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Abstract

In case of very thin surface coatings, the coating layer is often ignored in a large-scale
Finite Element Analysis. This is mainly due to extensive numerical cost required to cap-
ture the correct mechanical behaviour of the layer, especially if the coating is significantly
softer than the substrate.
To overcome the excessive computational cost, due to the full discretization of the thin
layer, in large-scale structural contact simulations one can consider a polynomial ap-
proximation of the solution field inside the layer. This formulation allows for a reduced
representation of the surface layer and proves to be suitable for incorporation within
existing finite element codes. Inclusion of the method scales down to an additional stiff-
ness to the system of equations. Furthermore, it can be used in a classical finite element
contact solver without strong additional modifications.
Significant computational cost reduction is obtained for proposed 2D test-cases in com-
parison to fully discretized layer approach. It is especially apparent with soft layers on
harder substrates. Hence, it is a promising method to be used in large scale structural
simulations for studying the mechanical behaviour of systems with thin soft coatings.

Keywords: Thin coating, Polynomial expansion, Contact,

1. Introduction

In the case of thin coatings on large structures, the mechanical contribution of the
layer in macro-scale finite element analysis is often ignored or modelled using structural
elements like shells or membranes. However, due to the imposed kinematics in structural
finite elements they are mainly suitable for stiff coatings. When focusing on soft coatings,5

with significant deformation along the thickness, different method needs to be used.
Traditional finite elements with high aspect ratio or with reduced dimension worsen

the conditioning of the system of equations, possibly leading to an ill-conditioned system.
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Therefore, performing a large scale analysis with soft thin coatings is often avoided due
to extensive numerical cost involved to capture the correct behaviour of the layer. How-10

ever, not always can the coating be discarded or modelled with standard finite elements,
especially in nonlinear problems like contact. A good example of this is the Oil County
Tubular Goods (OCTG) industry, where grease based lubrication of tubular connections
in oil wells and transport lines are being replaced by polymer based coating systems. It is
crucial for the evaluation of the tightening torque to have an accurate description of the15

contact pressures formed in the coated connection parts. This includes "metal-to-metal"
seals where the effect of nearly incompressible coating material is significant on the stress
distribution.

First the general context is defined. One considers a contact problem with significant
geometrical and material scale differences: the coating thickness to contact half-width20

ratio is taken as e/a � 1 and the ratio of elastic Young moduli as Ec/Es � 1, where
c notes the coating and s the substrate materials. Therefore, under the contact zone
significant amount of deformation is taking place inside the layer. This induces a strong
influence on the contact pressure distribution.

As layer thickness reduces, the behaviour closes to a limiting case. Thus asymptotic25

modelling principles are often used to tackle this type of problems. The first asymptotic
solutions for thin layer coatings were presented by Aleksandrov [1], Meijers [2] and Al-
blas & Kuipers [3]. Meijers and Alblas introduced also stable solutions for incompressible
elastic materials. Using Hertzian theory Johnson formulated in [4] the limiting asymp-
totes corresponding to the previous works. A concise analysis of mentioned works and an30

addition of a more general semi-analytical solution is presented by Greenwood & Barber
[5]. The change from linear elasticity to viscoelasticity and the dependency with respect
to the thickness of the layer are studied in many other works by Argatov and Mishuris in
[6, 7, 8]. A full depth semi-analytical analysis involving deformable substrates and rough
surface contact models is presented by Goryacheva in [9].35

For more complex geometries and material systems discretization based methods like
FEM should be introduced. In general practice with FEM, thin solid structures are
often modelled as shells or membranes. These structural elements are well suitable for
simulation of problems with hard coatings Ec/Es > 1. However, considering considerably
softer coatings than the substrate, the usage of shells or membranes is questionable.40

This originates from the fact that the deformation gradient due to contact pressure in
the coating layer itself can not be neglected or considered uniform in the thickness,
especially in the case of nearly incompressible materials. This includes alternatives like
solid-shell (continuum-shell) type of elements or Cosserat type shell elements [10] that
allow for limited deformation through the thickness.45

