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Abstract

Studies on the methods of nanoparticle (NP) synthesis, analysis of their characteristics, and exploration of new fields
of their applications are at the forefront of modern nanotechnology. The possibility of engineering water-soluble
NPs has paved the way to their use in various basic and applied biomedical researches. At present, NPs are used in
diagnosis for imaging of numerous molecular markers of genetic and autoimmune diseases, malignant tumors, and
many other disorders. NPs are also used for targeted delivery of drugs to tissues and organs, with controllable
parameters of drug release and accumulation. In addition, there are examples of the use of NPs as active components,
eg, photosensitizers in photodynamic therapy and in hyperthermic tumor destruction through NP incorporation and
heating. However, a high toxicity of NPs for living organisms is a strong limiting factor that hinders their use in vivo.
Current studies on toxic effects of NPs aimed at identifying the targets and mechanisms of their harmful effects are
carried out in cell culture models; studies on the patterns of NP transport, accumulation, degradation, and elimination,
in animal models. This review systematizes and summarizes available data on how the mechanisms of NP toxicity for

living systems are related to their physical and chemical properties.
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Background

The International Organization for Standardization de-
fine nanoparticles (NPs) as structures whose sizes in
one, two, or three dimensions are within the range from
1 to 100 nm. Apart from size, NPs may be classified in
terms of their physical parameters, e.g., electrical charge;
chemical characteristics, such as the composition of the
NP core or shell; shape (tubes, films, rods, etc.); and
origin: natural NPs (NPs contained in volcanic dust, viral
particles, etc.) and artificial NPs, which are the focus of
this review.

Nanoparticles have become widely used in electronics,
agriculture, textile production, medicine, and many
other industries and sciences. NP toxicity for living
organisms, however, is the main factor limiting their use
in treatment and diagnosis of diseases. At present, re-
searchers often face the problem of balance between the
positive therapeutic effect of NPs and side effects related
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to their toxicity. In this respect, the choice of an
adequate experimental model for estimating toxicity be-
tween in vitro (cell lines) and in vivo (experimental ani-
mals) ones is of paramount importance. The NP toxic
effects on individual cell components and individual
tissues are easier to analyze in in vitro models, whereas
in vivo experiments make it possible to estimate the NP
toxicity for individual organs or the body as a whole. In
addition, the possible toxic effect of NPs depends on
their concentration, duration of their interaction with
living matter, their stability in biological fluids, and
the capacity for accumulation in tissues and organs.
Development of safe, biocompatible NPs that can be
used for diagnosis and treatment of human diseases
can only be based on complete understanding of the
interactions between all factors and mechanisms
underlying NP toxicity.

Medical Applications of Nanoparticles

In medicine, NPs can be used for diagnostic or thera-
peutic purposes. In diagnosis, they can serve as fluores-
cent labels for detection of biomolecules and pathogens
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and as contrast agents in magnetic resonance and other
studies. In addition, NPs can be used for targeted delivery
of drugs, including protein and polynucleotide substances;
in photodynamic therapy and thermal destruction of tu-
mors, and in prosthetic repair [1-6]. Some types of NPs
are already successfully used in clinic for drug delivery
and tumor cell imaging [7-9].

Examples of the use of gold NPs have been accumu-
lating recently. They have proved to be efficient carriers
of chemotherapeutics and other drugs. Gold NPs are
highly biocompatible; however, although gold as a sub-
stance is inert towards biological objects, it cannot be
argued that the same is true for gold NPs, since there
are no conclusive data yet on the absence of delayed
toxic effects [10]. In addition to gold NPs, those based
on micelles, liposomes [11], and polymers with attached
“capture molecules” [12] are already used as drug car-
riers. Single- and multiwalled nanotubes are good ex-
amples of NPs used for drug delivery. They are suitable
for attaching various functional groups and molecules
for targeted delivery, and their unique shape allows
them to selectively penetrate through biological barriers
[13]. The use of NPs as vehicles for drugs enhances the
specificity of delivery and decreases the minimum
amount of NPs necessary for attaining and maintaining
the therapeutic effect, thereby reducing the eventual
toxicity. This is especially important in the case of
highly toxic and short-lived chemo- and radiothera-
peutic agents [14].

Quantum dots (QDs) constitute another group of NPs
with a high potential for clinical use. QDs are semicon-
ductor nanocrystals from 2 to 10 nm in size. Their
capacity for fluorescence in different spectral regions, in-
cluding the infrared one [15], makes them suitable for
labeling and imaging cells, cell structures, or pathogenic
biological agents, as well as various processes in cells,
tissues, and body as a whole [16—18], which has import-
ant diagnostic implications [19, 20]. NPs based on super-
paramagnetic iron oxide are efficiently used as contrast
agents in magnetic resonance tomography (MRT) for
imaging liver, bone marrow, and lymph node tissues
[21]. There is also an example where radioactively la-
beled single-walled carbon nanotubes functionalized
with phospholipids were used for labeling integrin-
containing tumors and their subsequent detection by
means of positron emission tomography in experiments
on mice [22].

Nanoparticles have also been used in designing biosen-
sors, including those based on carbon nanotubes for
measuring the glucose level [23], detecting specific DNA
fragments and regions [24], and identifying bacterial
cells [25].

Silver (or silver-containing) NPs exert antimicrobial
and cytostatic effects; for this reason, they are widely
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used in medicine, e.g., for treating bandages, surgical in-
struments, prostheses, and contraceptives [13, 22]. Silver
NPs have been reported to serve as effective and safe
preservation agents in the cosmetic industry [26].

However, NPs may still be highly toxic, even if the
safety of using many of their chemical constituents in
medicine has been proved. The toxic effect may be
caused by their unique physical and chemical properties,
which underlie specific mechanisms of interaction with
living systems. In general, this determines the import-
ance of studying the causes and mechanisms of the po-
tential toxic effect of NPs.

Mechanisms of Nanoparticle Toxicity

The toxicity of NPs is largely determined by their
physical and chemical characteristics, such as their
size, shape, specific surface area, surface charge, cata-
Iytic activity, and the presence or absence of a shell
and active groups on the surface.

The small size of NPs allows them to penetrate
through epithelial and endothelial barriers into the
lymph and blood to be carried by the bloodstream
and lymph stream to different organs and tissues, in-
cluding the brain, heart, liver, kidneys, spleen, bone
marrow, and nervous system [27, 28], and either be
transported into cells by transcytosis mechanisms or
simply diffuse into them through the cell membrane.
Nanomaterials can also increase access to the blood
stream through ingestion [29, 30]. Some nanomater-
ials can penetrate the skin [31, 32] and even greater
microparticles can penetrate skin when it is flexed
[33]. Nanoparticles, because of their small size, can
extravasate through the endothelium in inflammatory
sites, epithelium (e.g., intestinal tract and liver), tu-
mors or penetrate microcapillaries [34]. Experiments
modeling the toxic effects of NPs on the body have
shown that NPs cause thrombosis by enhancing plate-
let aggregation [35], inflammation of the upper and
lower respiratory tracts, neurodegenerative disorders,
stroke, myocardial infarction, and other disorders
[36—38]. Note that NPs may enter not only organs,
tissues, and cells, but also cell organelles, e.g., mito-
chondria and nuclei; this may drastically alter cell
metabolism and cause DNA lesions, mutations, and
cell death [39].

The toxicity of QDs has been shown to be directly re-
lated to the leakage of free ions of metals contained in
their cores, such as cadmium, lead, and arsenic, upon
oxidation by environmental agents. QDs may be
absorbed by mitochondria and cause morphological
changes and dysfunction of the organelles [40]. Entry of
cadmium-based QDs into cells and formation of free
Cd** ions causes oxidative stress [41, 42].
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Recent studies have shown that contact of lung tissue
with NPs about 50 nm in size leads to perforation of the
membranes of type I alveolar cells and the resultant
entry of the NPs into the cells. This, in turn, causes cell
necrosis, as evidenced by the release of lactate dehydro-
genase [43]. There is evidence that QD penetration in-
creases the cell membrane fluidity [44]. On the other
hand, the formation of reactive oxygen species (ROS) in-
duced by peroxidation of membrane lipids may lead to
the loss of membrane flexibility, which, as well as an ab-
normally high fluidity, inevitably results in cell death.

Interaction of NPs with the cytoskeleton may also
damage it. For example, TiO, NPs induce conform-
ational changes in tubulin and inhibit its polymerization
[45], which disturbs intracellular transport, cell div-
ision, and cell migration. In human umbilical vein
endothelial cells (HUVECs), damage of the cytoskel-
eton hinders the maturation of coordination adhesive
complexes which link the cytoskeleton to the extra-
cellular matrix, thereby disturbing the formation of
the vascular network [46].

