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lmage-based effective medium approximation for fast 
permeability evaluation of porous media core samples 

Jacques Franc 1 • Romain Guibert 1 8. Pierre Horgue 1 • Gérald Debenest 1 • Franck Plouraboué 1

Abstract 

An image-based effective medium approximation (EMA) is developed so as to permit very fast transport properties 

evaluations of 3D porous media. From an image-based porous network (IBPN) built upon digital image processing of 3D 

binary images, we focus on throat's local geometrical properties at the pore scale, for being the most sensible structural 

units which build up the local pressure. This approach is a 3D image-based extension of the critical point approach 

proposed in 2D fractures. We show, from analyzing various core rock samples available in the literature, that the asymptotic 

assumptions associated with the preeminence of critical points in throats are indeed geometrically relevant. We then describe 

how the image-based EMA evaluated from the conductances computed from the discrete IBPN can be reliably evaluated. 

The proposed method is evaluated upon the estimation of core sample permeability from binarized image obtained using 

X-ray tomography. Since it combines digital image treatments with statistical data post-processing without the need of

computational fluid dynamics (CFD) computation, it is extremely cost efficient. The results are compared with a micro-scale

Stokes flow computation in various rock samples. The sensitivity to the pore discretization also is discussed and illustrated.

Keywords Porous media · Effective properties · Image-based method · Effective medium approximation · Permeability 

1 Introduction 

Image-based pore-scale modeling bas progressed signifi

cantly during the past decades, due to improvements in 

X-ray imaging sources and equipments, in image analy

sis processing, and computational fluid dynamics (CFD)

efficiency.
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In the following, CFD methods refer to 3D discretization 

of Navier-Stokes equations up to pore scale. This also 

obviously includes all Stokes solvers (being the relevant 

low Reynolds lirait of Navier-stokes ones) with any 

discrete formulation (e.g., finite volumes, finite elements, 

finite differences, immersed boundaries methods, and 

lattice Boltzmann method) defined either on structured 

or unstructured meshes. Obviously pore network models 

(PNM) do not pertain to CFD methods, since their definition 

and applications are much narrow. 

Nevertheless, the reliability of digital rock physics (DRP) 

predictions compared with real experiment measurements 

remains a challenging issue which needs to consider 

crucially important parameters such as typical pore-scale 

size, image spatial resolution and quality, representative 

elementary volume (REV) size compared with sample size, 

and influence of boundary conditions (see for example [3, 4, 

14, 21, 23, 45, 50]). Hence, even if the idea of numerically 

predicting the transport properties of core samples from 3D 

images is an attractive long-standing idea in porous media, 

it faces serious technical difficulties when taking into 

account ail the necessary constraints for reliability. Along 

the years, these constraints have constantly been impaired 

by the improvement of image spatial resolution and the 



parallelization of CFD codes. More recently, deep learning
techniques have been applied to permeability determination
of 2D and 3D image samples (see [5, 53]).

Nevertheless, this is at the prize with raising efforts
associated with numerical cost and efficiency, data, and
memory volumes. These limitations for providing reliable
estimation of permeability for a given rock sample, from
image-based numerical predictions, are well known among
the community [44]. In this contribution, we propose a very
fast, image-based, and CFD-free method, for the estimation
of core sample permeability. The method is based upon
combining image processing for building image-based
porous network (IBPN) with an adapted effective medium
approximation (EMA) [17, 28, 51, 52]. Since the proposed
method does not use CFD, it cannot provide a very
precise estimate of the permeability. Nevertheless, given
the error associated with pore voxelization, any other
computational approach will have the same limitation.
Furthermore, since, in many cases—rough estimate (e.g.,
20%) of the permeability will give a satisfactory answer
for many applications—we dedicate our efforts to develop
a very efficient, easy to use method without considering
accuracy as a major issue.