This leads to inclusion of non-standard models, like the imperfect interface model for
very thin interfaces in composite materials by Hashin [11] and Benveniste & Miloh [12].
They replaced the thin layer by an interphase on what imperfect interface conditions are
derived. The derivation by Benveniste [12, 13] is based on an asymptotic expansion in
the interphase. Givoli further expanded the idea for usage in FEM [14] by the means of50

Dirichlet-to-Neumann interphase boundary conditions. In this case the boundary condi-
tions become the interface jump conditions. Sussman in [15] renders the proposed model
self-adjoint to result in a symmetric FE stiffness matrix, Yvonnet in [16] implemented it
in XFEM framework and Rubin & Benveniste in [17] introduced Cosserat shell theory
for stiff interphases, allowing limited thickness directional deformation.55
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Another interesting idea of modelling thin interfaces based on asymptotic consider-
ations can be taken from the third-body wear models. In the works of Dragon-Louiset
[18] an asymptotic expansion is used to define the behaviour of the thin interface of the
"third body" that can be solved by FEM or analytically by the integral equations. In
[19, 20, 21] Stolz proposes to introduce the behaviour of the layer as an interface with60

mechanical properties defined by a process of averaging over the thickness. For some
particular classes of local behaviour described by an asymptotic expansion with respect
to coordinate along the thickness, interface models are obtained. This is used to model
contact and wear processes.

In this work, a numerical model is developed for soft coatings (low shear stiffness) that65

could be considered on large-scale models and included in contact and wear simulations.
The main goal is to be compatible with FEM and provide a good approximation of
the physics while introducing minimal additional computational effort. It follows the
previously presented ideas of reducing the layer into an interface and considering an
expansion based solution field approximation. Matthewson [22] presented a simplified70

analytical analysis of frictionless contact of a sphere and a thin elastic layer bonded to
the rigid surface using finite power series. Even though his work considers specific layer
indentation problem, one can see the potential in using polynomial based approximation
together with FEM to provide a more general numerical framework. Therefore, given
work tries to develop a more general polynomial expansion based numerical model for75

coating contact simulations.
In this paper the formulation of the model for a simple plain strain coating substrate

system is presented. A rigid indentation problem is considered on a coating with uniform
thickness on flat surface. An example of the implementation in the two-body contact
framework is presented. The paper is structured as follows: section 2 involves descrip-80

tion of the developed methodology including problem statement and implementation in
FE framework; section 3 includes the description of the model implementations and the
corresponding results; section 4 includes the discussion on the computational aspects;
section 5 includes the main conclusions and outlooks.

85

2. Methodology

2.1. Problem statement
The domain of interest is a thin film Ωe with uniform thickness e laying on an ini-

tially flat semi-infinite deformable foundation Ω. The interface between the two domains
is defined by surface Γ0, where y = 0. As plain strain formulation is used to simplify the90

method description, only the cross-section in xy-plane is considered, thus the displace-
ment vector is introduced as ua = ua(x, y)ex + va(x, y)ey. A pressure distribution t(x)
corresponding to an arbitrary rigid indenter shape is applied on the area of 2a on the
top surface Γe. The geometry of the area of interest is illustrated in figure 1.

The displacement field in the coating layer can be defined by a polynomial expansion
with terms Pi in the layer thickness direction y and the unknown displacement coefficient
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2a

Figure 1: Illustration of the initial semi-infinite problem around the area of interest.

fields ui. In this case the displacement is decomposed as

ua(x, y) =


u(x, y), in Ω

u0(x) +

n∑
i=1

Pi(y)ui(x), in Ωe
(1)

with the continuity condition

u0(x) = u(x, 0) on Γ0, (2)

with Pi(0) = 0. The domain Ωe defines the layer with thickness e, thus y varies from95

0 to e (or e(x) in case of non-uniform thickness). The material interface is defined as
Γ0 = ∂Ω ∩ ∂Ωe where y = 0 and the top surface defined as Γe = ∂Ωe/Γ0 where y = e.

