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Abstract

Around the debate on software vulnerability disclosure, existing works have
mostly explored how disclosure gives an incentive to software vendors to better secure
their software. The role of third parties such as business users, security firms or
downstream software vendors is rarely taken account, while in fact these actors are
increasingly involved in improving the security of a software. In this paper, we argue
that vulnerability disclosure may act as a signal that revises the perceived security
quality of the affected software and we examine how it affects the level of security
effort exerted by different actors.

Using data from 2009 to 2018 on a public vulnerability database, we show that
after the disclosure of a critical vulnerability, the vulnerability research activity on
the software that is subject to the disclosure significantly increases compared to
the control group of unaffected software. In particular, vulnerability disclosure has
a greater impact on actors who perceive the disclosure as an opportunity to find
new security flaw and to financially benefit from it (such as the security firms and
individual researchers) than on those who suffer the security risks (such as users and
downstream vendors).
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1 Introduction

In January 2018, Intel revealed that millions of their computer processors were exposed

to a critical vulnerability named Spectre and Meltdown.1 Instead of going public right

after its discovery, Intel had exclusively informed some of its main customers and kept

the information confidential for more than half a year.2 The secrecy kept by Intel can be

explained by the increasing security risk it would have been exposed to if the vulnerability

information became public before they find a solution to secure the flaw (Schneier, 2000).

However, it also prevented other firms and users to timely assess their own risk and to

react.

In line with Intel’s defense, the public disclosure of a vulnerability can be harmful

to a system’s security because it increases the probability that the disclosed information

is exploited by a malevolent actor. Empirical estimates support this idea, showing how

the frequency of attacks increases when the vulnerability is disclosed to public (Arora,

Nandkumar, and Telang, 2006). On the other side, many studies, both theoretical and

empirical, find that vulnerability disclosure encourages software vendors to deliver patches

more quickly and to provide a better software quality over time (Nizovtsev and Thursby,

2007; Cavusoglu, Cavusoglu, and Raghunathan, 2007; Arora, Telang, and Xu, 2008; Arora,

Krishnan, Telang, and Yang, 2010). All of these studies consider that the disclosure of a

vulnerability allows the attackers to exploit the disclosed information and in turn affects

the users and the software vendors’ behavior. Besides, a vulnerability disclosure may

also impact the stakeholders’ behavior without being specifically related to the disclosed

vulnerability information. It may act as a signal, to third parties like consumers, investors,

or security experts, that the actual security level of the affected software is lower than

what it was considered until now. For instance, Telang and Wattal (2007) show that

public vulnerability announcements lead to significant loss in the affected software vendor’s

market value. In our paper, we consider precisely this ‘signaling effect’ and study whether

the disclosure of a specific vulnerability on a software gives an incentive to improve its
1https://meltdownattack.com
2https://www.wsj.com/articles/intel-warned-chinese-companies-of-chip-flaws-before-u-s-government
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overall security.

Specifically, we examine empirically how the public disclosure of a critical vulnerability

with heavy media coverage affects the discovery of new vulnerabilities in the software that

is subject to the disclosure. We study the case of three markets – by market, we mean a

group of software that belong to the same type and which present strong substitutability

– at the heart of Internet security and which are well-known to standard users and thus

generate significant attention from general media as well as from the security community,

namely the web browser, the desktop operation system and the mobile operation system

markets. For each market, we identify a vulnerability that has received a particularly

large media coverage and has generated a peak in web search volumes. Then, using data

collected from a well-known public vulnerability database on software vulnerabilities –

SecurityFocus BugTraq – reported from January 2009 to December 2018, we examine the

impact of the disclosure event on the number of vulnerabilities reported by each type of

actors over time. We use a difference-in-difference specification in order to measure the

change in the level of security effort exerted on the software affected by the disclosure

compared to other unaffected software.

Theoretically, the answer to our question is not straightforward. First, regarding the

effect on users, the vulnerability disclosure may reduce the perceived security quality of

a software. If users are passive agents that do not contribute to the security level of the

software, the disclosure of a vulnerability may just reduce the user demand. However

if they can also choose to invest in security, they could be affected by the disclosure in

a different way, depending on the available alternatives, the switching costs, and their

investment capability in software security. The larger a business is – i.e., the larger and

complex its information system is –, the less flexible it would be to switch from one software

to another even though it realizes that the software it uses has a poor security quality.

Companies who have large switching costs may prefer to actively collaborate with the

software vendor and other third parties (security firms, individual security experts, public

organizations, etc.) to improve the security of the software rather than waiting for the

vendor to provide a better security. Secondly, the disclosure of a critical vulnerability may
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also act as an event that revises the belief – i.e., the subjective probability – to find new

vulnerabilities. Thus for actors that look for new opportunities to contribute to software

security – such as security firms or individual researchers –, vulnerability disclosure may

give an incentive to exert more effort in discovering new vulnerabilities. However if the

disclosed information is public and shared with everyone, the increased probability to

compete with others can also deter them to exert an additional effort. All in all, the

overall effect of vulnerability disclosure on the effort exerted by different actors to improve

the affected software’s security is uncertain.

Our analysis shows strong evidence that after the disclosure of a critical vulnerability,

the vulnerability research activity on the software affected by the disclosure significantly

increases compared to the control group of unaffected software. Interestingly, third parties,

in particular security firms and individual researchers, are more affected by the disclosure

than the software vendor itself. The impact on third parties is all the more significant

as we find that they contribute more than the software vendor to the discovery of new

security flaws in general. Our findings suggest that one should not ignore the incentives

and the potential contribution of third parties when studying software security.

The rest of the paper is structured as follows. In the next section, we review the

relevant literature. Section 3 presents the identification strategy and the data. We present

the estimation results in Section 4 and Section 5 concludes.

2 Related work

Who should invest in security and how to encourage the right actor in the right way is a

question at the heart of information security economics. Various topics are handled in this

literature, from modeling attack and defense (Varian, 2004; Bier, Oliveros, and Samuelson,

2007; Bohme and Moore, 2010), liability policies (Kim, Chen, and Mukhopadhyay, 2011;

August and Tunca, 2011; Lam, 2016), risk sharing and coordination between vendor and

users (August and Tunca, 2006; Cavusoglu, Cavusoglu, and Zhang, 2008; Kim, Chen, and

Mukhopadhyay, 2009), to product differentiation (August, Niculescu, and Shin, 2014; Dey,

Lahiri, and Zhang, 2014). In particular, some papers participate to the debate around
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whether promoting software vulnerability disclosure is socially desirable (Cavusoglu et al.,

2007; Arora et al., 2008; Choi, Fershtman, and Gandal, 2010; Nizovtsev and Thursby,

2007). Their main finding is that, when vendors do not sufficiently internalize user loses,

vulnerability disclosure provides an incentive for vendors to secure their product more

quickly.3

Our paper tackles two aspects lacking in this literature. First, prior works mostly

consider that users are passive agents, which mainly undertake damage control activities

(patch installations, work-arounds) rather than actively engaging in preventive actions.