In addition, the NP cytotoxicity may interfere with
cell differentiation and protein synthesis, as well as
activate proinflammatory genes and synthesis of in-
flammatory mediators. It should be specially noted
that normal protective mechanisms do not affect NPs;
macrophage uptake of large PEGylated nanoparticles
is more efficient than uptake of small ones, which
leads to accumulation of NPs in the body [47]. Super-
paramagnetic iron oxide NPs have been demonstrated
to disturb or entirely suppress osteogenic differenti-
ation of stem cells and activate the synthesis of signal
molecules, tumor antigens, etc. [48, 49]. In addition,
interaction of NPs with the cell enhances the expres-
sion of the genes responsible for the formation of ly-
sosomes [50], disturbs their functioning [51], and
inhibits protein synthesis [52, 53]. A study on the
toxic effects of NPs of different compositions on lung
epithelial cells and human tumor cell lines has shown
that NPs stimulate the synthesis of inflammation me-
diators, e.g., interleukin 8 [54]. According to Park,
who studied the expression of proinflammatory cyto-
kines in vitro and in vivo, the expressions of interleu-
kin 1 beta (IL-1p) and tumor necrosis factor alpha
(TNFa) are enhanced in response to silicon NPs [55].

Oxidation, as well as action of various enzymes on the
shell and surface of NPs, results in their degradation and
release of free radicals. In addition to the toxic effect of
free radicals expressed as oxidation and inactivation of en-
zymes, mutagenesis, and disturbance of chemical reac-
tions leading to cell death, degradation of NPs leads to
alteration or loss of their own functionality (e.g., the loss
of the magnetic moment and the changes in the fluores-
cence spectrum and transport or other functions) [56, 57].
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In summary, the most common mechanisms of NP
cytotoxicity are the following:

1. NPs may cause oxidation via formation of ROS and
other free radicals;

2. NPs may damage cell membranes by perforating them;

3. NPs damage components of the cytoskeleton,
disturbing intracellular transport and cell division;

4. NPs disturb transcription and damage DNA, thus
accelerating mutagenesis;

5. NPs damage mitochondria and disturb their
metabolism, which leads to cell energy imbalance;

6. NPs interfere with the formation of lysosomes,
thereby hampering autophagy and degradation of
macromolecules and triggering the apoptosis;

7. NPs cause structural changes in membrane proteins
and disturb the transport of substances into and out
of cells, including intercellular transport;

8. NPs activate the synthesis of inflammatory
mediators by disturbing the normal mechanisms of
cell metabolism, as well as tissue and organ
metabolism (Fig. 1).

Although there are numerous mechanisms of NP toxi-
city, it is necessary to determine and classify the type
and mechanism of each particular toxic effect of NPs as
dependent on their physical and chemical properties.

Relationships of Nanoparticle Toxicity with Their Physical
and Chemical Properties

The toxicity of NPs is considered to depend on their
physical and chemical characteristics, including the size,

Y-
)
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Fig. 1 Mechanisms of cell damage by nanoparticles. (1) Physical
damage of membranes [43, 67, 75]. (2) Structural changes in
cytoskeleton components [45, 46]. (3) Disturbance of transcription and
oxidative damage of DNA [61, 62]. (4) Damage of mitochondria [39, 40].
(5) Disturbance of lysosome functioning [51]. (6) Generation of reactive
oxygen species [61]. (7) Disturbance of membrane protein functions
[172]. (8) Synthesis of inflammatory factors and mediators [54, 55]
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shape, surface charge, chemical compositions of the core
and shell, and stability. In particular, Oh et al.,, using the
data meta-analysis of 307 papers describing 1741 cell
viability-related data samples, recently analyzed the
CdSe quantum dot toxicity. It has been shown that the
QD nanotoxicity is closely correlated with their surface
properties (including shell, ligand, and surface modifica-
tions), diameter, toxicity assay type used, and the exposure
time [58]. Which of these factors is the most important is
determined by the specific experimental task and model;
therefore, we will now consider each factor separately.

Nanopatrticle Size and Toxicity

The NP size and surface area play an important role,
largely determining the unique mechanism of NP inter-
action with living systems. NPs are characterized by a
very large specific surface area, which determines their
high reaction capacity and catalytic activity. The sizes of
NPs (from 1 to 100 nm) are comparable with the size of
protein globules (2-10 nm), diameter of DNA helix
(2 nm), and thickness of cell membranes (10 nm), which
allows them to easily enter cells and cell organelles. For
example, Huo et al. have demonstrated that gold NPs no
larger than 6 nm effectively enter the cell nucleus,
whereas large NPs (10 or 16 nm) only penetrate through
the cell membrane and are found only in the cytoplasm.
This means that NPs several nanometers in size are
more toxic than 10 nm or larger NPs, which cannot
enter the nucleus [59]. Pan et al. have traced the de-
pendence of the toxicity of gold NPs on their size in the
range from 0.8 to 15 nm. The NPs 15 nm in size have
been found to be 60 times less toxic than 1.4-nm NPs
for fibroblasts, epithelial cells, macrophages, and melan-
oma cells. It is also noteworthy that 1.4-nm NPs cause
cell necrosis (within 12 h after their addition to the cell
culture medium), whereas 1.2-nm NPs predominantly
cause apoptosis [60]. These data suggest not only that
NPs can enter the nucleus, but also that the correspond-
ence of the geometric size of NPs (1.4 nm) to that of the
major groove of DNA allows them to effectively interact
with the negatively charged sugar—phosphate DNA
backbone and block the transcription [61, 62].

In addition, the NP size largely determines how the
NPs interact with the transport and defense systems of
cells and the body. This interaction, in turn, affects the
kinetics of their distribution and accumulation in the
body. The review paper by [63] presents both theoretical
considerations and numerous experimental data demon-
strating that NPs smaller than 5 nm usually overcome
cell barriers nonspecifically, e.g., via translocation,
whereas larger particles enter the cells by phagocytosis,
macropinocytosis, and specific and nonspecific transport
mechanisms. An NP size of about 25 nm is believed to
be optimal for pinocytosis, although this also strongly
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depends on the cell size and type [63, 64]. In vivo experi-
ments have shown that NPs smaller than 10 nm are
rapidly distributed among all organs and tissues upon
intravenous administration, whereas most larger NPs
(50-250 nm) are found in the liver, spleen, and blood
[65]. This suggests that large NPs are recognized by spe-
cific defense systems of the body and absorbed by the
system of mononuclear phagocytes, which prevents
them from entering other tissues. In addition, Talamini
et al. claimed that the NP size and shape influence the
kinetics of accumulation and excretion of gold NPs in
filter organs, and only star-like gold NPs are able to ac-
cumulate in the lung. They have also shown that the
changes in the NP geometry do not improve the NP pas-
sage of the blood—brain barrier [66].

The large specific surface area ensures effective ad-
sorption of NPs on the cell surface. This was shown in a
study on the hemolytic activity of 100- to 600-nm meso-
porous silicon particles towards human erythrocytes
[67]. The particles 100 nm in size were effectively
adsorbed on the erythrocyte surface without causing cell
destruction or any morphological changes in the cells,
whereas 600-nm particles deformed the membrane and
entered the cells, resulting in erythrocyte destruction
(hemolysis) [67].

Nanoparticle Shape and Toxicity

The characteristic shapes of NPs are spheres, ellipsoids,
cylinders, sheets, cubes, and rods. NP toxicity strongly
depends on their shape. This has been shown for numer-
ous NPs of different shapes and chemical compositions
[68—71]. For example, spherical NPs are more prone to
endocytosis than nanotubes and nanofibers [72]. Single-
walled carbon nanotubes have been found to more ef-
fectively block calcium channels compared to spherical
fullerenes [73].

Comparison of the effects of hydroxyapatite NPs with
different shapes (needle-like, plate-like, rod-like, and
spherical) on cultured BEAS-2B cells have shown that
plate-like and needle-like NPs cause death of a larger
proportion of cells than spherical and rod-like NPs [74].
This is partly accounted for by the capacity of plate-like
and needle-like NPs for damaging cells and tissue upon
direct contact. Hu et al. [75] obtained interesting data
when studying the damage of mammalian cells by gra-
phene oxide nanosheets. The toxicity of these NPs was
determined by their shape allowing them to physically
damage the cell membrane. However, their toxicity was
found to decrease with an increase in the fetal calf
serum concentration in the culture medium. This was
explained by a high capacity of graphene oxide NPs for
adsorbing protein molecules, which cover the NP sur-
face, thereby changing the shape of the NPs and partly
preventing the damage of cell membranes [75].
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Nanoparticle Chemical Composition and Toxicity

Although the toxicity of NPs strongly depends on their
size and shape, the influence of other factors, such as
the NP chemical composition and crystal structure,
should not be disregarded. Comparison of the effects of
20-nm silicon dioxide (SiO5) and zinc oxide (ZnO) NPs
on mouse fibroblasts has shown that they differ in the
mechanisms of toxicity. ZnO NPs cause oxidative stress,
whereas SiO, NPs alter the DNA structure [76].