For example if one follows the idea of Matthewson [22] and uses a finite power series,
the expansion will take the following form

n∑
i=1

Pi(y)ui(x) =

n∑
i=1

yi

i!
ui(x) . (3)

However, it is emphasized that any polynomial basis could be used instead.
Inside the domain, the conservation of momentum is expressed as

∇ · σ = 0 , (4)

where the body forces are neglected and σ is the Cauchy stress. The continuity condition
on the interface Γ0 is satisfied by [σ] · n = 0. As the domain is considered semi-infinite
the external boundaries, excluding Γe, are considered to be significantly far from the area
of interest. Thus, it is considered that ua = 0 on all boundaries where no coating exists.
On the top surface Γe traction t is prescribed as

σ · n = t, over Γt
e = {x ∈ [−a, a] , y = e} and σ · n = 0 otherwise. (5)

Finally the local behaviour inside the layer is considered linear elastic by stating

σ = C : ε, ε = ∇sua =
1

2
(∇ua +∇Tua), (6)

where C accounts for the constitutive tensor for isotropic elasticity with C(Es, νs) in Ω
and C(Ec, νc) in Ωe. The symbols Ec and νc refer to the Young modulus and the Pois-100

son’s ratio of the coating material and Es with νs of the substrate material. Here it is
considered that the surface coating material is significantly softer than the foundation,
particularly Ec/Es < 10−3.
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2.2. Problem analysis105

For derivation purposes, the considered expansion will be the finite power series de-
fined in equation 3. The displacement in the thin layer is now decomposed into foundation
term u0(x) and film term ue(x, y) as

u0(x) = u0(x)ex + v0(x)ey , (7)

ue(x, y) =

n∑
i=1

yi

i!
ui(x)ex +

n∑
i=1

yi

i!
vi(x)ey . (8)

Furthermore, the solution space is noted as U and the test space as U0.
The weighted weakform is obtained by dotting equation 4 with an arbitrary u∗a ∈ U0

and integrating over the domain Ωe ∪ Ω. The resulting equation to solve reads∫
Ω

σ(u) : ε(u∗) dΩ +

∫
Ωe

σ(ua) : ε(u∗0) dΩ +

∫
Ωe

σ(ua) : ε(u∗e) dΩ (9)

−
∫

Γe

t · u∗0 dΓ−
∫

Γe

t · u∗e dΓ = 0, ∀u∗,u∗0,u∗e ∈ U0

To better illustrate all the components let us emphasize the dependencies as ue =
ue(ui, vi) and write the solution in variational equations form as

u∗ →
∫

Ω

σ(u) : ε(u∗) dΩ +

∫
Ωe

σ(u0 + ue(ui, vi)) : ε(u∗0) dΩ =

∫
Γe

t · u∗0 dΓ (10)

u∗e →
∫

Ωe

σ(u0 + ue(ui, vi)) : ε(u∗e(ui, vi)) dΩ =

∫
Γe

t · u∗e(ui, vi) dΓ . (11)

It is interesting to note that in this case the strain tensor in the layer takes the following
form (zero row/column discarded) and can be decomposed into multiple separate tensors,
each corresponding to a given power series term.

ε|Ωe
= ε0 +

n∑
i=1

yi

i!
εi =

n∑
i=0

yiciεi , where ci = (i!)−1 (12)

and

ε0 =

[
u0,x

1
2 (u1 + v0,x)

1
2 (u1 + v0,x) v1

]
, εi =

[
ui,x

1
2 (ui+1 + vi,x)

1
2 (ui+1 + vi,x) vi+1

]
. (13)

It is pointed out that used index i corresponds to the terms multiplied with the power
yi, therefore εi 6= ∇sui.

While looking at the decomposed parts it is evident that the first tensor corresponds
to the zero order polynomial term, second tensor corresponds to the linear terms, third
to quadratic terms, etc. In other words, the strain tensor can be approximated as a sum
of finite polynomial strain modes. Consequently, the stress tensor can be written the
same way as

σ|Ωe
= σ0 +

n∑
k=1

yk

k!
σk =

n∑
k=0

ykckσk, where ck = (k!)−1. (14)
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The weakform 9 can be further evaluated as one can take a depth-integral over the
terms defined in the coating layer Ωe. Here, the depth-integral is considered as the
integration over the coordinate y in Ωe. Taking the integral over y in the variational
equations gives the following equation (valid only for linear elasticity and uniform layer
thickness):∫

Ω

σ(u) : ε(u∗) dΩ +

n∑
i=0

n∑
k=0

(e)i+k+1

(i+ k + 1)i!k!