However, a considerable part of users, especially business users – i.e., companies that use

the software, including downstream and upstream software vendors and service providers –

contribute actively and significantly to global cybersecurity. They often manage their own

security research and incident response team, pay security firms to secure their systems,

collaborate with public CERTs and academic researchers, crowdsource individuals through

vulnerability reward programs. In fact, businesses with large scale information systems

necessarily have “a lot at stake”, hence they have not only the ability but also the incentives

to actively find and fix software vulnerabilities. In our paper, users actively invest in

software security by discovering and reporting vulnerabilities to the software vendor.

To our knowledge, only one paper considers the active involvement of users in security

(Nizovtsev and Thursby, 2007). They consider the case of open source software where users

can actively participate in finding and fixing vulnerabilities and show that the positive

effect of vulnerability disclosure becomes greater when users are able to fix the software

by themselves. Our paper is in line with the idea of Nizovtsev and Thursby (2007) that

parties other than the software vendor may actively contribute in software security and

we examine it empirically in markets that are not exclusively open source.

Secondly, a dearth of research exists on the role of third parties, while in practice,

they are often actively involved in the lifecycle of a software and in improving security.

Indeed, a company’s information system is formed by multiple software; these software use

various frameworks and libraries created and maintained by external organizations, they
3Besides, Choi et al. (2010) take also account the probability of an attack in relation with network

effects and show that mandatory disclosure is not necessarily welfare improving.
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use components, modules and extensions provided by other editors, they communicate

with each other and with the outside network through various protocols whose guidelines

are maintained by public entities. Thus, the security of a company’s system depends on

a multitude of actors that in turn are dependent each other. In fact, this complexity

already exists for the security of a single software. For example, any organization that has

some networked data accessible on the Web (e.g., e-commerce companies, website hosting

service providers) is necessarily dependent to the security of web browsers, since a web

browser is the main tool used to access to the World Wide Web. The security of a web

browser is in turn dependent to a multitude of components, from language like Javascript,

runtime environment like Adobe Flash, communication protocol and cryptography library

like OpenSSL, plug-ins and web applications, etc. Since developers and users of each

components internalize a part of the security risk, each of them may have an incentive

to improve web browsers’ security. This paper tries to fill the gap in the literature by

analyzing not only the behavior of the software vendors but also of other third parties that

actively contribute to software security, like downstream and upstream software vendors,

security firms and individual researchers, public organizations and competitors.

Several empirical studies examine the impact of vulnerability disclosure on security

related activities such as on the attack frequencies (Arora et al., 2006), on software vendors’

market value (Telang and Wattal, 2007), and on software vendors’ patch release behavior

(Arora et al., 2010). We are also interested in whether a vulnerability disclosure gives an

incentive to improve the security of the affected software. However our approach differs

from them at least in two ways. First, we consider the disclosure of a vulnerability as

a signal that updates the perceived security quality of the affected software rather than

considering the effect that is directly related to the disclosed information. Secondly, we are

interested in the impact of vulnerability disclosure on an activity – vulnerability discovery

– that is specifically related to security spending. This is in line with the idea that the

expected cost to breach a system, i.e., finding a vulnerability that was unknown before,

can be a reasonable measure of the strength of a system (Schechter, 2002). Further, some

argues that the market price to find an additional vulnerability may be a practical measure

6



of the security level of a system (Camp and Wolfram, 2000; Schechter, 2002; Ozment,

2004).

Our work is also related to the recent economic literature on open innovation. A large

number of researches document how users have been contributing efficiently to improve

products and processes. Besides, open innovation is not only limited to the involvement

of user communities; it encompasses all the “inflows and outflows of knowledge” that

contribute to innovation (Chesbrough, Vanhaverbeke, and West, 2006). That is, it is most

of all about an ecosystem of partners with whom to collaborate. In that sens, this stream of

research is in tight relation with the industry platform literature, which focus on strategies

that platforms employ to influence and stimulate collaboration on complementary products

and services from third parties (Gawer and Cusumano, 2014). One of the main goal of

these streams of research is to examine the means and conditions that induce a more

efficient participation from external resources. In our paper, we also study how a particular

event affects third parties’ incentives to exert an additional effort.

Furthermore, many researches insist on the fact that the notion of collaboration

within the context of open source project and in business context is different (Boudreau

and Lakhani, 2009; Pénin, Hussler, and Burger-Helmchen, 2011). In contrast with this

observation, we study cases in which there is a mix between the contribution of user

communities and a market mechanism. Indeed, by third parties, we designate both private

actors that benefit from the market for software vulnerabilities as well as public actors

and user communities. Moreover, the delimitation between private business purposes and

the security community’s goal is blurred. For instance, private actors like security firms

are part of the security community and are even major actors that actively contributes

to it. All in all, the effort exerted by an actor to improve software security can be either

motivated by direct benefits from improving the security of the software because it is

dependent to it, because of some intrinsic motivation to contribute to global security,

or because of monetary incentives and other extrinsic motivation (reputation feedback,

reciprocity).
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3 Data and empirical Strategy

Our goal is to examine how a critical vulnerability disclosure on a software affects the

effort exerted by various actors to improve its security. For that, we consider the effort

exerted by an actor to discover new security flaws as a measure of its effort to improve

the overall security of the software.4 We study three markets, which attract significant

media attention from end users and thus for which we are able to identify a vulnerability

disclosure that raised a particular media coverage compared to others: the web browser,

the mobile OS and the desktop OS markets.

In order to study the causal relationship between a vulnerability disclosure and the

effort of each actor that contributes actively to the security of the software, we use a

difference-in-difference specification. That is, we compare the difference in the number of

vulnerabilities reported by each actor, before and after the extensive media coverage of

a security flaw on the targeted software (the treatment group) and other software (the

control group).

The main data set we use comes from Security Focus Bugtraq, which is a public

database on software vulnerabilities. From this database, we collected information about

all the vulnerabilities that affect any web browsers and operation systems and published

from January 2009 to December 2018.5 The raw data set provides the disclosure date

of the vulnerability, which software it affects and who discovered it. We categorize the

discoverers of the vulnerabilities into 6 types of actors: the software vendor, users (including

companies that use the software or provide a service related to the affected vulnerability,

as well as downstream and upstream vendors), security firms, individual researchers who

do not precise their affiliation to a company or an organization, academics and public

organizations, and the competitors of the affected software. The dependent variables

for each specifications are built by consolidating this raw data set in several ways (see
4The idea that the cost-to-break, i.e., the cost to find new vulnerabilities is an effective metric to

measure the security level of a software has been defended by a number of researchers (Camp and Wolfram,
2000; Schechter, 2002; Ozment, 2004).

