0.07 and β ∼ 1.2 for
an homogeneous plasma density profile. We will use the
same parameters for an inhomogeneous density profile
with a linear gradient, in the next section.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.01

0.1

1

Time (ps)

ISRS

I0

η = 0.07 β = 1

η = 0.07 β = 1.2

η = 0.07 β = 1.5

PIC

Figure 3. Comparison of the PIC reflectivity (black curve)
and siera reflectivities in the homogeneous case for different
values of β parameter and η = 0.07: β = 1 (blue dotted),
β = 1.2 (red) and β = 1.5 (green).
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C. The 2D homogeneous case: kinetic effects

The reflectivity, saturation and decrease – up to 0.95
ps – observed both in PIC and siera simulations are the
consequences of the non linear frequency shift due to elec-
tron trapping as the EPW wave grows. This frequency
shift detunes the system depriving it of an efficient cou-
pling. The triggered instability is not sustained anymore
resulting in the decrease of Raman reflectivity. In Fig. 4
the blue dotted line is the siera reflectivity when η = 0
i.e. when the kinetic effects are not taken into account
(and νL = 0). The SRS instability saturates because of
the pump depletion and stabilizes at the theoretical level:
ISRS/I0 = 0.79.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.01

0.1

1

Time (ps)

ISRS

I0

η = 0.0

η = 0.07 β = 1.2

PIC

, νL = 0.0

Figure 4. Comparison of temporal evolution of SRS reflec-
tivity obtained with SIERA code without kinetic effects nor
Landau damping (blue curve), with kinetic effects (η = 0.07
and β = 1.2) (red curve) and by PIC simulation (black curve).

The reduced formulation with the modeling of the ki-
netic effects and therefore the non linear frequency shift
allow us to obtain and understand the first part of the
simulation: the growth of SRS, its first saturation and
decrease due to electron trapping. Despite this good
agreement, we are not able to catch the second growth
observed in the PIC simulation beyond 1 ps (Fig. 4).

This second growth is probably due to the emergence of
frequencies initially contained in the natural noise inher-
ent to a PIC code. Indeed, this broadband noise contains
frequencies that could match the resonance conditions in
the now detuned system. In order to investigate further,
a method using Langevin equations in time and space
for generating a broadband noise54 was implemented into
siera. Preliminary results are very encouraging and con-
firm the great importance of noise terms for SRS in ho-
mogeneous cases, but a more detailed study is beyond the
scope of this paper and still has to be done, regarding the
noise in PIC simulations and the best way to simulate it
in a fluid approach.

As the intensity of the counter-propagating trigger is
far above the natural noise level of the PIC simulation,
the system is not sensitive anymore to the noise in the
linear inhomogeneous case previously described. Thus,

this configuration is well controlled and allows us to iso-
late the non linear frequency shift due to kinetic effects
solely. This inhomogenous case is discussed in the next
section.

As siera computes the envelope of the different waves,
we could compare their structures with the PIC sim-
ulation. The direct comparison between PIC and en-
velope codes is particularly difficult because of the nu-
merous approximations of the latter. In order to make
the comparison pertinent, one has to extract the enve-
lope of the signal from the PIC simulations by means
of Hilbert transforms, for example. This process is well
described21,22. Basically, an analytic signal (a(z, x⊥)) as-
sociated to the calculated data (r(z, x⊥)) is built so that
a(z, x⊥) = r(z, x⊥) + iH [r] (z, x⊥) = am(z, x⊥)eiφ(z,x⊥),
where H is the so called Hilbert transform. In theses
conditions, taking the modulus of the analytic signal
|a(z, x⊥)| gives am(z, x⊥), the signal envelope. In Fig. 5
and Fig. 6 we compare the EPW envelope extracted from
the PIC simulation (around the main SRS mode) to that
from the fluid-like simulation at two different instants:
just after the linear growth phase (0.55 ps) and later
(1.2 ps) when the system is completely detuned because
of the non linear frequency shift. The global structure
and spatial extension are well described by the fluid-like
simulation and particularly the islets in the tail of the
EPW. Unfortunately, because of the paraxial approxima-
tion, siera can not precisely compute the round struc-
ture of the EPW head (see Fig. 6).