The toxicity of NPs is indeed largely determined by
their chemical composition. It has been shown that deg-
radation of NPs can occur, and its extent depends on the
environment conditions, e.g., pH or ionic strength. The
most common cause of the toxic effect of NPs interact-
ing with cells is leakage of metal ions from the NP core.
The toxicity also depends on the composition of the
core of NPs. Some metal ions, such as Ag and Cd, are in
fact toxic and, therefore, cause damage of the cells.
Other metal ions, such as Fe and Zn, are biologically
useful, but, at high concentrations, they could damage
cellular pathways and, hence, cause high toxicity. How-
ever, this effect can be decreased, e.g., by coating NP
cores with thick polymer shells, silica layers, or gold
shells instead of short ligands or by using nontoxic com-
pounds for NP synthesis. On the other hand, the com-
position of the core could be altered by addition of other
metals. This can result in enhanced chemical stability
against NP degradation and metal ion leakage into the
body [77].

The toxicity of NPs also depends on their crystal
structure. The relationship between crystal structure and
toxicity has been studied using a human bronchial epi-
thelium cell line and titanium oxide NPs with different
types of crystal lattice. It has been demonstrated that
NPs with a rutile-like crystal structure (prism-shaped
TiO, crystals) cause oxidative damage of DNA, lipid per-
oxidation, and formation of micronuclei, which indicates
abnormal chromosome segregation during mitosis,
whereas NPs with anatase-like crystal structure (octahe-
dral TiO, crystals) of the same size are nontoxic [78]. It
should be noted that the NP crystal structure may vary
depending on the environment, e.g., upon interaction
with water, biological fluids, or other dispersion media.
There is evidence that the crystal lattice of ZnS NPs is
rearranged into a more ordered structure upon contact
with water [79].

Nanopatrticle Surface Charge and Toxicity
The surface charge of NPs plays an important role in
their toxicity, because it largely determines the interac-
tions of NPs with biological systems [80, 81].

NP surfaces and their charges could be modified by
grafting differently charged polymers. PEG (polyethylene
glycol) or folic acid is often used to improve the NP
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intracellular uptake and ability to target specific cells
[82]. The synthesis of biocompatible TiO2 nanoparticles
containing functional NH2 or SH groups has also been
reported [83]. Other substances, such as methotrexate,
polyethyleneimine, and dextran, had also been used to
modify NP surfaces and their charge [84].

A high toxicity of positively charged NPs is explained
by their ability to easily enter cells, in contrast to nega-
tively charged and neutral NPs. This is accounted for by
electrostatic attraction between the negatively charged
cell membrane glycoproteins and positively charged
NPs. Comparison of the cytotoxic effects of negatively
and positively charged polystyrene NPs on HeLa and
NIH/3T3 cells has shown that the latter NPs are more
toxic. This is not only because positively charged NPs
more effectively penetrate through the membrane, but
also because they are more strongly bound to the nega-
tively charged DNA, causing its damage and, as a result,
prolongation of the GO/G1 phase of the cell cycle. Nega-
tively charged NPs have no effect on the cell cycle [85].
Similar results have been obtained for positively and nega-
tively charged gold NPs, positive NPs being absorbed by
cells in larger amounts and more rapidly than negative
ones and being more toxic [86].

Positively charged NPs have an enhanced capacity for
opsonization, i.e., adsorption of proteins facilitating
phagocytosis, including antibodies and complement
components, from blood and biological fluids [87]. The
adsorbed proteins, referred to as the protein crown, may
affect the surface properties of NPs. For example, they
may alter the surface charge, aggregation characteristics,
and/or hydrodynamic diameter of NPs. In addition, ad-
sorption of proteins on the NP surface leads to their
conformational changes, which may decrease or com-
pletely inhibit the functional activities of the adsorbed
proteins. The protein crown mainly consists of major
serum proteins, such as albumin, fibrinogen, and im-
munoglobulin G, as well as other effector, signal, and
functional molecules [88, 89]. Binding to NPs alters the
protein structure, which leads to the loss of their enzym-
atic activity, disturbance of biological processes, and pre-
cipitation of ordered polymeric structures, e.g., amyloid
fibrils [90]. This may lead to various diseases, such as
amyloidosis. In vitro experiments have demonstrated
that QDs coated with a hydrophilic polymer accelerate
the formation of fibrils of human (, microglobulin,
which are then arranged into multilayered structures on
the particle surface; this results in a local increase in the
protein concentration on the NP surface, precipitation,
and formation of oligomers [91].

Xu et al. developed a method for changing the NP
charge from negative to positive via various modifica-
tions of the surface. For example, polymer NPs were
modified with a pH-sensitive polymer so that, being
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negatively charged in a neutral medium, they acquired a
positive charge in an acid medium, at pH 5-6 [92]. This
technique makes it possible to substantially increase the
rate of NP uptake by cells, which could be used for drug
delivery to tumor cells. Estimation of the cytotoxicity of
surface-modified cerium oxide NPs for H9C2, HEK293,
A549, and MCEF-7 cells has shown that basically different
biological and toxic effects can be obtained by using dif-
ferent polymers to make the NPs positively or negatively
charged or neutral. Specifically, positively charged and
neutral NPs are absorbed by all cell types at the same
rate, whereas negatively charged ones predominantly
accumulate in tumor cells [93]. Thus, modification of
the NP charge allows their localization and toxicity to
be controlled, which could be used for developing ef-
fective systems for delivery of chemotherapeutic drugs
to tumors.

Nanoparticle Shell and Toxicity

Application of a shell onto the surface of NPs is
necessary for changing their optical, magnetic, and
electrical properties; it is used for improving NP bio-
compatibility and solubility in water and biological
fluids by decreasing their aggregation capacity, in-
creasing their stability, etc. Thus, the shell decreases
the toxicity of NPs and provides them with the cap-
acity for selective interaction with different types of
cells and biological molecules. In addition, the shell
considerably influences the NP pharmacokinetics,
changing the patterns of NP distribution and accu-
mulation in the body [94].

As noted above, NP toxicity is largely related to the
formation of free radicals [40, 57, 95, 96]. However, the
shell can considerably mitigate or eliminate this negative
effect, as well as stabilize NPs, increase their resistance
to environmental factors, decrease the release of toxic
substances from them, or make them tissue-specific
[97]. For example, Cho et al. modified polymer NPs by
coating them with lectins. The modified NPs selectively
bound with tumor cells presenting sialic acid molecules
on the surface, which made the NPs suitable for specific-
ally labeling cancer cells [98].

The NP surface can be modified with both organic
and inorganic compounds, e.g., polyethylene glycol,
polyglycolic acid, polylactic acid, lipids, proteins, low
molecular weight compounds, and silicon. This variety
of modifiers makes it possible to form complex systems
on the NP surface for changing the NP properties and
for their specific transport and accumulation.

Nanoparticles coated with shells of synthetic polymers
are used for delivery of antigens, thus serving as adju-
vants boosting the immune response. This allows obtain-
ing vaccines against the antigens that are targets of
strong natural nonspecific cellular immunity [99].
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The shell is often used for improving solubilization
and decreasing the toxicity of QDs, because their metal
cores are hydrophobic and mainly consist of toxic heavy
metals, such as cadmium, tellurium, and mercury. The
shell increases the stability of the QD core and pre-
vents its desalination and oxidative or photolytic deg-
radation. This, in turn, decreases the leakage of metal
ions outside of the QD core and, hence, the toxicity of
QDs [100-102].

Study of Nanoparticle Toxicity

During the past two decades, the use of NPs has tremen-
dously extended and led to the foundation of nanotoxi-
cology, a new science studying the potential toxic effects
of NPs on biological and ecological systems. The general
goal of nanotoxicology is to develop the rules of synthe-
sis of safe NPs [103]. This calls for a comprehensive, sys-
temic approach to analysis of the toxic properties of NPs
and their effects on cells, tissues, organs, and the body
as a whole.

There are two routine approaches to the study of the
effects of various substances on living systems, which
are also applicable to NP toxic effects: in vitro experi-
ments on model cell lines and in vivo experiments on la-
boratory animals. We do not consider here the third
possible approach to estimating NP toxicity, computer
simulation, because the pathways and mechanisms of
the toxic effects of NPs are not known well enough for a
computer model to predict the consequences of interac-
tions between NPs and living matter for a wide range of
NPs with sufficient reliability.