5The reason we limit our study to this period is because a considerable amount of manual checks
is needed to build our data set, especially in order to categorize the actors that have identified each
vulnerabilities. We consider that a period of 10 years is large enough to have a robust result.
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Subsection 3.3). The treatment is identified using Google Trends data. More precisely, we

identify a particular vulnerability disclosure that has generated a spike in media coverage

compared to all other vulnerability disclosures in a market (i.e., in web browsers, mobile

OS or desktop OS).6 We then examine how this shock affects the number of vulnerabilities

that are discovered for each software belonging to the market.

We detail the econometric specification in the next subsection, then Subsection 3.2

presents the raw data set. Subsection 3.3 describes how we build our dependent variable

for the three different specifications we use, then follows Subsection 3.4 where we discuss

the identification of our treatment variable. Lastly, we verify the parallel trend assumption

and detail the descriptive statistics in Subsection 3.5.

3.1 Empirical specifications

We use a difference-in-difference specification to study how a vulnerability disclosure affects

the effort made by an actor to secure the software. This identification strategy allows us

in particular to overcome the reverse causality issue between the number of vulnerabilities

and the media coverage intensity that we would have had if we simply used the intensity

of a vulnerability media coverage as our regressor.

Specifically, the baseline specification we use is as following:

yit =β0 + β1Ai · Pt + FEi + FEt + γXit + εit, (1)

Where, yit, our dependent variable, is the total number of vulnerabilities affecting

software i, reported at period t (monthly date). In this first specification, the effort of the

different actors are taken altogether and we first focus on how the disclosure affects the

global security investment level. Ai (referring to “Affected software”) is a dummy which

indicates whether software i is the software targeted by the vulnerability disclosure, i.e.,

whether it belongs to the treatment group (Ai = 1) or to the control group (Ai = 0).7

6For the web browser market, the data set is composed of vulnerabilities that affect only web browsers,
and for operation system market only vulnerabilities that affect operation systems.

7In our data set, the treatment group is the software that suffers from the disclosure and all other
software in the same market – unaffected by the disclosed vulnerability – belongs to the control group.
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Pt (referring to “treatment Period”) is a dummy which is equal to one for the period we

consider as “affected” by the critical vulnerability disclosure event, and to zero outside

this period. We use 4 alternative specifications for this treatment period: the first 6

months following the vulnerability disclosure (post6m), the first year (post12m), the two

first years (post24m), and the whole period after the vulnerability disclosure (post).8 FEi

and FEt are software and time fixed effects.9 Xit is a vector of control variables at the

software level. It includes the SoftwareAge and a dummy which indicates whether the

vendor provides support for the software at period t (EndofLife). Lastly, εit is the error

term. Our explanatory variable of interest is the interaction term Ai · Pt, which represents

the difference in the effect of the vulnerability disclosure – our treatment – between the

treatment group and the control group. We expect that the sign of the coefficient β1 is

positive, i.e., a critical vulnerability disclosure would increase the global effort made in

securing the software that suffers from the vulnerability disclosure.

Next, we estimate the following equation:

yijt =β0 + β1Ai · Pt + β2Ai · Pt · ThirdPartyj + β3Ai · ThirdPartyj

+ β4Pt · ThirdPartyj + β5ThirdPartyj + FEi + FEt + γXit + εijt,

(2)

where yijt is the number of vulnerabilities affecting software i, discovered by type of

actors j at period t. ThirdPartyj is a dummy which is equal to 0 if the identifier of the

vulnerabilities is the software vendor and equal to 1 if it is a third party. The interaction

between our treatment variable Ai · Pt and the ThirdPartyj dummy allows us to measure

the difference between the impact of the vulnerability disclosure on a third party and on a

software vendor (the software vendor being the base value).

Lastly, we use the following specification to study the effect of the vulnerability
8We consider that periods of more than 6 months are appropriate because the discovery of new

vulnerabilities on a software (which differs for instance to discovering a simple bug on a functionality)
does not happens more frequently.

9Thus the effect of Ai and Pt are included in the fixed effects
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disclosure on each actor separately:

yijt =β0 + β1Ai · Pt

+
∑

Kj∈Identifier_Type

β
Kj

2 Ai · Pt ·Kj + β
Kj

3 Ai ·Kj + β
Kj

4 Pt ·Kj + β
Kj

5 Kj

+ FEi + FEt + γXit + εijt,

(3)

where Identifier_Type = {Usersj, Sec_firmsj, Individualsj, Public_orgj, Competitorsj}

and Kj ∈ Identifier_Type is a dummy equal to one if j belongs to the identifier type

K. In this specification, the coefficients of interest are the five different βKj

2 , which reflect

the difference in the effect of a vulnerability disclosure on each actors’ behavior, while the

base value is the software vendor’s behavior.

3.2 Raw data set

The raw data set consists in all the vulnerabilities reported from January 2009 to December

2018, associated to one or multiple web browsers or operation systems. The data is collected

from Security Focus Bugtraq, which is a well-known public database on vulnerabilities.

We use this database because it is the unique public database that provides information

about who discovered – i.e., who first reported – a given vulnerability. An example of the

raw information on Security Focus Bugtraq is presented in Figure 9 in Appendix.

All the vulnerabilities in our data set have a patch at the date they are disclosed

to public.10 For vulnerabilities that affect more than one product, we have duplicated

the observations in order to take the vulnerability into account for each software. Table

1 presents the number of observations we have in the raw data set for each market we

consider. Software that do not present sufficient number of disclosed vulnerabilities during

the observed period of time, i.e., that have less than one vulnerability discovered each

month, are ignored. For instance, mobile OS such as RIM Blackberry, Nokia mobile or

Windows mobile are not considered in our data set.11

10We exclude from our data set vulnerabilities that cannot be fixed with a patch. Within the scope we
study, only 2 vulnerabilities belong to this case.

11This is why for mobile OS, only Apple iOS and Google Android are considered. Besides, in our
regressions, we consider the operation systems as a whole and not the mobile OS separately.
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Table 1: Number of observations in the raw data set

Type of software
Total number

of
vulnerabilities

Number of
considered
software

List of considered software

Web browser 2 651 6

Apple Safari, Google Chrome,
Microsoft Internet Explorer or
Edge, Mozilla Firefox, Mozilla
Seamonkey, and Opera.