D. Results and analysis of the 2D inhomogenous PIC
simulations

In contrast to the case of a homogeneous plasma, pre-
sented above, the Raman scattering in the inhomoge-
neous profile chosen is governed by the resonance mis-
match which results, in absence of kinetic effects, in
spatial amplification of the seed signal. Pump deple-
tion would only arise for high Rosenbluth gain values.
With such initial and boundary conditions, the instabil-
ity reaches quickly the linear state determined by Rosen-
bluth’s theory, that is when kinetic effects are negligi-
ble, and then evolves softly toward the non linear kinetic
regime as the EPW’s amplitude increases. This is illus-
trated in Fig. 7. The time evolution of the PIC reflectiv-
ity is decomposed in three parts. The first, up to 0.7 ps, is
associated to the Rosenbluth response of the system. The
second, from 0.7 to 1.2 ps, is related to a destabilization
due to kinetic effects. It is a transition phase. During this
phase, the reflectivity is significantly higher that the one
calculated using the Rosenbluth gain. Enhanced reflec-
tivity due to kinetic effects is attributed to the auto res-
onance mechanism in which the induced frequency shift
due to electron trapping enlarges the resonance region.
To our knowledge, this is the first demonstration of auto
resonance in a 2D geometry. The third phase exhibits a
non stationary behaviour. This indicates that auto reso-
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Figure 5. (Homogeneous plasma case) EPW field in

∣∣∣∣δne

N0

∣∣∣∣ at

t = 0.55 ps. Top: Data given by the PIC code Emi2D. Mid-
dle: Envelope of the above signal, around the linear Raman
mode, extracted from the PIC simulation with the Hilbert
transform13. The latter allows to identify the EPW ampli-
tude out of the fast EPW oscillations as seen in the unfiltered
signal (top). Bottom: Envelope of the EPW calculated with
siera.

nance is not maintained because of geometrical evolution
that competes with non linear effects. Modulations sug-
gest that the SRS electric field may be decomposed into
the following way: ESRS = ERos +Etre

−iδωt + c.c. where
ERos is the field associated to the Rosenbluth response
and Etr the field due to electron trapping.

Due to the low amplification level expected, the in-
tensity of the reflected light should be composed of two
major spectral contributions, shifted in frequency:

ISRS ∝ |ERos|2 + |Etr|2 + ERosEtre
−iδωt + c.c. (27)

which is a signal oscillating at the frequency δω. This
remark allows us to measure the frequency shift di-
rectly from the PIC reflectivity on Fig. 7, which is
(4.4± 0.3) · 10−2ωpe.

Now, we turn our attention to the PIC electron distri-
bution function in a Raman active region of the system
(Cf. Fig. 8), in order to estimate the width δ of the
plateau due to electron trapping. This measure gives
δ/c0 ∼ 0.09±0.02. Now, using Eq. (10) one can estimate
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Figure 6. (Homogeneous plasma case) EPW field in

∣∣∣∣δne

N0

∣∣∣∣ at

t = 1.2 ps. Top: Data given by the PIC code Emi2D. Middle:
Envelope of the above signal, around the linear Raman mode,
extracted with the Hilbert transform13. Bottom: Envelope of
the EPW calculated with the fluid-like model in siera.

the value of η given by the PIC simulation:

η =
δω

ωpe

vφ
δc0
≈ 0.07 (±0.02) . (28)

This explains the choice of η used in the homogeneous
case as well.

E. Comparisons and calibration of the reduced model

The validity of the reduced model is assessed via the
comparison of several quantities calculated in both fluid-
like and PIC simulations. Moreover, for the purpose of
establishing the model sensitivity to the η parameter,
several simulations of the same configuration, with dif-
ferent values for η, are required.