∫
Γ

σk : εi dΓ =

∫
Γ

t · (u∗0 + u∗e) dΓ . (15)

From this point, it is clear that all the integrals over Ωe have become surface integrals
over Γ, as also proposed in [19]. Therefore, the two phase problem has become an interface
problem, involving only domain Ω and interface Γ, that lies on the domain boundary ∂Ω.
Here, the boundary region Γ is located at Γ0 but represents the previously defined domain
Ωe. Refer to figure 2 for an illustration of the reduced problem. Therefore, the initial
problem can be redefined directly on Ω and Γ, where ŷ ∈ [0, e] symbolises now the layer
coordinate. The problem can be restated as

ua(x, y) =


u(x, y), in Ω

u0(x) +

n∑
i=1

Pi(ŷ)ui(x), in Γ
(16)

with the continuity condition
u0(x) = u(x, 0) . (17)

Figure 2: Illustration of the semi-infinite reduced problem around the area of interest.

When looking again at the weakform 15 the interface contribution term in FEM110

framework can be directly seen as additional interfacial contribution on the underlying
element supports in the global stiffness matrix. However, one must also take into account
that the resulting local stiffness matrix contribution is a symmetric fully dense matrix.
The implementation is similar to finite elements with anisotropic interpolation space
(having incomplete polynomial bases) like displayed in [23],[24] or like General Serendip-115

ity Elements [25]. These elements have arbitrary shape function orders for different local
coordinate directions. Parallels can be made as the proposed approximation coupled to
a single element resembles a finite element with higher order approximation in normal
direction and linear approximation in tangential direction. However, it must be kept in
mind that the resemblance is apparent only regarding the solution space approximation120

basis. Geometrical representation of the element is different as reduced dimensionality
is introduced in the proposed methodology.
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The above described method to include thin coating layer contribution on top of ex-
isting FE model will be noted from this point forward as Reduced Thin Layer Model,
with abbreviation RTLM in short.125

2.3. Remarks on simplified cases
It is interesting to note that if the foundation is considered rigid (u = 0) the equations

reduce to an interface contribution
n∑

i=1

n∑
k=1

(e)i+k+1

(i+ k + 1)i!k!

∫
Γ

σk : εi dΓ =

∫
Γ

t · u∗e dΓ . (18)

Above equation is representing only the imposed polynomial behaviour of the thin film
Ωe as a surface Γ. One can see this as a generalised version of Matthewson proposed
solution [22].130

To further simplify the equations, one could take into account only the vertical linear
compression mode (u = 0ex + ŷv1ey). In this case the following equation is obtained:∫

Γ

C1v1v
∗
1 + C2v1,xv

∗
1,x dΓ =

∫
Γ

pv∗1 dΓ, ∀v∗1 ∈ U0 , (19)

where the constants are grouped as Ci = Ci(e, E, ν). From here one can convert the
equation to the strong form and see direct correlation with the well known Pasternak
foundation model [26], that is widely used in civil engineering. Pasternak model can be
presented in reduced dimension as

Ekw +Gkw,xx = p , (20)

where Ek and Gk are parameters connected to the thin film body and the deformed
surface is described by the normal displacement of the surface points, w = v1e.

3. Results

In this chapter the results obtained by the proposed model are presented and analysed.135

Two different cases will be studied: layer bonded to a rigid substrate and layer bonded to
a deformable substrate. Bodies are considered to be semi-infinite like by considering that
the dimensions of the domains are large enough for the Dirichlet boundary conditions
to not influence the stress distribution near the domain of interest. Refer to figure 3 for
illustration. Loading of the domains will be taken according to existing approximations140

for contact simulations and results are directly compared to analytical results based on
corresponding literature. In more complex cases the results are compared to a fully
discretized FEM counterpart that will be referred to as the FEM approach.