Both cell culture and animal experimental models for
studying NP toxicity have their specific advantages and
disadvantages. The former allow deeper insight into the
molecular mechanisms of toxicity and identification of
the primary targets of NPs; however, the patterns of the
distribution of NPs in the body and their transport to
different tissues and cells are not taken into consider-
ation. The study of NP toxicity in animal experiments al-
lows the delayed effects of NP action in vivo to be
estimated. However, the general pattern of toxicity mani-
festations becomes so complicated that it is impossible
to determine which of them is the primary cause of the
observed effect and which are its consequences.

Study of Toxicity in Cell Cultures

Many studies of NP toxicity are carried out in primary
cell cultures serving as models of various types of hu-
man and animal tissues. In some cases, tumor cell lines
are used, e.g., for estimating the toxic effects of NPs used
in cancer chemotherapy. The type of cells is selected ac-
cording to the potential route by which NPs enter the
body. This may be oral uptake (mainly by ingestion),
transdermal uptake (through the skin surface), inhalation
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uptake of NPs contained in the breathing air, or
intentional NP injection in clinic. Intestinal epithelium
cells (Caco-2, HT29, and SW480) are often used in ex-
perimental models for studying the toxicity of ingested
NPs (Table 1). In these models, the kinetics of NP up-
take by cells and the viability of cells upon the NP up-
take are studied.

The NPs that serve as carriers of drugs or contrast
agents, or those used for imaging, are administered by
injection. The toxicity of these NPs is studied in primary
blood cell cultures. Most commonly, hemolysis, platelet
activation, and platelet aggregation are estimated. In
addition to primary blood cell cultures, cultured
HUVECs, mesenchymal stem cells, mononuclear blood
cells, and various tumor cell lines (HeLa, MCF-7, PC3,
C4-2, and SKBR-3) are used (Table 2).

The toxicity of inhaled NPs is studied using the cell
lines modeling different tissues of the respiratory system,
e.g., A549 and C10 cells of pulmonary origin, alveolar
macrophages (RAW 264.7), various epithelial cells and
fibroblasts (BEAS-2B, NHBE, 16-HBE, SAEC), as well as
human monocytes (THP-1) (Table 3).

The toxicity of NPs that enter the body transdermally
is usually studied in keratinocytes, fibroblasts, and, more
rarely, sebocytes (cells of sebaceous glands) (Table 4).

Co-cultured Cell Lines and 3D Cell Cultures

Although the majority of in vitro nanotoxicity studies
are carried out on cell monocultures, studies using two
other approaches are increasingly often reported in the
literature. One of them is co-culturing of several types of
cells; the other is the use of 3D cultures. The rationale
for these approaches is the need for more realistic
models of mammalian tissues and organs. For example,
co-cultured Caco-2 epithelial colorectal adenocarcinoma
cells and Raji cells (a lymphoblast cell line) have served
as a model of the human intestinal epithelium in experi-
ments on the toxicity of silver NPs [104]. A co-culture
of three cell lines derived from lung epithelial cells, hu-
man blood macrophages, and dendritic cells has been
used as an experimental model in a study on the toxic
effects of inhaled NPs [105]. A model of skin consisting
of co-cultured fibroblasts and keratinocytes has been
suggested [106].

It is known that the cell phenotype, as well as cell
functions and metabolic processes, is largely determined
by the complex system of cell interactions with other
cells and the surrounding extracellular matrix [107].
Therefore, many important characteristics of cells with
an adhesive type of growth in a monolayer culture sub-
stantially differ from those of the same cells in the living
tissue; hence, conclusions from many experiments on
the NP toxic effects on cells growing in a monolayer are
somewhat incorrect [108]. Experimental 3D models of
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tissues and organs have been used for analysis of NP
toxicity and penetration into cells in several published
studies. For example, there are 3D models based on
polymer hydrogels [109] and models constructed in spe-
cial perfusion chambers containing a semipermeable
membrane to which the cells are attached. Li et al. and
Lee et al. [110, 111] used multicellular spheroids about
100 pm in size to obtain a 3D model of the liver and
compare the toxicities of CdTe and Au NPs in experi-
ments on this model and a monolayer culture of liver
cells [111]. The results obtained using the 3D model
were more closely correlated with the data obtained in
experiments on animals, which indicates a considerable
potential of this approach for adequate and informative
testing of NP toxicity.

In vivo Study of Nanopatrticle Toxicity

In addition to the study of multilayered and 3D cell cul-
tures, the behavior of NPs in the living body is being ex-
tensively studied. Since these studies are focused on the
biomedical applications of NPs, the NP toxicity for living
organisms remains an important issue. Although NPs
are highly promising for various clinical applications,
they are potentially hazardous. This hazard cannot be
estimated correctly in vitro, following from the compari-
son of the in vivo and in vitro effects of NPs.

Titanium dioxide (TiO,) particles are among the most
widely used NPs, in particular, in environment protec-
tion measures. Therefore, it was exceptionally important
to estimate their toxicity in the case of a 100% bioavail-
ability, namely, in experiments with their intravenous in-
jection to experimental animals. This study has been
performed by Fabian et al. [112]. Experimental animals
(rats) were injected with a suspension of TiO, NPs at a
dose of 5 mg/kg, and their biodistribution, as well as the
general condition of the animals, was monitored. The re-
sults have shown that the animals exhibit no signs of ail-
ment or disorder, nor is inflammation or another
manifestation of a toxic effect observed, within 28 days.
This suggests that TiO, NPs are relatively harmless.

Silver NPs are another example of NPs potentially use-
ful in medicine, owing to their antimicrobial activity.
Their toxicity and biodistribution were analyzed in an
experiment where CD-1 mice were intravenously
injected with 10 mg/kg of silver NPs of different sizes
(10, 40, and 100 nm) coated with different shells. Al-
though each type of NPs was found to cause toxic dam-
age of tissues, larger particles were less toxic, probably,
due to their lower penetration capacity [113]. Asare et
al. [114] estimated the genotoxicity of silver and titan-
ium NPs administered at a dose of 5 mg/kg. They have
found that silver NPs cause DNA strand breaks and oxi-
dation of purine bases in the tissues examined. Gold
nanoparticles have a similar effect [115]. They have been



Page 8 of 21

Sukhanova et al. Nanoscale Research Letters (2018) 13:44

'$210D (JO W04 P JO 35e3|24 3} JO
asnesaq |\d 007 JO UONRIUIDUOD

uoIsaype 2innd

eyl e 18 Pa/ISSqO S| AUDIXO10IAD 1192 40§ 1531 ‘Aesse | I\ 7-0%e) Y ¢ ‘'Wd 002-C WU §z-+1 sdo 9SpD
"92BJINS POJOURU 3} UO |y ‘onel
[lvl] SIURIDRUNS O) PIIRJ3I S| AYDIX010ILD) 1UNOD |92 ‘Aesse | [N 6C1H skep ¢ ‘WU £0 1919Wep-01-y1bus spoloueu by
[9A9] auolyieIN|b paseans WU 1 S2e|q uogied
"YNQ 4o abewep aniepixo pue Wwu 00€-0L, 'COIL
Syealq YN pueis-s|gnogd 1USWSINSeSW [9A9) wu 1 ‘20IS
S92 WOl HA1 4O 9ses|dy auojyien|b ‘Aesse 1owo0d R4 wu 0z-01 ‘Ouz S4N Y2e|g uogued
[or1] ‘Auligeln 192 paseainad WNQ ‘Aesse HT ‘L-1SM ¢-0%e) ‘gwa/bui 08 pue oz wu 8 ‘0B pue ‘zolL ‘2OIS '0uZ '0bw
/bW |'0 JO UORRIIUSIUOD
Ao e 1e Y331 paseaidag JUSWINSLIW 3DURISIS)
“way1 ol sgo 4o [eOLID3J2 [BIjRYMIdasue yte
bEL] uonensuad o1 palejal yiesp |90 ‘Ados0.dIW 1uads3I0N|H 7-00e) 1/Bw 100 pue ‘[0 ‘L wu §p—5'¢ Sgo 21pD
‘SANS Jo
95eD 9Y1 Ul 98D Pue ‘61| el
‘SANY JO 958D a1 Ul 3D SdN
Jo adAy ay1 uo buipuadap
salleA ajijoid 1dudsuely ay |
'SaUN 0L Alorewwepulold IREINEN Wu /| F 7/ '"yibug)
Buipodua sauab Jo uolssaidx] S67S WU € F QL ‘ssauydIyl
(21x03 210W 218 ¥SI13 ‘bumojqounwiwi 6vSY Yy ozl pue SNY WU 9| FOb SdN OND (SdNY) padeys-pou
[8€l] SANY) A1[IGeIA |[92 paseainaQ ‘YDd ‘Aesse S ¢-02e) '8 ¥ {|w/Bw 001§ "I219Welp SdNS pue (sdNS) [eouayds
“(11 ybnouys papodsuely
2Je JaKejouow |90 e BuuAUD
SAN 243 JO %S > pue Speago.diw
33 JO %t2-91) Johe] wniayuds
31 ybnoiya sdN ay3 jo uodsuel|
'S|]92 01Ul SN 941 JO uolellausd Adodsoniw [eooju0d
S|192 Wolj ‘JUSWINSeaW 3DURISISa)
HQ1 JO 9ses|9y "(21X01 a10W e [eDL1D39 [ellRyHdasuel) ¢-njed
g1l sdN pabieyd Ajpaisod) yiesp |12 ‘Aesse HQT ‘Aesse S z-0%e) Yt Ju/bri 0001-0L Wu 001 pue wu 0§ SPeagoIW puUe SdN X187
(SI192 087MS UBY1 8- 210w
2onpold s||92 z-00eD) 8- JO asessy wu oz
‘uonanpoud SOy Aesse SOy ‘Aesse HQ 087MS Y 8y pue #¢ ‘OUzZ Wu 1z ‘20l
[o¢l] (31x01 2I0W I SN QUZ) Y1esp |90 YS9 ‘Aesse || ¢-03e) Jw/Bw 0oL pue ‘oL 'L '1'0 wu 0£-0z By SdN QuZ pue ‘zolL By
aWl} uopegnoul
ERIIEIEIEY SUOISNPUOD S10343 UOIID319pP JO POYIDW EVINES) ‘U0NeUSIUOD) s3715 sopiedoueu jo adAL