In Fig. 9 we present the instantaneous reflectivity
given by the PIC code and Siera, with η = 0.05, 0.07 and
0.09 where η = 0.07 is supposed to be the centered value
of our estimation. There is also a witness simulation with
η = 0.00, i.e. without kinetic effects, in order to settle
the role of kinetic effects. In all cases, as expected in
the first stage, the reflectivity reaches a level correspond-
ing to the Rosenbluth amplification55, and stabilizes at
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Figure 7. PIC instantaneous reflectivity versus time for the
linear inhomogeneous case. The reflectivity presents three
phases: À corresponds to the linear growth and Rosenbluth
amplification; Â exhibits some modulations due to the compe-
tition between geometric and kinetic effects; Á is a transition
phase.
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Figure 8. Reconstructed PIC distribution function in a Ra-
man active area at 1.5 ps. The electron distribution function
is spatially averaged around the resonant point over 2λL in
the propagation direction and 2λL in the transverse direction.

a very precise value for the linear simulation. Simula-
tions with η > 0 produce more reflectivity compared to
the linear case, indicating a destabilization of the system
and the enlargement of the resonance area.

The parameter η modifies the reflectivity history, and
the best match with PIC calculation is for η = 0.07 in
agreement with the value estimated from the PIC code
(28).

Now, we compare the z-position of the EPW ampli-
tude first maximum versus time (Cf. Fig. 10). Indeed,
these first spatial maxima, resulting from the three waves
coupling, are representative of the localization of Raman
activity. The propagation of those maxima is represented
for different values of η and for the PIC simulation. We
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Figure 9. Comparison of the PIC reflectivity (black curve)
and reflectivity given by fluid-like model for different η values:
0 (blue dotted), 5% (purple), 7% (red dash) and 9% (green).

see that the best match is for η = 0.07, that is in agree-
ment with the estimation (28) from the PIC distribution
function. The case η = 0 corresponds to a case with-
out non-linear effects. The resonant point is set by the
initial conditions and geometry (here at x‖ = 5µm) and
does not evolve through time. In this case, the EPW
amplitude is driven by the Rosenbluth gain inside the
turning points and stays very small. The detection of
the first maximum algorithm was not designed for this
case and catches here modulations due to the numerical
scheme which explains why it evolves a little bit before
the stationary case is reached. Though, we chose not
to modify the algorithm in order to use the exact same
post-processing management.

In these simulations, 2D effects such as EPW self-
focusing, EPW filamentation or the curvature of the
phase front are expected to occur. In the PIC simulations
we can identify the phenomenon of wave front bowing15.
In the simulations with the wave-coupling code siera,
curvature in the phase front is also observable, while not
resolving the EPW wavelength. However, the curvature
of the EPW front is very similar to the one observed in
the PIC simulation once post processed with the Hilbert
transform to extract the wave envelope. In Fig. 11 and
12, we present at two different times the EPW ampli-
tudes obtained with the PIC code (top), its envelope
extraction using the previously presented method (mid-
dle) and the envelope calculated with the paraxial model
(bottom), for η = 0.07. The comparison shows that
the fluid code catches the most important specifications:
activity area, spatial extension, global shape, filamenta-
tion, islets in the wave head, self-focusing and the spatial
mean intensity. This translates directly the efficiency of
the wave coupling (growth, enhancement regarding the
Rosenbluth case and saturation) and so the intensity of
the Raman wave. Note that we use a paraxial solver in
the fluid code siera, this could explain some remaining
differences. The comparison of the different structures
around the resonant point (z = 0) is very well described
for η = 0.07.
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fluid-like model for different η values: 0% (orange dash), 5%
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V. DISCUSSION AND CONCLUSION

The effective cost of each 2D PIC simulation is roughly
170 hours times 2,048 cpus, whereas the simulation du-
ration of the fluid code is one hour on a desktop com-
puter. So, given this economy of time and means, and
the quite good comparisons obtained, this approach is
really encouraging particularly when considering the rel-
ative simplicity (theoretical and numerical) of the model.
Of course there is still the free parameter η to be ad-
justed. But, as it can be seen on the different figures
presented above, the system is not so sensitive. Few more
configurations46 were successfully tested regarding the in-
tensity of the pump wave, the geometry, and the plasma
density slab L∇.