It is noted that only linear finite elements are considered. One of the expected bene-
fits of RTLM is that it requires no modification to the already existing substrate mesh.145

Due to mesh conformity requirements this is not the case with higher order isoparametric
elements. If higher order isoparametric elements are used for the layer and linear finite
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Figure 3: Illustration of the "semi-infinite" domain considered for the numerical analysis. Dimensions
of the domain are considered to be large, a/H = a/W � 1. For illustration purposes the sides are
shortened by usage of the symbol "· · ··".

elements for the substrate (as often the case in industrial applications) the substrate
mesh close to the layer border needs to confirm to the additional nodes of the higher
order layer element. Otherwise the discretization will not pass the patch test.150

3.1. Layer bonded to a rigid substrate
For the numerical implementation the first consideration is a problem with coating

bonded to a rigid substrate. Thus, u = 0 in Ω. It allows us to investigate directly the
effect of considering polynomial approximation basis for thin layers. One considers very155

thin coatings defined in the range of 10 ≤ a/e ≤ 50.
In the works of Greenwood [5] a semi-analytical solution is provided for a cylindrical

indentation of an elastic layer bonded to a rigid substrate. The solution is obtained by
the usage of Green function to identify the given indentation shape induced pressure
distribution of type

p(x) =
√

1− t2
n∑

i=0

dit
2i , where t = x/a (21)

and di notes the initially unknown coefficients.
One of the benefits of the Greenwood’s approach is to have an unified solution for

compressible and incompressible materials. For compressible materials results directly
agree with the hypothesis made by Johnson [4] that plane sections of the coating stay160

plane. Therefore, with RTLM the total penetration is already well captured with order
one polynomials. However, if ν is close to 0.5 linear approximation is not sufficient,
especially around the contact edges (x = ±a) where significant "pile-up" effect occurs
(refer to figure 5). Importance of the effect was first shown by Miller [27]. This is
of particular interest as the asymptotic value for the maximum penetration, given by165

Meijers [2] and Alblas [3] for near incompressible materials can still be approximated
with a low order polynomial basis [4]. However, for accurate capture of the "pile-up"
effect higher order polynomial approximation is needed, as also noted by Matthewson
[22].
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In figure 4 the top surface displacement error is presented for the RTLM with dif-170

ferent polynomial approximation orders in respect to Greenwood solution1. The applied
pressure distribution is calculated according to equation 21 with n = 6, corresponding
to a parabolic indenter shape of φ = x2/2R, where R = 50. The number of nodes in the
contact zone for RTLM is fixed to 500.

175
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Figure 4: Relative L2 error norm over Γ(ŷ = e) for top surface displacement v(x, y = e) according to
polynomial order. Used model parameters are Ec = 0.6 GPa, ν = 0.4 and ratio of the contact half-width
and the layer thickness is noted as a/e.

From the results it is clear that the solution converges with the order of approximation.
As the additional gain in accuracy is small for orders above four, there exists no need to
consider higher orders. Higher impact on accuracy comes from the underlying foundation
element size. For further discussion on this topic refer to section 4.1.

It can be seen that for the considered dimensionless thickness values the results are180

similar with the exception of having lower error for thinner coatings. This is directly
related to the fact that majority of the error is introduced in the edges of the contact
where "pile-up" occurs. However, for thinner coatings the "pile-up" influence vanishes
as the volume of the pushed material reduces.

To further illustrate the order convergence for the "pile-up" region, refer to figure 5.185

In sub-figure 5a, the solution is displayed for the case of ν = 0.4 and in 5b for a nearly
incompressible material with ν = 0.49. The effect of incompressibility can be clearly
seen by the direct difference in the shape and size of the "piles". This also raises the
mentioned need for higher orders to capture the correct solution if ν → 0.5. However,
even for the case of ν = 0.49 it seems to be not needed to go higher order than fourth190

order. The difference between the third and fourth order approximation is small.

1Authors point out that in the paper of Greenwood and Barber [5] in Table 2 section b the equation
to compute the Green’s function includes a misprint error. The term including the residue factors
(Ak cos (ξyk)+Bk sin (ξyk)) in the definition of Y (ξ) needs to be replaced by (Ak sin (ξyk)+Bk cos (ξyk))
as presented in chapter 2 of the same paper.
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Figure 5: "Pile-up" capture according to polynomial order used. (Results for cases with a/e = 20,
R/a2 = 200, where shape of indenter is defined as φ = x2/2R.) Main figure displays the shape of the
indentation, whereas a) and b) display close-up views of the "pile-up" region with different Poisson ratio
values.