OS 12 539 16
of which:

Desktop OS 8 864

Apple MacOS, Debian Linux,
Microsoft Windows, Oracle
Linux, Red Hat Linux, SUSE
Linux, Ubuntu Linux

Mobile OS 1 143 Apple iOS, Google Android
Other Unix like

OS 1 625 FreeBSD, GNU, Oracle Solaris

Server OS 297 CentOS
Router/Switch OS 610 Cisco IOS, Juniper Junos

Figure 8 (in Appendix) shows the evolution of the total number of vulnerabilities

affecting web browsers and operation systems during the studied period. We observe

that there is a slight increase in the number of vulnerabilities over time. Note that our

specifications include a time fixed effect.

3.3 Dependent variable

Our dependent variable for the first specification (see Subsection 3.1 for the econometric

specifications) is the total number of vulnerabilities discovered in each software, each

month, while for the second and third specifications, it is the number of vulnerabilities

discovered in each software each month by each type of actor.

In the raw data set, the discovery of each vulnerability is credited either to an individual,

an organization, or a group of individuals and organizations. For each vulnerability, we

code the type of actor the discoverers belong to.12 When a vulnerability is credited to

more than one contributor, we replicate the observation as many times as the number

of contributors and we attribute to each observation a weight of one over the number

of contributors. Then the raw data at vulnerability level is aggregated at a monthly
12As mentioned before, we categorize the vulnerability discoverers into 6 types of actors. Table 6.1 in

Appendix describes how each actor may value the externality caused by the security of a software and
thus would be affected by the disclosure of a critical vulnerability.
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level in 3 different manners so as to be used in the 3 different specifications presented in

Subsection 3.1. For the first data set, we count the number of vulnerabilities affecting

each software each month without considering who are the actors that have contributed.

In the second data set, we define a dummy variable which indicates whether the identifier

of the vulnerability is the software vendor or a third party (ThirdParty dummy). Then

we count the number of vulnerabilities in each software each month either by a third party

or the software vendor. In the third data set, we count the number of vulnerabilities in

each software, each month for each type of actor. An example of how we have built our

dependent variable is given in Table 6 in Appendix.

3.4 Treatment variables

Our goal is to measure the impact of a vulnerability disclosure on vulnerability discovery

activity. In the three markets we study, an average of 5 to 14 vulnerabilities are reported

each month for each software, all severity level taken together (see Table 7 for summary

statistics). Measuring the effect of all of these vulnerability disclosures separately is

not possible; we thus focus on the effect of a disclosure that is sufficiently serious and

critical to have a significant impact compared to other events. For that, we need to

identify a vulnerability that has raised particularly large media attention compared to

other vulnerabilities. By considering a vulnerability that has been particularly critical and

highly publicized compared to others, we claim that the effects that we identify are due to

this disclosure rather than to other events.

In order to identify a vulnerability disclosure that has received a particularly intense

media coverage, we use Google Trend (http://trends.google.fr), which allows us to

visualize the relative evolution of a given search term on Google Search compared to

other search terms. We consider that the overall information seeking behavior on a search

engine is correlated to the magnitude of the media coverage. Specifically, we checked the

search trend on Google for the terms that associate the name of a software and the word

“vulnerability”. For example, in the case of web browsers, we compare the search trends for

the terms “Internet Explorer vulnerability”, “Chrome vulnerability”, “Safari vulnerability”,
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“Firefox vulnerability” and “Opera vulnerability” (see Figure 5 in Appendix). Then, for

each of the three markets we study, we identify a peak search volume from the graphs

obtained from Google Trend, which actually corresponds to the disclosure of a critical

vulnerability. For instance, in Figure 5, we observe a peak search volume in mid 2014

for the search term “Internet Explorer vulnerability”. This peak corresponds to a critical

vulnerability affecting Internet Explorer, disclosed to public in April 26th 2014. This

vulnerability was discovered by an independent security firm FireEye who reported it

to Microsoft. It is a zero day vulnerability, that is, a vulnerability that is all the more

critical because it did not have a security patch at the time it was disclosed. For the

second case, the mobile operation systems, the identified critical vulnerability disclosure

event corresponds to the disclosure of Android StageFright vulnerability in July 2015. As

for the Zero Day in Internet Explorer, this critical and well-known vulnerability was also

discovered by an independent security firm. Lastly, for desktop operation systems, the

peak search volumes corresponds to the famous WannaCry ransomware attack happened

in May 2017. It was the NSA that previously warned Microsoft about the possible theft

of EternalBlue, which is the exploit used in WannaCry. Each of these events can be

considered as unexpected, except by the software vendor. More details about the three

vulnerability disclosure are presented in Figure 9 in Appendix.

These three vulnerability disclosures are our treatments in each market. We consider

the software that is targeted by the vulnerability disclosure as the treatment group while

other software in the same market belongs to the control group. With regard to the

treatment period, we consider that a “treatment” begins at the date of the peak search

volumes. Four alternative treatment periods are used, corresponding to a 6 months to 2

year-period after the disclosure.13

Besides, in the three cases we study, the software vendor who is targeted by the critical

vulnerability disclosure is alerted about the existence of the vulnerability before the public

announcement. This means that an increase in the number of vulnerabilities reported on

Security Focus at the moment (just before or just after) the vulnerability is disclosed can be
13Specifically, we consider the first 6 months after the disclosure, the first year, the first two years, and

the whole period after the disclosure as the alternative treatment periods.
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due to an action that does not reflect the actual effort put in vulnerability discovery activity.

Indeed, the software editor can suddenly become responsive in patching vulnerabilities

that were actually reported by third party identifiers before the critical disclosure happens.

To overcome this bias, we exclude all the vulnerabilities that are disclosed during a six

months period around the disclosure date. Indeed, most organizations apply these days a

disclosure policy of 90 days.14 Excluding the last three months preceding the disclosure and

the first three months following it insures that we do not take into account the flaws that

would have been reported to the vendor before the discovery of the critical vulnerability

and which would have been fixed by the software editor in response to the disclosure.

3.5 Descriptive statistics

In this subsection, we provide some descriptive statistics related to the dependent variable

and the impact of the treatment. Then we discuss the distribution of the different actors’

contribution in our data set.