2yeidn [eio 113y JO S|9poW [eIURWIIRAXS Ul ADIX0) S)diedoueu Jo

UOIIRWINSS JO S)NsayY | ajqeLl



Page 9 of 21

Sukhanova et al. Nanoscale Research Letters (2018) 13:44

‘AiBuons pue AppIinb
2I0W AJI|IgeIA [[93 3Y1 95e3103p

Kesse sisordode

spioe dljAxogled

SdN pazijeuonouny-pioe jjAxogled ‘siskjeue buu1snpd Yol YIM paljipoul J0u pue
1] ‘AjIgeIA (|93 paseaidag ‘Aesse (|90 /] 7-008) INU 99-€0 wu Oy pue Qg PIUIPOW SN DUIAISA|0d
Yy vt
[Sy1] 'S9gNIoURU Y3 AQ Pasned yieap |19 Aesse pal [eNaN 7-00eD) Ju/buw §0-10 WU 0L—G1 4s1ewel] S9QNIOUBU OA
“(D1X01 2JOW 3l SdN
pPaUIPOW-HOOD Pabieyd Ajpaiebau ayy) Adoasoniw
AujIgeIA |[93 paseanag Juadsalonyy ‘Aesse ¢ asedsed
S|192 AQ ‘Adodsouoiuw |edouod
paglosqe Ajipeal iou e JUSWIAINSEaW 3OUPRISISII sdnoib ZHN pue HOOD Yim
[riL] HOOD YIm palipowl SdN 9YL [ed1103] [eljayudasuel | ¢-03e) Y 9l'wu Z1-€0 Wwu 0t-0¢ payIPOW sdN dua1Aisk|od
an|q uedAn
Jwi/brl 00 L Yum Bujuess ‘Aesse sdnoib HOOD
ueyl Jaybiy uoneusduod [elNaU yum Buiuiels YIM Paljipoul $agnIourU
lev1] 3gnIOoUBU P 18 Y1eap [|9D ‘Aesse HQT ‘Aesse SIIN 7-008) Y ¢ ‘Jw/brl 0001-5 wu ['0F¥'L uogued pajleminiy
3w} uopegndul
ERIEIEIEY SUOISN|PUOD ‘S10943 UOND1SP JO POYISN aull 19D ‘UoNeUSIUOD) EEVAIS sapJedoueu jo adA|

(panuiuo)) xexdn [eJo JI9Y3 JO S|POU [PIUSWILSAXS Ul A1DIX01 3jDiuedoueu JO UOIRWIISS JO SINS3Y L d|qeLl



Page 10 of 21

Sukhanova et al. Nanoscale Research Letters (2018) 13:44

18ybiy

pue |w/br Oz Jo suonelIuadu0d

dN 1B padueyU? S| SISA|OWSH

‘s9o1ued

PaZ1S-1212WODIW

0} pasedwod s||92 poojq pal

[0s1] Jo uoiyodoud 1abue| e 35A| SN 9yl

s|192 7odaH pue sHIANH Aq padiosae
A[oAND3YS 218 SN Payipow 8y
“WIaY} Ul S9[NQNI0IDIW JO UORRWIO) pue

1591 DIIA|OWSH

S[ER
poo|q pai uewny

yse
‘w/Bri 0oz pue WU 00SE-000C
002 "0¢C ‘0L ‘2T pue ‘001 > ‘s¢ sdN By

SDIANH 4O uonelbiw pue uonesayjoid /-4
QY1 UQIYUL SN paipow oy €2d
‘SN pPayipowun ay} A132woif0 Moy 08YMS
uey3 saul| ||93 || JOj JIXO) oW ‘Kesse | |\ ‘Adodsoloiw 7odaH y ¥z pue 7| [ApuAdAjod (Ihny yum paljipow
l6v1] SWIY 9 01 07 218 SN PayIpow 3yl |eD0ju0d Bumojgounwiu] SDIANH Ju/brt 06-1 wu 001 10U pue payIpow SdN oS
aul| Aue
JO §]|92 JO U013|2XS0IAD 2yl Ul sabueyd
JuedlIUbIS 9sNed 10U Op SAN YL
NIEENA 214
MVY 01Ul Aluo a1enauad SN 9yl
S||92 B19H pue gy 031 paleduwlod e1oH
ju/Brl 0ol ueys Jaybiy suoneiiuaduod 1e (IN3S) Adodsomniw ]
SN @Y1 Jo 2duasaid 2y Ul paseaidap UoJ1D3Je buluueds /¥97 MY Y 8y pue WU €T ‘SSauyIyl
81l 2J0W A|geIapIsuod s Aljigeln DIANH ‘Ad02s0ID1W [BDOJUOD ‘8- | SM SOIANH Pz w/brl 0op—1 ‘WU 65 ‘YyibuaT sareidoueu snH
“(K|Ipeal aJoul S4N Y1 glosqe
91B)S DIWRUAP 343 U] §]|92) SJN 243 JO
uoNezI|euIaiul s1934e INg S4N Y3 Yim
uonoeIziul uodn AjigeIA (19D 1994e Jou
S0P (DJWRUAP JO D11BIS) 91RIS ||90 9y L
51192 Jo uoruodoud juedyubisul
Ue JO Y1eap 3sned S4N Paiipow ayl Adodsoniw HO pue
“A|lennueisgns Aujigein Juadsalony} ‘Aesse y ¥z “CHN ‘HOOD Yum patjipou
[/p1] 193 3994 10U Op SdN payipowun ay | HA1 'vSI13 “Aesse SN SOANNH lw/Brl 0009-1 Wwu 0z pue og 10U pue payIpow sdN OIS
SIIPYS INOYUM SdN UeY3 DIx0} (O3d-HOOD-03d)
210U 3B SN P3aLIPOU-308HNS Y] SOINNH JawAjodod ¥oo|qu1 apIxo
51192 AQ axexdn gN Adodsoniu D aualAy1akiod yum paiyipow
Orl] 'sadA1 |19 |[e Jo AljigeIn paseaidaq [BDOJUOD ‘Aesse | [N £d Y 8 ‘Jw/bw g-| wu 0l 10U pue Payipow SdN 024
Qw1 uonegnoul
ERIEIEIEY SUOISN|DUOD 519943 UoND3I3P JO POYIBN aull 12D ‘UOIIRIUDUOD) $37I5 sapnJedoueu jo adA|

suepIo snoLeA JO

S|[92 Yam sajpiedoueu Jo UO[IDRISIUL JO S3DUSNDasU0D 3y} pue UoRRASIUILPE SNOUSARIIUL JI2Y] JO S|2pPOoW [eluswiadxs Ul AD1x0) aj21edousu JO UORBUIISS JO SYNSAY T dqeL