3.2. Layer bonded to a deformable substrate
For the second example the substrate domain Ω is considered elastic. This allows to

investigate two cases: same Young moduli Ec = Es and significantly different moduli
Ec/Es � 1. If one considers semi-infinite domain the first case corresponds to the195

Hertzian contact theory and the latter can be directly compared to the FEM approach
(with fully discretized layer).

Regarding the Ec = Es case, the Hertzian pressure distribution is defined as follows
[4]:

p(x) =
2P

πa2
(a2 − x2)1/2 , (22)

where P denotes the total applied load. In the given example the emulation of the semi-
infinity is done as previously explained. The width and height of the square domain is
chosen to be large enough to neglect the boundary introduced errors. Illustration can be200

again seen in figure 3. In figure 6 the interfacial stress between the two subdomains Ω
and Γ are shown together with compressive and shear stress along the symmetry axis.
Plot illustrates the coupling of the discretized FE domain Ω and the interface Γ with
polynomial approximation. The solution corresponds to the Hertz theory.

10



−1.0 −0.5 0.0 0.5 1.0

x/a

−1.00

−0.75

−0.50

−0.25

0.00

σ
/
p
m

a
x

τxy Hertz

σyy Hertz

τxy RTLM

σyy RTLM

(a) Interface

−1.0 −0.5 0.0

σ/pmax

−0.8

−0.6

−0.4

−0.2

0.0

y
/
a

Γ0

(b) Symmetry axis

Figure 6: Shear and compressive stresses along a) interface Γ(ŷ = 0) and b) symmetry axis (x=0), with
parameters Es = Ec = 200 GPa, ν = 0.4, p = 3, a/e = 10.

Now, by imposing Ec/Es � 1 the Hertz theory is not anymore applicable. Thus the205

resulting fields can be compared to the fields obtained by more traditional FEM approach.
The discretization of the substrate is identical for both simulations. The applied pressure
is still defined by the equation 22 and parameters considered are a/e = 10, Es = 200
GPa and νs = 0.3. However, the coating parameters are taken to represent the expected
range of an example of polymer on steel coating system. This type of systems can be210

found in tubular connections in the OCTG sector. Coating properties are redefined as
Ec = 0.6 GPa and νc = 0.45.

In figure 7 the comparison of the top surface displacement for the RTLM solution with
order 3 and FEM approach is presented. The final thickness directional discretization of
the layer in the FEM approach is defined according to a mesh convergence study. This215

lead to 32 elements through the thickness of the coating. The substrate domain meshes
are identical for both models. The results provide a good fit.

To further validate the model the reader can refer to chapter 4.1 with figure 8, where
p convergence analysis is presented in comparison to the reference FEM test-case.

220

4. Computational aspect

4.1. Analysis of cost
The main problem in considering thin surface coatings in large scale simulations is

the computational cost needed to capture the deformation of the layer. To investigate
the cost to accuracy ratio of the proposed method the comparison to the FEM approach225

counterpart is considered. This is done by considering identical substrate meshes for
both cases. Thus, the width of the elements in the interface between the substrate and
the layer is fixed. Therefore, accuracy can only be increased by additional refinement of
the quadrilateral elements in the normal direction for the FEM approach or by increasing
the approximation order for the RTLM case.230
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Figure 7: Displacement and stress comparison for RTLM and FEM with applied pressure.

As mentioned before, the figure 8 displays the accuracy to dofs based cost estima-
tion. Analysis is based on the previously explained rigid foundation problem. Pressure
distribution is defined according to equation 21, where error is computed in regard to
the Greenwood’s solution itself. Regarding the cost, RTLM outperforms the considered
FEM approach in given simple example by having around three times higher rate of235

convergence. This gives ground to expect significant reduction of cost for implementing
it in more complex models.