In Figures 1a, 1b, and 1c we first plot the average number of reported vulnerabilities

over time, for the treatment group and the control group. In each case, we do not observe

any remarkable difference in the evolution of the number of vulnerabilities between the

treatment and the control groups, before the critical vulnerability disclosure occurs. Then,

for each cases, we visualize a significant increase in the number of vulnerabilities on

the treatment group after the year the public announcement of a critical vulnerability

occurs. We note that for Figure 1a and Figure 1c, the number of vulnerabilities drastically

increases just after the disclosure, while it is less the case for Google Android. There are

two possible explanations for this immediate reaction. First, as mentioned in subsection

3.4, the sudden increase in the number of vulnerabilities could reflect the software vendor’s

behavior that suddenly publishes patches for security flaws that were discovered before, to

lessen the negative impact of the announcement of a critical vulnerability. We deal with

this potential source of bias by excluding a 6-month period before and after the disclosure

date. Secondly, firms that actively participate in finding vulnerabilities and securing the
14In the case of web browsers, Jo (2017) estimates the average patching time by a software vendor at 88

days.
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Figure 1: Dependent variable for Specification 1

(a) Internet Explorer Zero Day case

(b) Android StageFright case

(c) Windows WannaCry and EternalBlue case
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software could be alerted in advance about the existence of the flaw before its public

disclosure (like the case of Intel we mention in our introduction), which then would not

distort our result.

Figure 2: Distribution of vulnerability identifiers

Figure 2 shows the distribution of vulnerability identifiers in the markets we study and

Figure 10 (in Appendix) shows the evolution of the distribution over time. We observe

that in each market, less than 20 % of the total vulnerabilities are found by the software

vendor itself. That is, third parties contribute 4 times more than the software vendor

in discovering new vulnerabilities. In particular, individuals without a precise affiliation

contribute the most in general. Interestingly, their contribution is more significant in the

web browser market. Note that the contribution of individual researchers is much more

considerable in open source software than in closed or mixed source ones. Our data set

allows us to check this trend but we do not use this information in our estimations as

we have a panel data set and we account for software fixed effects. We also observe that

security firm also contributes more than software vendors in general. As to business users’

contribution, we note that their contribution vary from 8.4% to 23.4% depending on the

market. We also observe that the overall contribution of individual researchers decreases

over time, while security firms and the software vendor’s contribution increase.

17



4 Results

Table 2 reports the estimation results for our baseline specification (equation 1), for the

three cases we study. In each column, we report the results for each alternative treatment

periods, from the first 6 months after the vulnerability disclosure (post6m) to the whole

period after the disclosure (post).

Table 2: Effect of a critical vulnerability disclosure on the number of discovered vulnera-
bilities.

(1) (2) (3) (4)
treatment period is: post6m post12m post24m post

Case of Internet Explorer Zero Day vulnerability disclosure

A · P 0.808* 0.712** 1.057*** 1.775***
(0.481) (0.357) (0.273) (0.220)

Observations 819 819 819 819
Number of software
Wald χ2 432.85 433.99 445.66 490.81
AME of A · P 4.179* 3.673** 5.372*** 8.752***

(2.510) (1.867) (1.449) (1.271)
Case of Android Stagefright vulnerability disclosure

A · P 0.747 0.611* 2.194*** 3.332***
(0.493) (0.369) (0.270) (0.265)

Observations 1,872 1,872 1,872 1,872
Number of software
Wald χ2 646.61 646.95 720.50 814.01
AME of A · P 4.123 3.369* 12.00*** 18.23***

(2.729) (2.045) (1.601) (1.653)
Case of Windows Eternal Blue vulnerability disclosure

A · P 0.686 0.648* 1.320***
(0.476) (0.348) (0.283)

Observations 1,856 1,856 1,856
Number of software
Wald χ2 626.02 627.50 648.96
AME of A · P 3.676 3.464* 7.066***

(2.574) (1.881) (1.603)

Note: Negative binomial regressions. Dependent variable is number of reported
vulnerabilities. Product fixed effects and time fixed effects are included in all
specifications as well as other controls (SoftwareAge, EndofLife) and a constant.
For Eternal Blue case, post24m = post. Standard errors in parentheses. ***
p<0.01, ** p<0.05, * p<0.1

We have count data and given the presence of significant over-dispersion of the de-

pendent variable with standard deviation superior to the mean (see Summary Statistics

in Appendix Table 7), we use a negative binomial regression to estimate the equations.

To facilitate the exposition, we only report the main regressors of interest, although
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all the regressions include the product and time fixed effects as well as other controls

(SoftwareAge, EndofLife) and a constant. For the Eternal Blue case, the last column

(4) is empty as our data is limited to the period before 2019 (thus post24m = post).

As expected, all the coefficients for A · P are positive for each of the three markets

we study. That is, after the disclosure of a critical vulnerability, the total number of

vulnerabilities discovered on the software concerned by the disclosure increases. Specifically,

5 more vulnerabilities are discovered in Microsoft Internet Explorer each month during

the two years after the disclosure of a critical Zero Day on it compared to the unaffected

web browsers. In the same way, the disclosure of Android Stagefright vulnerability

disclosure has increased the number of vulnerabilities discovered in Google Android by 12

additional vulnerabilities each month during the first two years following the disclosure,

while the number of vulnerabilities found in Microsoft Windows has increased by 7 more

vulnerabilities each month after the disclosure of Eternal Blue. We also observe that

the effect of the disclosure becomes more significant when we consider a longer period

as the treatment period, and that the magnitude of the effect also increases with a

longer treatment period. This suggests that the vulnerability disclosure does not have

an immediate effect on the behavior of the vulnerability discoverers but rather a gradual

effect over time. Two explanations can be advanced. First, discovering new security flaws

in a software is not a trivial task; it is not because one puts an effort in vulnerability

research that it would systematically find some relevant information to improve software

security. Secondly, we count the number of vulnerabilities found in a given period using

the date each vulnerability was disclosed. The actual discovery of the vulnerability might

have occurred before the date we consider in our estimations, which means that our result

may show a lagged effect. Nevertheless, this imprecision does not alter the main result we

are interested in.

Additionally, Figure 3a to 3c display the coefficients of the interaction term between

the year dummies and the Ai (Affected Software) dummy which identifies whether the

observation belongs to the treatment or the control group, with 95% confidence intervals.

The plotted estimation includes all the control variables and fixed effects included in
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Figure 3: Difference between treatment and control group’s outcome, all actors confounded.

(a) Internet Explorer Zero Day case

(b) Android StageFright case

(c) WannaCry and Eternalblue case

Specification 1. Each graph shows that the difference between the treatment and the

control groups is not varying significantly over time during the non-treated period. This

visual inspection allows us to check the validity of the parallel trend assumption and to

visualise the timing of the effect.