Page 11 of 21

Sukhanova et al. Nanoscale Research Letters (2018) 13:44

S|192 ¢HdaH ul Ajuo

paAI9sgo Os|e ale sabueypd |edibojoydiopy
“(Jw/Brt G| JO uoNeIUSOUOD B 18 DIX0)

ate Aoyy 's||9d zodaH Joy) godeH 1dedxe

Adodsoniw [e20ju0d /-9 y $7 pue pioe djouedapunoldediaw Yum
wsi] Sau| [|9D ||e O} DIXOUoU 2l sJD YL ‘AdodsoIoiuw uadsaIoN |} ‘Aesse an|q Jewepy €-HaYS ‘coday | ‘Jw/br 09-s7°L WU GF QL Paipow sgo aSuz/aSpD/21pD
'sisoydode a1eAlde pue |9A3)
SOY Jejn|jdenul ayi aseanul sqo ayL pioe JjupPdNsoidedsaul
[eS1] 'SDIANH 104 JIX01 318 SQD YL Aesse SOy ‘Anaw01hd moyy ‘Aesse | ||\ SDIANH Y+ “Jw/Bri 00L-10 wu ¢ UM PaYIPOW QD 91PD
Jw/Br 0oL eyl Jamo)
SUOIeIIUSDUOD 1B §||9D Ul sabueyd
|ed160joydiow sNoLSS 4o ‘uoiesaub
SOY ‘sisordode asned 10u op SdN YL
‘Ju/brt 00| JO UORRIUSDUOD B Kesse 5OY ‘N3S ‘Aesse
18 AJUO 9407 UBY1 SIOW AQ [PAIAINS [|9D HQ1 ‘A1nawoIkd Moy 159} cl¢ Yy 8F pue ¢
[estl 3y BUISEaII9pP DIX0I-MO| 3JB SIN YL an|q uedAl ‘Aesse ||\ e79H Ju/br ooL-1 wu 0oL SdN OIS
"9asuodsal aunwiwl 10 A1olewdwejul
92Npul JOU OpP PUB ‘UOIIBAIDE IO A119W01L S|[9> WS
uonebalbbe 19j91e(d 95ned 10U Op ‘POO|q Moy ‘uonebaibbe pue [eWAYDUSSIN PO pue usa1b sulueA>opul
|esayduad O §|[93 JesjonUOUOU pUe S||92 uoneAinoe 1991e|d 1oy 1591 5||9> poo|q y 8y YHM PaLIpoW 10U pue
[1s1] W21S Y10Q JOJ DIXOIUOU e SN YL 1591 dnAjoway ‘Aesse ||\ 1B3|2NUOUOIN Jw/bw 057-05 wu 0§ PRIHIPOW SN 31edeAx0IpAH
awi uonegnoul
ERIEIEIEY SUOISNPUOD 5310943 UOND3ISP JO POYIBN ED) ‘UOIIRAUIDUOD) s3715 sapJedoueu jo adA|

(panuiuo)) suebio snoleaA Jo

S|[22 Yim sajpiedoueu JO UOIDRISIUL JO S3DUSNDISUOD 3y} pue UORRASIUILPE SNOUSARIIUL JI3Y3 JO S|SpowW [euawiadxa Ul A1jD1x0) 3j21edousu JO UORRWIISS JO sHNSaY € dqeL



Page 12 of 21

Sukhanova et al. Nanoscale Research Letters (2018) 13:44

"31eJ uodNPoId aUP0IAD JO ‘AljIgeIn

‘wsijogelauwl |93 Bulidaye oYM

uonesauab SOy dnpul sdN YO1d YL

"SOUO PalIPOUIUN UBYL DIX0}

2J0W aue S4N YOfe4 paljipow ay |

‘AligeIn (193 675y

10 3gH-91 UO 109449 3|qrIapISUOD

[091] ou aney sdN “OlL Pue ¥91d 3yl

'SUOJIDUNY UOLPUOYD0} W
Ul PaAjoAUl Sausb ayy Ul sabueyd

2onpul sgo pableyd ApAnisod ayy

‘sauab au 014> A1o1epwwelyuiold

JO UoISsaIdxe oyl durYUD

SQO pabieyd Apanebau ay|

SO (PaYIPOW-YdIN PUR -¥NIA)

pabieyd AjpAebHaU Yyl ueyl JIx01

2I0UW 3le sgO (PayIpPow-yD pue

l651] -vNYv) pabieyd ApAiisod sy

S|192 L-dHL wod (8-11)

S9UBOWAYD pue (9-1) pue ‘OANL

‘J1-71) SUP0IAD Alojewwelul

aseyd 21ne Jo 3sea|as ASUY|

‘uondNpoid SOY Jo uononpul

[8S1] pue AL|IGeIA ||92 paseaida

S|I93 D3VS pue

675V 40 sisoydode asned SdN YL
‘uonesajijoid oy 3|gisuodsal
sauab ay1 bugiyul ‘924>

|93 3y3 109je A|buons SdN YL

4Dd awi-[eal

'ARWOIKD MOYY [L-ISM 3gH-9L  pue g Lwd/Brl 6/-970

Adodsouoiu Juadsaionyy
'VSI13 ‘Aesse HQT “L-1SM

A12WO0IA> Moyy ‘Aesse
SOY ‘1031 an|g uedAn yS|13

dDd swih-[esl
‘sisKjleue Aeseoiw
vNQ ‘bumojgounuiu

wu g *Ofa4
‘wu 1z o1
‘WU 0§ pue §7 OIS
Wy oL ‘03d-vyo1d

6vSY Yy 8y

Y ¢ fu/bri 091

J9HN pue ‘08 ‘0 'S 'S0 wu Q| pue’g’e
wu 89y

FCOG9L puR 6L F

eSO 68%8 'CE0F 00l ‘SO0

L-dHL Y g ,wd/br 05-5  FE8YL 9L F LS L

(03d

-¥91d) 9pIx0 dudjAYIaK|od LM palipow SdN
¥O1d Pue €011 91830 WNIPOS YIM PaLIpow
10U pue payIpow sdN "Ofe4 pue €IS

(vD)
2UIWEISAD 10 ‘(YNY) PIPE dlouedapunoujwe

‘(VdW) p1oe diuoidoidordedisw
‘(VNI) pI1oe dlouedspunoldedsaul
YIM payipow sqo aspD

sagnioueu uogied

‘saul| |90 ‘Adodsoidiw [edojuod  DIVS
[£51] 1o 4oy JIx01 Alybly a1e SN By L "ASWI0IAD MOY INTS ‘B-ISM 65V Y ¢ /6 op-1 wu 05 SdN OND
‘B3R 3DBYNS
10 '1919Welp ‘adeys J1ayl o3
Pa1e[2J 10U S| SN Y1 Ul AIDIXO|
"JIXOIUOU 318 SdN DM 941
DIX0}-MO|
1B SdN 1Z pue 9D “IL IV 2yl SdN
IX0} L-dHL 03D pUe DM ‘OUS OV 19915 FO°A+0IZ
[9s1] 150W 9yl 9le SsdN Uz pue nj oyl Aesse pay [ennau ‘Aesse | I 6¥SY Y ¢ w/Bri 000'01-L Wwu00S>  “0JZ 'OIN IN 0D By IL OlL ‘OuZ ‘OnD ND
'SUOI UZ JO abexes|
JO 35NBI3Q 52115 DANBPIXO Yy ¢z pue 9
"UoIIegNDUL JO Y 7 pue Aesse 5Oy ‘Adodsoldjw ‘lu/bri 0001 pue ‘00 wu g¢
(S5l 9 Jaye A)JIGeIA |[9D Ul 95e3153( uds3I0N} ‘Aesse SN 0lD  '0SC 00l ‘05 ‘ST 0L 'y F/'S9C Pue ¥'C ¥ T'88¢C SdN OuzZ
aul| QW) UoegNIU
ERlVEIEIEN SUOISN|DUOD !S1994)3 uond218pP JO POYIBN [ES) ‘U0I1R1IUSDUOD $971S sopnJedoueu Jo adA|

mxﬁaj uonejeyul Jisyl JO S|opowl _chc.:\_mo_xw ul \G_u_xOy miu_tmaocmc JO uonewinss JO sijnsey € a|qel