On the other hand, often the substrates are discretized without considering the pos-
sible coating layer mesh. Therefore, having coarser elements in the substrate mesh near
the coated boundary. For investigation of this the same problem as for the deformable240

substrate case is considered, but with less elements in the contact zone. The results are
presented in figure 9. Error is estimated according to highly refined FEM model of the
identical problem.

Regarding cost, the RTLM again outperforms the FEM approach. This is mainly due
to FEM requirement of additional mesh refinement in the tangential direction to capture245

the "pile-up" effect on the contact boundaries. Moreover, the RTLM introduces higher
order terms in all directions. This allows for improved capture of the "pile-up". However,
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Figure 8: Convergence of the two methods with fixed element widths, based on L2 error norm of the top
surface vertical displacement and the number of dofs stacked on an underlying node position. Simulation
with 500 elements underlying the surface layer in the contact halfwidth and ν = 0.49.

the limit still exists as the approximation is still connected to the size of the underlying
element through the continuity condition. Therefore, also the proposed method will
benefit from additional refinement. Nonetheless, already with order three expansion one250

has obtained similar accuracy limit as the FEM approach with uni-directional refinement.
This accuracy limit is achieved with more than two times less dofs.
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Figure 9: Convergence of the two methods with fixed element widths, based on L2 error norm of the
top surface vertical displacement and the number of dofs stacked on a single underlying node position.
Simulation with 160 elements underlying the surface layer in the contact region and ν = 0.49.
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4.2. Conditioning
One of the problems hampering to consider iso-parametric flat elongated finite ele-

ments is the resulting negative effect on the conditioning of the problem, as there exists255

significant strain in the tangential direction. For example, one can look at the strain
extremum that is localized close to the borderline of the contact area. Therefore, it is
important to investigate the conditioning of a stiffness matrix in the proposed framework.

A single block of the layer is considered, with geometrical ratio of e/L = 0.1. It
is described by a stack of finite elements to mimic FEM approach and by polynomial260

expansion methodology for the RTLM example. For illustration refer to figure 10. While
the accuracy of the problem for the FEM approach can be improved by considering
vertical refinement of the stack, the conditioning number will unfortunately also increase.
This is due to the increase of the geometrical aspect ratio of a single element. It is also
known that by approximating the space with a power series, one also introduces ill-265

conditioning. The conditioning number is expected to increase exponentially with higher
orders [28]. In figure 11 the conditioning numbers of the resulting matrices are compared.

L L

eh

Figure 10: Illustration of the element configurations used in conditioning evaluation. Left is proposed
method with series order variable pi and on right is the finite element stack with element height variable
h.
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Figure 11: Conditioning number dependency on number of dofs for different polynomial expansion basis.
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Figure 12: Illustration of different polynomial bases for cubic expansion.

It is clear that considering high order terms is not reasonable as it can introduce high
round-off error due to excessive ill-conditioning of the system. However, if one bounds270

the power series by redefining the series expansion as Pi(ŷ) = (ŷ/e)i

i! , one can make the
conditioning of the stiffness matrix independent from the layer thickness e value. This
already brings the conditioning number into reasonable bounds for first four orders of
the expansion.

However, the ill-conditioning problem can be completely avoided when introducing275

polynomial bases with better orthogonality properties, for example Legendre or Bern-
stein polynomial basis. For illustration of different basis refer to figure 12. One could
go even step further and consider polynomial bases with orthogonal derivatives. This
would lead to a diagonal stiffness matrix contribution, instead of a full one. However,
it is unnecessary as Bernstein, for example, provides low enough impact on matrix con-280

ditioning. In addition, it has some interesting properties for inclusion in FEM based
contact algorithms, as explained in section 4.3.

4.3. Contact implementation
Previously all the examples have been with applied force that emulates certain con-

tact conditions. This chapter provides a short description on including the proposed285

methodology in the two body contact problem.
Implementation of the methodology in a FEM contact problem poses one major

obstacle. There exists no explicit representation of the contacting surfaces. Therefore,
in the closest point projection based contact algorithm, with KKT contact conditions
(tN ≥ 0; g ≤ 0; tNg = 0), the gap function g(x ∈ Γe) must be modified to take into290

account the deformable coating layer. Thus the gap function needs to be redefined as
ge(x ∈ Γ(ŷ = e)) rendering the contact algorithm directly dependent on the polynomial
expansion.