Next, Table 3 reports the estimation results using our second specification (equation

2), in which we examine the effort exerted either by the software vendor and other third

parties separately. Going from column (1) to (3), we consider a longer period as the

treated period. Again, we only report the main regressors of interest in order to facilitate

the exposition, although all the regressions include the other interaction terms we specified
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Table 3: Effect of a highly publicized vulnerability disclosure on the software vendor vs.
third party identifiers’ behavior

(1) (2) (3)
treatment period is: post12m post24m post

Case of Internet Explorer Zero-day vulnerability disclosure

A · P -0.556 -1.051** -0.619*
(0.746) (0.468) (0.333)

A · P · ThirdParty 1.500 1.870*** 1.339***
(0.912) (0.584) (0.412)

ThirdParty 1.971*** 2.034*** 2.137***
(0.0970) (0.100) (0.106)

Observations 1,734 1,734 1,734
Wald χ2 992.48 998.28 1027.34

Case of Android Stagefright vulnerability disclosure

A · P 0.424 0.627 1.499***
(0.661) (0.488) (0.369)

A · P · ThirdParty -0.0146 0.487 1.124**
(0.910) (0.658) (0.496)

ThirdParty 2.297*** 2.309*** 2.365***
(0.0641) (0.0656) (0.0679)

Observations 3,744 3,744 3,744
Wald χ2 2028.30 2036.17 2119.79

Case of Windows Eternal Blue vulnerability disclosure

A · P 0.675 0.121 0.549
(0.629) (0.463) (0.378)

A · P · ThirdParty 0.284 1.030 1.351***
(0.865) (0.636) (0.514)

ThirdParty 2.304*** 2.376*** 2.465***
(0.0648) (0.0662) (0.0677)

Observations 3,712 3,712 3,712
Wald χ2 2016.87 2038.32 2093.08

Note: Dependent variable is the number of reported vulnerabilities. Negative
binomial regressions. A · ThirdParty, P · ThidParty, Product fixed effects and
time fixed effects are included in all specifications as well as other controls
(SoftwareAge, EndofLife). For Eternal Blue case, post24m = post. Coeffi-
cients are average marginal effects. Standard errors in parentheses. *** p<0.01,
** p<0.05, * p<0.1
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in Specification 2 (the terms A · ThirdParty, P · ThirdParty), as well as product and

time fixed effects, other controls (SoftwareAge, EndofLife) and a constant.

First, all the coefficients for ThirdParty are positive and significant for the three cases

we study, meaning that in general, third parties contribute more in finding new security

flaws than the software vendor. The positive sign of the coefficient is as expected, as the

distribution of each actors’ contribution (see Subsection 6.1) already shows that in general

less than 25 % of the vulnerabilities are found by the software vendor itself. Regarding the

interaction term between ThirdParty and the treatment variable A · P , the coefficient

is not systematically significant, but it is always positive. That is, overall, the behavior

of third parties is more affected by the critical vulnerability disclosure than the software

vendor, but the effect is not always significant. Indeed, the effect of the vulnerability

disclosure on a given type of actor could be different from another, but as we encompass

all the different actors in one category – the “ThirdParty” –, the significant positive effect

on some type of actors could be mitigated by a less significant or negative effect on others.

In Figure 4a to 4c, we plot again the yearly evolution of the difference in the number

of vulnerabilities between the treatment and control group, but we separate the effort

of the software vendor (in black dots) from the third parties’ effort (in blue dots). The

graphs clearly show that in each of the three cases, third parties’ contribution increases

significantly after the critical vulnerability disclosure occurs, while the change is less

significant for the software vendor’s contribution.

Lastly, Table 4 reports the effect of a critical vulnerability disclosure on each actors’

behavior. To facilitate the exposition, we report the results using only one specification

for the treatment period (post24m). Moreover, we only report the coefficients for our

main explanatory variables, namely the treatment variable, the interaction between the

treatment variable and the Identifier_type dummies, and the Identifier_type dummies.

The estimation results using other specifications are reported in Table 8 in Appendix.

With regard to the Identifier_type dummies, the base line value is the Software_vendor.

Estimation results show that actors that contribute the most are the individuals, while

academics and public organizations contribute the less. Software vendors contribute less
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Figure 4: Difference between treatment and control group’s outcome, comparison of the
software vendor’s contribution and third parties’ contribution.

(a) Internet Explorer Zero Day case

(b) Android StageFright case

(c) WannaCry and Eternalblue case
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Table 4: Effect of a highly publicized vulnerability disclosure on each actors (post24m as
the treatment period).

(1) (2) (3)
Web browser case Mobile OS case Desktop OS case

A · P -0.475 1.321*** 0.515
(0.350) (0.364) (0.371)

A · P · Public_org 0.455 1.042 2.232***
(0.960) (0.775) (0.663)

A · P · Competitors 0.916* -1.789 -15.74
(0.556) (28,494) (2,417)

A · P · Users 0.264 1.179** 1.665***
(0.664) (0.549) (0.522)

A · P · Individuals 0.826* 1.126** 1.017*
(0.472) (0.512) (0.524)

A · P · Sec_firms 1.805*** 0.969* 0.956*
(0.492) (0.512) (0.516)

Public_org -1.256*** -1.644*** -1.603***
(0.160) (0.0829) (0.0814)

Competitors -0.0505 -0.991*** -0.831***
(0.127) (0.0751) (0.0724)

Users -1.300*** 0.518*** 0.655***
(0.163) (0.0665) (0.0646)

Individuals 1.815*** 1.552*** 1.635***
(0.114) (0.0651) (0.0632)

Sec_firms -0.0633 -0.276*** -0.244***
(0.129) (0.0695) (0.0678)

Observations 5,202 11,232 11,136

Note: Dependent variable is the number of reported vulnerabilities. Negative
binomial regressions. A, P , A ·K and P ·K with K ∈ Identifier_type, product
fixed effects and time fixed effects, SoftwareAge, EndofLife and a constant
are included in all the regressions, but are not reported (see Appendix for more
detailed results). P = post24m. Standard errors in parentheses. *** p<0.01, **
p<0.05, * p<0.1

than individual researchers and users but they contribute more than their competitors

or the security firms. Note that the coefficient for Users dummy is negative for the web

browser case, meaning that contrary to the case of operation systems, the contribution of

the users is lower than the software vendor’s. This could be explained by the fact that

there might be a greater number of companies contributing actively to IT security and

which considers that operation systems’ security is more important than the security of

web browsers. As to the interaction terms between the treatment variable A · P and the

identifier’s dummy, we observe that most of the coefficients are positive except for the term

A · P · Competitors. That is, our estimation results suggest that third parties are more

sensible to vulnerability disclosure than the software vendor, except the competing software
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vendors. Overall, users are the most affected by the vulnerability disclosure, but they

are more affected in the case of operation systems than in web browser. On the contrary,

security firms react more to vulnerability disclosure in web browsers than in operation

systems. While security firms contribute less than software vendors in general to the

discovery of new security flaws, their effort is more positively affected by the vulnerability

disclosure. Besides, it is interesting to note that the actors that contribute the most are

still the individuals that do not specify their affiliation and that they are also affected

positively by the vulnerability disclosure.