Page 13 of 21

Sukhanova et al. Nanoscale Research Letters (2018) 13:44

"90eds Jeappnupad ayy ul

Adodsoliw
Juadsalony} ‘Aesse ¢ asedsed ‘Aesse

paz1|ed0| pue || AQ paglosqge aie SN ayL SOY ‘Aesse | || ‘quswainseaw q¢ w/b o wu Gf
[55]  uonesauab SOy Aq paieipaw yieap 3D [9A3] suoeIn|b ‘Aesse |IN - -Sv3g pue ‘o¢ ‘0L 's pue ‘0¢ 5z 'Sl SdN “0°D
JIX0] 59| 4B SAD SUZ/dul 9yl
'S|[SD Ul SISEISO3WOY |, 8D QUNISIP pue
‘sbewlep YNQ 95ned ‘|9A3] JuepIxXonue ay) 1591 TINNL WU Z0FFEL
35ea.0Ul ‘sousb swAzus uUoneDyIX0IRP ‘|93 UOISSRIAXD YNYW Y 8F PUB 7 ‘AU G pue 'SUZ/95pD
JO UOISSaIdXD aY1 2dURYUS ‘BURIqUILU JO SISA[PUE JUSUISINSEIW [9AS]  ASASHS | pue \wd ool ‘WU QOFELL
[zol] 1193 2y bewiep sqD SUZ/3SPD YL auolien|b ‘Aesse HAT'8-ISM 65V pue ‘oLl 'Suz/dul S0 SUZ/3SpD pue suz/du
'SQO-HN 3y} jo
20uasaid dY3 Ul S|[93 9y L Ul pue sgD-HOOD
943 JO 9duasaid ay1 Ul §|19D |-44H Ul
AJUO PaAISSCO B3I [9A3] SOY Y1 Ul sabueyd
JOUIAl (WU 07 Ueyl Jaybiy suonesuasuod
Je PanIasqo st Adixo) ybiy e) |93 g¢-Svag
ueyl (WU S| ueyl Jaybiy suoieusasuod
18 PaAIasqo sI AdIXo1 Yybly e) sgo auy3
0) SAIISUSS SIOW 2. S||3D |-44H pue oy | Ado2soio1u 1u9ds3I0N| DU
'S1192 Aq Bulgnop uonendod |12 jo ML
P9QIOSGR A|Ipeas 210U a1e SQD-HOOD 9YL uonendjed ‘Aesse SOY vS13 ((W3LD  L-44H (A|oAn2adsal
'S|192 9y PUB g7-Sy3g ul 1aybly Adodsoniw uond9le gc  S9PAD |19 €-1 JAU 0T 'SQO-CHN Pue sgO-HOOD) sdnoib
[191] Ajqesapisuod s| axeidn Jo Jo d1es YL uolssiwsuel} ‘Anawolhd Mol -Sy3g  pue ‘Sl ‘0L 'S/ 'S ST WU Ol-F  “HN 10 HOOD Yum payipow sgo SuUz/2SpD
aul| QW) UolegNIU
2dURJ3JY SUOISNDUOD 5103943 UoN2313P JO POYIRW 119D ‘UOI1RJIURDUOD SEYAIS sopiedoueu Jo adA|

(panuuo7) axe1dn uolieleyul I3yl JO s|spow [euswiadxa U Aj21x0) 3j21edouUBU JO UORWIISS JO SHNSAY € ajqeL



Page 14 of 21

Sukhanova et al. Nanoscale Research Letters (2018) 13:44

(891]

[£91]

(991]

(5ol

[¥91]

(€91l

‘uononpoud o)
pue g-7| padueyu3 WU 5z'L ueyl jaybly
SUOIIRIIUSIUOD N 1B AlljIgeIA paseaidad

'SS311S SANEPIXO BUIdNPUI SUO! [BIDW JO
95832 31 01 Pa1ejal SI AIDIXOL dN =YL
“JIX0JUOU 318 SdN COIL YL

91942 192 ay3

S19ye pue Abojoydiow |12 ul sabueyd
$9SNed uolegnoul pabuojoid Yy z/—+2
10} |w/brl 6| ueyl Jaybly SuoieIuadUod
18 SdN QUZ 31 Jo 9duasald syl

ul uonegndul uodn AljigelA Ul 9sea1daq

5|19 [ewuspida Jo suopoun(

1461 Y 10342 10U 0P SINDMIA 18U
s31e21PUI YIyMm ‘pabueydun s Y331 YL
S|192 MHI 103 AJUO DIX01 248 SINDMN

"D4NL ‘@duanbasuod e se ‘pue |-167 jo
uolssaldxe padueyul (ged pue NI ‘SY3)
skemuyied [eubis aseun| dy\ JO UOneAIDR

ybnoJyy ssa13s SAIIBPIXO JO UOIINPU|
J2ybiy pue jw/bri Q| JO SUOHEBAUSDUOD
dN 1B S3ul| |93 Y10g Jo AlljigelA pasealdsg

S|192
8E-IM PUE -1 € YI0q 104 DIX0] ale SdN
IS-eN @Y/ “(jw/brl 0S5z 4O uoIeIIUSdUOD
dN Ue 1e A1jIgelA Ul 95e2103p |[eWlS B)
S||92 8€-IM J0g D1x03 Apybijs pue s|j9d
LT-€L€ 40§ dIx01UOU e SN IS0V 3L

DIX0} 15e3] Y}
ale SN By-yd Wu-9p pue -c¢ 8y 's||2d
DE0' 167 Aq uononpoud s adueyus pue
SII92 £ %92 MY AQ D4NL Jo uononpoid
93 ssauddns sdN By 2y SN by-va
WU-€1 3Y1 AJuo qIosqe || DEO'L6C
sealaym ‘sdN By-yQ ‘Wu-g¢ pue ¢¢ pue
By Wu-G9 01 -0L 9y qIosqe s||9d £ #9¢
MVY S[192 £9¢ MyY Ul uoneisusb 50y
9OUBYUD SN YL "Saul| ||93 Y10q JO 31kl
uonesapjosd ay1 aseaidsp sdN by oyl

Adodsonads
UOISSIUID DIUIOIR ‘A11aW01IAD
MO} N1 ‘Adodsouniu [ed04u0D) SAHN

A112W01IAD MOy} ‘Aesse SOy ‘Adodsoiniw
uoJDRJe buluueds ‘Aesse SN #SZDLION

VAL ‘¥NQ 4o Buruiels sulpiwAuI[H]
JUSWIDINSEIW 9DURISISAI [BILIIIID MHI
|eleydasuel) ‘Aesse HT ‘Aesse SN S$67S

Adodsouoiu Juadsaion|} ‘Aesse SOY

y 8 pue ¢ |02A16 auajAyraAiod yum
AU 0L-SCLED WU 0p-6¢ PRYIPOW SdN SPD/9SPD
SLIuoW €
Y ¢L pue gy ve WU Sy F6P1ly
lw/br 01-50 pue Z'LL ¥ 1'89C SdN “OlL pue Quz

(SINDMIA) S2gnioueu

jw/6r 0oL wu 7| ‘Is1suelq uogled pajjeminiy

Y vc=50 sdnoib ¢HN

Ju/brt 05-1 wu 07 UM PILIPOW SdN OUZ

skep / Wwu o€ 'IS-eN (1IS-eN) eN pue (IS-£0°y)

'y 7z fw/er pog-0t w1z 1S-f04Y EOCIY Yum payipow sdN IS

WU §9-01 ‘By‘wiu 9y payipow 1ou pue (By-ya) pioe
Yz qu/br ol-1  pue‘eg ‘gl ‘By-va  dljebip yum payipow sdN by

©0UoI9JoYy

SUOISN|DUOD ‘S109))3

‘4Dd swi-[ear ‘N1 ‘VSIT3 ¢0300S
‘Bumiojgounwiwl ‘Aesse | [IA 1BeDeH
JUsWaINSeaWl |99 SE-IM
auolyiein|b ‘Aesse HAT ‘L-1SM L7-€1€

(3531 1-DN)

AJIAIDE UOLIPUOYDOLW JO UONeWISD
"YNQ o Buturels sulpiwAYIHL] ‘WAL L¥9T MVY
'A112W01AD Moy} ‘Aesse pai [elnNsN JE0'L6T
uond318p JOo POLIs [ull 18D

3w} uopegnaul
‘UoI1LJIUSOUOD 5371 sopiedoueu Jo adA |

oye1dn [eulISpSUeI] JI9Y1 JO S|9POW [elusWLadXe Ul A1DIX0) 9|oJedOurU JO UOIIBWISS JO SYNSSY t djqeL