However, the direct dependency can be removed by explicitly defining the movement
of the contacting surface Γ(ŷ = e) by additional dofs. In case of the power series the top
surface Γ(ŷ = e) displacement um can be simply defined as um = u0 + eu1 + e2

2!u2 +

... + en

n!un. This leads to an unmodified gap function that is defined on the explicitly
represented deformable surface: g(x ∈ Γ(ŷ = e)). In general, the additional displacement
dofs describing the movement of surface Γ(ŷ = e) can be found as

um(x) =

n∑
i=1

Pi(e)ui(x) . (23)
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In case of Bernstein polynomials, this additional set of dofs um is not needed, as the
beginning and end points of the domain have only single set of non-zero shape function295

values. Refer to figure 12c. This leads directly to um(x) = un(x). Therefore, in addition
to low conditioning impact, the Bernstein polynomial basis is an interesting candidate
to be used in a contact simulation.

4.4. Comment on implementation in general usage FEM codes
From here, it is straightforward to see the potential of implementing the methodology300

in any FEM contact algorithm. The existing contact enforcement algorithm remains
untouched. Only requirement is that the software permits user defined additional stiffness
contribution. An example of this has been implemented in ABAQUS 2014 software [29]
on a rigid indenter example, as depicted in figure 13. This was done by using the user
subroutine UELMAT to define the additional stiffness matrix contribution due to the305

added surface layer. Bernstein polynomial basis was used for the expansion.
It is necessary to define additional dofs to describe the displacement modes in the

layer. However, as ABAQUS has allocated dof structure for the user defined element
(UEL), these dofs were introduced via additional nodes on Γ(ŷ = e). Lagrange and
Penalty contact enforcement schemes were used without any modifications. As ABAQUS310

contact algorithm requires elemental description of the contacting surface "zero-stiffness"
membrane elements were defined on the nodes on Γ(ŷ = e). This was needed to provide
an explicit description of the contacting surface for the contact interface tracking.

Figure 13 displays the contact induced pressure distribution obtained by the RTLM
implementation in ABAQUS software, for an indentation simulation with indenter of315

shape φ = x2/2R. It is shown that the expected analytical solution from Greenwood [5]
is obtained for the case of a/e = 5.
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Figure 13: Comparison of the resulting pressure distribution for Greenwood solution (GW) and RTLM
contact simulation implemented in ABAQUS. (Indenter of shape φ = x2/2R, where R = 50 and a/e = 5.)

5. Conclusion

By considering an alternative approach to model soft thin surface coatings in FEM
framework the computational cost linked to traditional approaches could be significantly320
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reduced.
An efficient numerical model for thin surface layer simulation has been formulated for

inclusion in FEM algorithms. The model, named RTLM, involves polynomial expansion
based approximation of the solution field, allowing to reduce the volumetric layer repre-
sentation to an interface contribution. Thus, the additional computational effort to solve325

the linear system of equations is considerably lower than for traditional FEM approach
with fully discretized volumetric layer.

The polynomial based approximation of the layer can be seen as an additional contri-
bution to the global stiffness matrix, making it highly compatible with FEM framework.
As matter of fact, it is compatible with any FEM software that allows for user defined330

stiffness contribution. This includes general contact solvers as no additional modifi-
cation of the contact algorithm is required. Furthermore, with correct choice of the
polynomial approximation basis the effect on the conditioning of the linear system is
negligible. Expected ill-conditioning can be avoided by usage of Bernstein polynomial
basis, for example. The validity of using polynomial based approximation of the layer335

is derived from literature and has an excellent agreement with presented 2D test-cases.
Higher order polynomials could be used for improved capture of the "pile-up" effect at
the boundaries of the contact zone, especially for near incompressible materials.

The proposed idea shows great potential for reducing the cost of considering soft
thin coatings in contact simulations. The avoidance of full volumetric discretization and340

suitability for FEM algorithms makes RTLM a feasible option for consideration in more
complex mechanical systems. This includes large scale 3D contact simulations with finite
deformations, nonlinear material models and inclusion of wear.
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