The aim of such a model is to obtain quickly a good or-
der of magnitude of the Raman scattered wave for a given
set of plasma parameters in the domain of applicability
of the model. So a strategy could be to make several runs
with different but close values for η in order to determine
in which interval relies the response of the system. This
kind of model is also relevant for dealing with large (mil-
limeter size) system over a long time scale (hundreds of
picoseconds) which is not the case of PIC codes. Further-
more, as the model is based on a parametrization of the
electron function distribution (7), it is possible to build
back a distribution function with the calculated param-
eter δ and to compare it with the distribution given by
the PIC code. In Fig. 13 we present such a calculated
electron distribution function that compares quite well
to the PIC distribution function presented in Fig. 8.

As mentioned above, side effects could probably play
an important role for SRS. This is discussed by21,22 and
that is why we use a wide gaussian pump (f# = 16).
Good agreements were also obtained with a wider
gaussian beam (f# = 30). In these configurations, 2D
effects are not expected to be too strong. For studying
more realistic cases (for example the interaction between
speckles in the case of a smoothed beam), the modelling
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Figure 11. (Inhomogeneous plasma case) EPW field in

∣∣∣∣δne

N0

∣∣∣∣
at 4,800ω0t = 0.8 ps. Top: data given by the PIC code
Emi2D. Middle: Envelope of the above, corresponding to the
EPW field from the PIC simulation, around the linear Ra-
man mode, extracted with the Hilbert transform13. Bottom:
Envelope of the EPW calculated with the fluid-like model for
η = 0.07.

of transverse effects will be needed. Other non linear
mechanisms such as electron detrapping should also be
considered in a future work.

In conclusion, we developed a reduced model in the
paraxial approximation for SRS in a regime where kinetic
effects due to electron trapping are expected to be impor-
tant. The kinetic effects are calculated from a dynami-
cal model for the electron distribution function which is
parametrized with the width of the plateau associated to
the flattening around the phase velocity. This model was
compared with PIC simulations in configurations that al-
lowed us to perfectly control the linear response of the
system.

The results compare very well to PIC code simulations.
However, the model is not fully predictive in the sense
that a free parameter η has to be adjusted to best repro-
duce PIC results. But the system is not that sensitive
to this parameter, so different runs with different val-
ues for η would give tendencies of the system response.
Contrary to the model by Morales and O’Neil, which
suppose that the deformation of the distribution func-
tion is instantly established to its final state, this model
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Figure 12. (Inhomogeneous plasma case) EPW field in

∣∣∣∣δne

N0
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at 8,600ω0t = 1.60 ps. Top: Data given by the PIC code
Emi2D. Middle: Envelope of the above signal, around the
linear Raman mode, extracted with the Hilbert transform13.
Bottom: Envelope of the EPW calculated with the fluid-like
model for η = 0.07. The spatial extension is quite well de-
scribed, particularly the angle of the filaments (around 14◦,
which is still compatible with the paraxial approximation).
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Figure 13. Reconstruction of the distribution function
(green) compared to the PIC distribution function (red) at
1.5 ps with η = 0.08.

gives a frequency shift for a distribution function during
its deformation. This point is essential as the original
“static” model couldn’t reproduce PIC simulations with
enough precision. Due to its relative simplicity, such

modelling may be implemented in massively parallel,
3D paraxial interaction codes, such as HERA40. Using
this model would allow performing simulations including
more physics, e.g. hydrodynamics, Brillouin scattering
and possibly the competition with SRS, using optically
smoothed beams. In addition, such modeling may prove
to be useful in wider applications such as shock ignition
studies where non linear kinetic effects are wanted, but
also in Raman amplification schemes where pump-probe
laser systems are used with high-intensity lasers. Nev-
ertheless, this model could still be enhanced by adding
a description of transverse effects and other mechanisms
such as detrapping.
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