In sum, the increasing number of vulnerabilities after the disclosure of a critical

vulnerability is likely to be largely produced by actors that want to seize the opportunity

to find new vulnerabilities, such as the security firms and the individual researchers. The

increase in the contribution of companies that are dependent to the security of the affected

software – those that we designate as “Users” – after the vulnerability disclosure is also

significant and greater than the change in the software vendor’s effort to find new security

flaws.

5 Interpretation and conclusion

By studying the impact of three renowned vulnerability disclosure on three different types

of software, we analyze how the vulnerability discovery activity on a software is impacted

by the disclosure of a critical vulnerability.

First, our results show that after the disclosure of a critical vulnerability, the number of

vulnerabilities that are found in the software affected by the disclosure increases significantly

compared to other software. Moreover, the effect becomes greater and more significant

over time. Secondly, we find that third parties are more affected by vulnerability disclosure

than the software vendor. Users and individual researchers are not only contributing

more than the software vendor in general but their contribution is also more affected by

the disclosure. While security firms are contributing less than the software vendor in

general, the number of vulnerabilities they find increases after the disclosure of a critical

vulnerability. These results are all the more important as (1) existing works on software
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security focus much more on the behavior of software vendors in providing security than

on the contribution of other third parties, while (2) we show that third parties’ overall

contribution in software security is considerable, and (3) their contribution is significantly

affected by externalities like the disclosure of a critical vulnerability. Overall, our results

suggest that is is important to take account the incentives of third parties to invest in

security to better understand the economic mechanisms behind software security.

With regard to the larger impact of a vulnerability disclosure on users than on software

vendors, it may be explained by the fact that the vulnerability disclosure acts more

significantly as a negative signal to users than to the software vendor. Indeed, the software

vendor may be more aware of its actual security quality than others. As to the effect

on individuals and security firms, vulnerability disclosure is likely to be perceived as an

opportunity to find new security flaws and to benefit from it: security firms would benefit

from selling new security solutions, individuals would have more opportunity to gain

reputation and peer recognition.

This work is still at its preliminary stage and presents a number of limitations, that

present opportunities for future research. First, in a future version of the work, in order to

obtain more robust results, I intend to examine the correlation between some particular

security investment events and the contribution of third parties. Indeed, one concern

regarding the result we obtain is that third parties’ contribution could actually be affected

by the launch of particular vulnerability research programs sponsored by the software

vendor itself or a specific group of users. Secondly, our findings rely on three specific cases

on three markets that present some similarities each other. The study of an additional case

may strengthen the reliability of our results. Lastly, it might be possible to go further in

the empirical analysis by building some proxies for the users’ switching cost, which would

allow to study whether vulnerability disclosure affects the users in different magnitude

according to their switching cost.
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6 Appendix

6.1 Categorization of the actors

The public announcement of a vulnerability may affect each type of actors for different
reasons and in different degrees. Depending on how a given actor values the externality
caused by a vulnerability disclosure (or more generally by the security of a software), we
can categorize them as following:

• Competitors: by competitors we designate software vendors that play in the same
market. Their behavior can be affected by the disclosure in several ways. First, it
may have a negative effect on the affected software reputation (i.e. the competing
product). This can be an incentive for a competitor to put more effort in finding
new flaws in its adversary’s product. At the same time, investing in a competitor’s
product security can be costly and may not be so profitable. Secondly, vulnerability
disclosure on one product in the market can deteriorate the overall reputation of
the market and thus have a negative effect on the overall demand. Considering
this effect, vulnerability disclosure may give an incentive to firms to provide an
effort to secure competitors’ product as much as theirs. More importantly, products
within the same market often share common vulnerabilities. Thus the effort made
by a vendor to improve its own product’s security may have some spillover on the
security of competing products whether it is intentional or not. Overall, it is difficult
to predict whether a vulnerability disclosure on a software would have a positive
or negative effect on a competitor’s effort to improve the security of the software
affected by the disclosure.

• Users, downstream and upstream software vendors and service providers: they
are dependent to the security of the affected software in various degrees and thus
internalize a part of the risk due to vulnerability disclosure. If these actors have
the possibility to choose between switching to another product or spending some
effort to secure the vulnerable software, their behavior would depend on how high
the switching cost is compared to the security investment cost.

• Security firms: these firms provide security solution and services to vendors and
users. We include here firms that sell all types of security solutions, from anti-virus
software to incident response services, as well as consulting services such as security
assessment or penetration testing. The profits of a security firm comes from selling
security solutions to its clients whether the client is the software vendor or the users,
and finding a new vulnerability increases the value of its services. The disclosure of a
new vulnerability can work as a signal that updates the probability to find additional
vulnerabilities in the affected software. Thus it can be an incentive to security firms
to look more thoroughly at the security of the affected software. Additionally, a
security firm which has signed a contract with the software users or has sold a security
product to them internalizes a part of the user damage cost. At the same time, as
the disclosed information is shared with all the other third parties, competition can
also reduce the effort they may exert.

• Academic researchers, public CERTs, and public organizations:15 we group in this
category actors for which the main goal is to improve global security rather than

15Private CERTs are accounted as a private company
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making their own profit. They may internalize a part of the loss due to a vulnerability
disclosure on a software, but this might be insignificant compared to the end users.

• Individuals: in our dataset, the discovery of numerous vulnerabilities are credited to
an individual or a group of individuals without an affiliation. Even though they can
actually be affiliated to an organization, we consider that when the affiliation is not
specified, the discovery of the vulnerability is voluntarily credited to the individual
itself. Here, we can relate the motivation of an individual to find and fix security
flaws to the intrinsic and extrinsic motives attributed to open source phenomenon,
which has been widely dealt in the literature. A vulnerability disclosure can signal
the existence of additional undiscovered vulnerabilities and give an incentive to
individuals that look for an opportunity to signal their skills to the community.

This categorization suggests that the public announcement of a vulnerability may affect
each type of actors for different reasons and in different degrees.