IBPN have been developed for pore-scale analysis of
core samples using various methods and purposes (cf. [18]
for a recent review). The IBPN may be constructed from
digital image processing using various approaches, without
a clearly prevailing one at the present time. One of the most
popular methods is the medial axis extraction, generally
evaluated with a homotopic thinning [37, 40]. Some further
developments of medial axis extraction adding subsequent
steps associated with distance map and voxels clustering
have also been proposed [27]. Alternative methods using
watershed seeded from pore centers have also been tested
[46]. Whatever the method considered, IBPN is resource
consuming since the closer we get to the percolation
threshold, the finer the mesh is needed at constrictions
[33]. However, image processing has grown in popularity
during the last decade and major progresses have been made
with a particular care for implementing efficient algorithms
since data volume has proportionally increased with the
computer storage capacity and CPU/GPU efficiency. As the
binarized tomography images produced from tomography
are a usual starting point of 3D object’s construction for
meshing and simulation, it is also consistent to keep on
with digital image processing tools to derive skeleton or to
evaluate pore throats diameters. In this paper, we endeavor
a new strategy based upon the identification of critical
saddle points associated with conductances inside throats
connecting two successive pores. Under the assumption of
creeping flow, we develop and extent to 3D porous samples
the critical point EMA previously proposed in fracture flows
[38, 39, 54]. The main idea for evaluating the permeability

of a given core sample is to foresee that constrictions in
throats connecting successive pores are the more sensible
units for building the pressure drop. The method presented
here uses an open-source image processing tool (CImg
library [56]) combined with EMA to compute geometric
object and physical quantities and hence is named image-
based EMA. Such flow approximation can be made in
various systems, such as microfluidic system [2], rough
fracture, and geophysical rock experiment [6, 22, 35] but
also in micro-vascular circulation. The local aperture field
is assumed to verify the lubrication theory requirement.
Pressure gradients are then flow-determinant in the vicinity
of the local saddle point of the aperture field.

This paper is organized as follows. In Section 2,
all methodological steps are detailed and the IBPN is
discussed. In Section 2.1.1, we describe how critical saddle
points in throats can be extracted. In Section 2.1.2, we
show how a reliable local conductances evaluation can be
tailored. Finally in Section 2.2, we detail how these local
conductances can be used within an EMA for providing
transport parameters. Section 3 is devoted to the results
obtained over a wide range of rocks, previously published
in the literature and compared with available results. EMA
model and saddle point filtering are highlighted.

2Materials andmethods

2.1 Image-based porous network construction

The binarized void part of the sample produced from
thresholding the initial gray-level image is the natural
starting point for building IBPN. This construction can be
performed using two families of methods [58]. The first
family relies on topological properties and dedicated tools
[30, 31]. The second family is based upon morphological
oriented approaches [7, 8, 29, 59]. Here, we adopt the
topological family of methods, in order to elaborate the
required IBPN from the binary image’s skeleton. There has
been extensive efforts to conceive efficient algorithms for
skeletonization and we refer the interested reader to [43]
for a review. The image processing algorithms are usually
discussed within three main groups:

1. Point geometry approaches based upon Voronoı̈ tessel-
lation to construct discrete skeleton using its symmetry
properties [47],

2. Surface geometry approaches based upon the continu-
ous evolution of object boundaries [48],

3. Volumetric approaches based upon digital morphologi-
cal erosion on a distance transform results [10, 13].

In the following, we consider the second family of method,
using the Torsello [55] corrected version of Hamilton-Jacobi



Fig. 1 a Smoothed surface 
representation of Doddington's 
sample solid part from [ 41 J and 
b its corresponding Torsello 
skeleton colored by local radius 
value obtained 

(a) 

skeleton [16, 48] as implemented in Clmg plugin [56] (see 

Fig. 1 for illustration). The skeleton will be used latter as the 
support for the EMA. 

2.1.1 Saddle point localization and filtering 

The relevance of local saddle points of the aperture map 

inside throats is based upon the geometrical constraint that 
the local aperture h(x) at saddle points is small compared 

with the distance L between two connected pores, i.e., 

h(x) 
E=-y-«1. (l) 

This geometrical asymptotic constriction parameter E is illus
trated on Fig. 2a. Using real rock core samples taken from 

[41], we provide in Fig. 2b the probability density fonction 
(PDF) distribution of the geometrical asymptotic constric

tion parameter E. The asymptotic constraint E « l is 
fulfilled by each of four different rock types. The Estail

lades sandstones conspicuously display the most constricted 
throat, while the Ketton sandstones have the less constricted 
ones. 