Page 15 of 21

Sukhanova et al. Nanoscale Research Letters (2018) 13:44

'32IS JI9Y3 pue |epuaiod

157 119y} Y10q Buiseainul Yim saseainul sAesse paJ |einau pue 08MS sAep 8 'y vz wu /9 SIawipUSp
(L1 Ajzeaul| s1awupuap Y3 Jo AdIX0) 3y L ‘an|g Jewely lusbouop ‘LIN 1edeH ‘Wl 12-100 pue %G 'St (NVWVd) duiuteopiuted|jod
Kesse 50y ‘Aesse 19w0d
"uoneulo) VNQ ‘Aesse asepixolad pidi|
SNaPNUOIDIW puUe SSOY Yam abewep yYNGJ ‘JUsWaINSeaW [9A3] duolyien|b
‘Juswiesl Jo 'A113W0ILD Moy ‘Aesse y 8y pue 4z ‘9
[0£11 Y 8v Joye Aujiqeln (|95 ur asea123p ybis v ut10.d plojpe.g ‘Aesse | |IN LEPY ‘Ju/6r 08-800°0 wu 671 SdN OIL
S|192 ay3 Ag paglosqe Ajipeas 1sow ay3
2J8 pUB DIX0) 15e3| 31 e SN JljIydoipAH
*S1Se|QOIQlY JOJ DIXOIUOU e SN YL
“(KPARDadsal
'S|[93 9|qeIA 9%T/ PUB L9 CS) DIXO)
1SOW 2y} 218 31)|NS UBIIX3P + D4 pue sise|qoiqly
(©7d) (@p1|02A|6 03-apnoeAjod ‘(13d) Adodsouiul JusdsaIoNyy upjs uewnH y 2z ju/br 67| spunodwod 1UaIaHIP
691] SUIWIRURIAYIaA|0d Ylim Pa1eod SdN ay L ‘Adodsoioiuw [ed0u0d Kesse | [N 1eDJeH pue 679 wu 0556 YUM Patipow SdN Y4ABN
awi uopegnoul
ERIEIEIEY SUOISN|PUOD ‘S10943 UOND13P JO POYIDNN aull 19D ‘UOI1RAUSDUOD) $97IS sapJedoueu jo adA|

(panuu0)) axe1dn [ewIspsURIY JIDYY JO S|9POW [RIUSWLRAXS Ul A1DIX0) 9piedoury JO UORWIASS JO SYNS3Y ¥ ajqeL



Sukhanova et al. Nanoscale Research Letters (2018) 13:44

shown to be toxic for mice, causing weight loss, decrease
in the hematocrit, and reduction of the red blood cell
count.

Targeted drug delivery is one of the most important
applications of NPs. In this case, it is also paramount to
know their toxic properties, because the positive effect
of their use should prevail over the negative one. Kwon
et al. [116] have developed antioxidant NPs from the
polymeric prodrug of vanillin. Their study has shown
that the NPs have no toxic effect on the body, specific-
ally the liver, at doses lower than 2.5 mg/kg. Similar re-
sults have been obtained for gelatin NPs modified with
polyethylene glycol, which are planned to be used for
targeted delivery of ibuprofen sodium salt [117]. The
NPs have proved to be nontoxic at the dose that is ne-
cessary for effective drug delivery (1 mg/kg), which has
been confirmed by measuring the inflammatory cytokine
levels in the animals studied, as well as histological
analysis of their organs.

Quantum dots are among the NPs that are most
promising for medical applications (Fig. 2). However,
they are potentially hazardous for human health, because
they exhibit various toxic effects in both in vitro and in
vivo experiments [118-122].

Toxic effects of QDs in vivo are usually studied in ex-
periments on mice and rats [123]. A study on the
toxicity of cadmium-based QDs for mice showed that
QDs were distributed throughout the body as soon as
15 min after injection to the caudal vein, after which
they accumulated in the liver, kidneys, spleen, red bone
marrow, and lymph nodes. Two years after the injection,
fluorescence was mainly retained in lymph nodes; in

Ve

2
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-,
ey

v

Fig. 2 The possible reasons why quantum dots may be nontoxic in
animal models. (1) The shell prevents the leakage of heavy metals into
the body [129, 135]. (2) Quantum dots are localized in the liver and
subsequently eliminated from the body [135, 173]. (3) The protein crown
around quantum dots protects the body from heavy metals [132, 174]
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other organs, no QDs were detected [124]. It should be
also noted that the fluorescence spectrum was shifted to
the blue spectral region because of the destruction of
the QD shell and changes in the shape, size, and surface
charge of the QDs. This, however, occurred rather
slowly, because the QDs were found to be nontoxic after
their injection at the doses at which pure cadmium ions
would have had a lethal effect. Similar results were ob-
tained by Yang et al. [125]. Zhang et al. [95] showed that
CdTe QDs predominantly accumulated in the liver, de-
creasing the amount of antioxidants in it and inducing
oxidative stress in liver cells.

Cadmium and tellurium ions tend to accumulate in
various organs and tissues upon degradation and decay
of the cores of CdTe/ZnS QDs. Experiments on mice
have shown that cadmium predominantly accumulates
in the liver, kidneys, and spleen, whereas tellurium
accumulates almost exclusively in the kidneys [126].
Ballou et al. [127] found that cadmium-containing QDs
coated with polymer shells of polyacrylic acid or
different derivatives of polyethylene glycol had no lethal
effect on experimental mice and remained fluorescent
for 4 months. CdSe/ZnS NPs also had no detectable
pathological effect on mice [128]; however, the absence
of distinct signs of pathology still does not mean that
the QDs are absolutely nontoxic.

Hu et al. [129] found that lead-containing QDs had no
toxic effect on mice for 4 weeks; however, this was most
probably because the QDs studied were coated with a
polyethylene glycol shell.

Since heavy metals contained in QDs are a factor of
their toxicity, several research groups suggested that
heavy-metal-free NPs be synthesized. For example, Pons
et al. [130] synthesized CulnS2/ZnS QDs fluorescing in
the near-infrared spectral region (at a wavelength of
about 800 nm) and supposed that this composition
would make the QDs nontoxic for experimental animals.
Comparison of the effects of CulnS,/ZnS and CdTeSe/
CdZnS QDs on regional lymph nodes in mice showed
that the lymph nodes were only slightly, if at all, en-
larged upon injection of the QDs not containing heavy
metals, whereas injection of the CdTeSe/CdZnS QDs in-
duced a distinct immune response in them [130]. QDs
in which silicon was substituted for heavy metals also
had no toxic effect on mice [131].

Even QDs containing heavy metals are often found to
be nontoxic. One of the possible explanations is that
QDs are coated with the protein crown upon entering
the living body; this crown shields their surface and pro-
tects cells against damage [132]. Usually, the proteins
that are included in the NP molecular corona are major
serum proteins, such as albumin, immunoglobulin G
(IgQ), fibrinogen, and apolipoproteins [133]. Molecular
corona also can influence on the interaction of NPs with
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cells. Zyuzin et al. have demonstrated that, in human
endothelial cells, the NP protein corona decreases the
NP nonspecific binding to the cell membrane, increases
the residence time of NP in early endosomes, and re-
duces the amount of internalized NPs [134].

However, even in the absence of direct signs of intoxi-
cation in experimental animals, it remains unclear
whether the use of QDs in medicine is safe for humans.
In some cases, the QD toxicity was not detected in mice
because the NPs were neutralized by the liver and accu-
mulated in it [135]; in other cases, QDs coated with
phospholipid micelles exhibited reduced toxicity owing
to the shell [129]. Despite the extensive in vivo studies
on QD toxicity, their use in biomedicine remains an
open question. One of the main reasons is that all the
delayed effects of QDs cannot be monitored in experi-
mental animals, because their lifespan is as short as a
few years, which is insufficient for complete elimination
or degradation of NPs.

Conclusions

The potential toxicity of NPs is the main problem of
their use in medicine. Therefore, not only positive re-
sults of the use of NPs, but also the possible unpre-
dictable negative consequences of their action on the
human body, should be scrutinized. The toxicity of
NPs is related to their distribution in the bloodstream
and lymph stream and their capacities for penetrating
into almost all cells, tissues, and organs and interact-
ing with various macromolecules and altering their
structure, thereby interfering with intracellular pro-
cesses and the functioning of whole organs. The NP
toxicity strongly depends on their physical and chem-
ical properties, such as the shape, size, electric charge,
and chemical compositions of the core and shell.
Many types of NPs are not recognized by the protect-
ive systems of cells and the body, which decreases the
rate of their degradation and may lead to considerable
accumulation of NPs in organs and tissues, even to
highly toxic and lethal concentrations. However, a
number of approaches to designing NPs with a de-
creased toxicity compared to the traditional NPs are
already available. Advanced methods for studying the
NP toxicity make it possible to analyze different path-
ways and mechanisms of toxicity at the molecular
level, as well as reliably predict the possible negative
effect at the body level.

Thus, it is obvious that designing NPs that have small
or no negative effects is impossible unless all qualitative
and quantitative physical and chemical properties of NPs
are systematically taken into consideration and a rele-
vant experimental model for estimating their influence
on biological systems is available.
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