6.2 The three critical vulnerability disclosures

• Treatment for the case of web browsers: Microsoft Internet Explorer CVE-2014-1776
Zero-Day disclosed in April 2009

Figure 5: Google Search trend for web browser vulnerabilities from 2009 to 2018

In Figure 5 we observe a peak search volume in mid 2014 for the search term “Internet
Explorer vulnerability”. This corresponds to a vulnerability that was announced
in April 26th 2014 by Microsoft and the security firm FireEye. It is a zero day
vulnerability – i.e. a vulnerability that did not have a security patch at the time it
was disclosed – which allows an attacker to take full control over the system after a
user views a specific web page in its web browser. Its severity scores are evaluated at
the highest level of criticality and it affects all existing versions of Microsoft Internet
Explorer.16 The vulnerability was exploited in several targeted attacks. The exact

16These scores are called Common Vulnerability Scoring System (CVSS) and prioritize the vulnerabilities
according to the threats they represent. Scores are calculated based on a formula that depends on several
metrics that approximate the ease of exploit and the impact of exploit. The scores range from 0 to 10,
with 10 being the most severe. While the average severity score for web browser vulnerabilities is around
5, this vulnerability presents a score of 10 for every criteria. Source: the National Vulnerability Database
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date the vulnerability was discovered and reported to Microsoft is not known, but
a patch was published on the 1st May, after the public disclosure. The flaw was
so widespread that Microsoft has released patches for Windows versions for which
support was already ended.17

• Treatment for the case of mobile OS: Google Android Stagefright vulnerability
disclosed in July 2015

Figure 6: Google Search trend for mobile OS vulnerabilities

The peak search volume we visualize in Figure 6 corresponds to the disclosure of
Android StageFright vulnerability in July 2015. Indeed, the security firm Zimperium
announced on July 27th that it had discovered a serious vulnerability in the core of
Google Android operation system, which is a flaw related to the way Android handled
media, allowing a remote code execution without users opening a malicious file. News
headlines announced that nearly a billion of Android devices could potentially be
taken over without their users even knowing it.18 The vulnerability was previously
reported to Google in April 2015 and details of an exploit was disclosed at the
BlackHat conference in August 2015. Google’s security team released a patch for the
initial bug within weeks, but it inspired a wave of new attacks on the way Android
processes audio and video files. The first copycat bugs were reported just days after
the first patch, with more serious exploits arriving months later.19

• Treatment for the case of desktop OS: Microsoft Windows Eternal blue and the
famous Wannacry malware

Figure 7 plots the relative search volumes for terms that are the most popular in
Google search related to operation systems’ vulnerability. Note that we have also
included CentOS and we include the term Ubuntu while Linux is already included

17Source: https://nvd.nist.gov/vuln/detail/CVE-2014-1776, https://blogs.technet.
microsoft.com/srd/2014/04/26/more-details-about-security-advisory-2963983-ie-0day/,
https://www.fireeye.com/blog/threat-research/2014/04/new-zero-day-exploit-targeting-internet-explorer-versions-9-through-11-identified-in-targeted-attacks.
html

18source https://www.theguardian.com/technology/2015/jul/28/stagefright-android-vulnerability-heartbleed-mobile
http://blog.zimperium.com/experts-found-a-unicorn-in-the-heart-of-android/

19https://www.theverge.com/2016/9/6/12816386/android-nougat-stagefright-security-update-mediaserver
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Figure 7: Google Search trend for Desktop and Server OS vulnerabilities

in another search term. Search terms related to other operation systems are not
included in the graph because they do not display sufficient search volumes. The
peak search volumes occurs in mid 2017, which corresponds to the famous WannaCry
ransomware attack happened in May 2017. The WannaCry attack uses an exploit that
is originally created by the U.S. National Security Agency (NSA) named EternalBlue,
which exploits the Microsoft Server Message Block, a network file sharing protocol
that allows applications on a computer to read and to write to files within the same
network.20 The exploit was leaked by a hacker group named Shadow Brokers in
April 14th 2017 and was used in WannaCry ransomware attack on May 12th 2017.
The exploit was also used to carry out the NotPetya cyberattack on late June 2017.
Previously, the NSA warned Microsoft after learning about EternalBlue’s possible
theft, allowing the company to prepare a software patch issued in March 2017, after
cancelling all security patches in February 2017.21 Microsoft released a patch event
for Windows XP which support ended in 2014.

20The vulnerability is denoted by entry CVE-2017-0144 in the Common Vulnerabilities and Exposures
(CVE) catalog.

21source: Wikipedia
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6.3 Other tables and figures

Figure 8: Evolution of the total number of vulnerabilities

Figure 9: An example of the raw data we collect from Security Focus Bugtraq
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Table 5: Description of the variables
Variable Description
yit The number of vulnerabilities on software i discovered at period t

yijt
The number of vulnerabilities on software i discovered by type of actor j
at period t

Ai
A dummy which indicates whether software i is the software targeted by
the vulnerability disclosure (= 1 if it belongs to the treatment group)

Post6m
A dummy which is equal to one if the vulnerability disclosure took place
less than 6 months ago

Post12m
A dummy which is equal to one if the vulnerability disclosure took place
less than 1 year ago

Post24m
A dummy which is equal to one if the vulnerability disclosure took place
less than 2 years ago

Post A dummy which is equal to one for if the vulnerability is disclosed

SoftwareAge
Number of months since the software was launched (Versions are not
taken account)

EndofLife
A dummy which indicates whether the vendor provides support for the
software at period t

mdate Monthly date (used for time fixed effects)
id_software ID for each software (used for product fixed effects)

Figure 10: Evolution of the distribution
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Table 6: Example illustrating how we have built the three data sets

Exemple of raw data set

id software Disclosed
date Credit Explanation

49732 Android 12/4/2019 the software vendor
and Individual α

Two types of actors have contributed in
finding this vulnerability. Thus we consider
that each of the two actors (the software
vendor and the individual researchers) have
discovered 1

2 of the vulnerability.

49900 Android 27/4/2019 Individual β and a
security firm

1
2 vulnerability is attributed to the type of
actor “Individual researchers” and the other 1

2
is attributed to the software vendor.

49999 Android 01/5/2019 Individual γ

50206 Android 01/5/2019

Downstream
vendor, Individual
α and the software
vendor

58326 Android 29/5/2019 Public organization

Aggregated data set for Specification 1
yit software monthly date Explanation

2 Android 2019m4 A total of 2 vulnerabilities were found in April 2019 (id
49732 and id 49900)

3 Android 2019m5 A total of 3 vulnerabilities were found in May 2019

Aggregated data set for Specification 2
yijt software mdate ThirdParty Explanation

0.5 Android 2019m4 0
In April 2019, the software vendor discovered one
vulnerability (Id 49732) with an individual so it has
found 1

2 vulnerability
1.5 Android 2019m4 1
0.33 Android 2019m5 0
2.67 Android 2019m5 1

Aggregated data set for Specification 3
yijt software mdate Identifier_Type Explanation
0.5 Android 2019m4 Software vendor

1 Android 2019m4 Individuals

In April 2019, “Individual researchers" have
participated in the discovery of two
vulnerabilities (of Ids 49732 and 49900) and
for each vulnerability they discovered it
with another type of actors. In sum, they
discovered 1

2 + 1
2 vulnerabilities.

0.5 Android 2019m4 Security firms
0.33 Android 2019m5 Software vendor
1.33 Android 2019m5 Individuals
0.33 Android 2019m5 Users
1 Android 2019m5 Public Organizations
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