Before considering the possible relevance of these geomet

rical constraints, one first needs to identify the location of the 

-

(a) 

Fig. 2 a Illustration of the asymptotic requirement at the throat loca
tion for E = 0.04. b Distribution of the geometrical asymptotic con
striction parameter E for the various samples (10003 voxels images) 

(b) 

saddle points inside throats. Vectorized skeleton's edges are 

progressively traveled in order to localize the locus of min
imum aperture in the throats. The curvilinear value of the 

distance map field along the skeleton is spline-interpolated 
with respect to the curvilinear distance from start to end 

along each vectorized edge. Next, first and second deriva
tives evaluation along the edge provides a list of local 

minima. In most cases, several local minima are found and 
tagged as candidates. They can be filtered from using one 

of the three following options: 

(i) No filtering: ail minima remains in the set.
(ii) Lowest filtering: only the lowest local distance

transform value per edges is kept.
(iii) Cluster filtering: the distance transform values are

combined based on distance criteria.

Figure 3 illustrates these three filtering options on a selected 

edge of the network. These filtering choices have an 
impact on the statistical distribution of the radii at the 

throat r11, as well as on the local conductances which 
possibly influence the permeability estimation. Keeping 
ail the local conductances with option (i) could result 

in heterogeneous set of local conductances with a strong 
dependence upon local voxelization defects. The lowest 
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presented in [41): Estaillades carbonates (mode for E = 0.075), Ket
ton limestones (mode for E = 0.125), Doddington sandstone (mode 
for E = 0.175), Bentheimer sandstone (mode for E = 0.175) 
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Fig. 3 The local minima filtering methods are illustrated on one of the 
Bentheimer vectorized skeleton 's edge: a no filtering, b Jowest kept, 
and c clustering. Green crosses are voxel values of the distance trans
form along the selected skeleton edge, purple solid Iine is its spline 

option (ii) under-estimates the local conductance in each 
edge producing the lower bound for the permeability 
evaluation. Since the cluster filtering (iii) combines the 
conductances values, it reduces the distribution variance 
while concomitantly shortening the sample size used in the 
statistical pre-processing of the EMA. Finally, having found 
the saddle points inside throats, one can evaluate locally 
each parameter E. 

2.1.2 Medialness and finite voxelization corrections 

One additional corrective step is required for every saddle
points obtained and filtered. The skeleton quality has 
indeed not been assessed and building a reliable and 
robust skeleton in such complex geometries is known 
as a difficult, method-dependent, and parameter-sensitive 
issue. The benchmarking of skeletonization algorithms 
has been partially neglected in past studies and even if 
it would be necessary to deepen this aspect, it is far 
beyond the scope of this contribution. It would necessitate 
ground-truth evaluation obtained in various families of 
rock types and many other systematic comparisons. Here 
we adopt, a pragmatic approach, proposing a medialness 
correction to impair skeletonization default. The medial-line 
is characterized as the following locus of voxels, 

M = {xk E P; 1 min (V DT(xk))}, 
Xk 

(2) 

denoting P; as the perpendicular plane to the skeleton's 
local tangent at the saddle point of position Xi, and DT(x) 
as the distance map transform application. 

For each pair {xi, r,i}, the 9 x 9 x 9 neighborhood 
is thresholded for voxels having a lower gradient value 
V DT(xi) (see Fig. 4a). The candidates for medialness 
correction consist in a set of distinct connected components 
voxels. The barycentric position {xc,j} can be defined for 
each connected components candidate (see Fig. 4b). To 
select the proper location for the medialness correction 
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interpolation, green circles are local minima, and black highlighted 
circles are the candidate selected by filtering. On c, pink circles are 
considered areas for clustering 

among the candidates, we consider that it has to be a saddle 
point value of the distance map transform field. Hence, 
the proper candidate should both be a local maxima inside 
plane P; and a local minima along the medial axis direction. 
The selected candidate located in x� should thus verify the 
geometrical constraints, 

x� = �nl(xi · Xc,j}I, 
C,J 

(3) 

in order to constrain it to be the nearest point to the 
perpendicular plane Pi (see Fig. 4c). This medialness 
corrective step maximizes the local radii values of the saddle 
points, and so it does to the associated local conductances. 

The second correction step, i.e., finite-size voxelizations 
correction, is required because when the number of voxels 
inside each throat is small (typically smaller than five), the 
voxelization of the geometry has non-negligible influence 
on the numerical evaluation of local conductances. 

As a matter of fact, any numerical computation is sensitive 
to voxelization. Image-based geometrical approach consists 
in finding the best approximation ro;b of the local radius
ro using the distance transform map. Obviously, the 
distance transform directly suffers from voxelization defects 
leading to an approximate radius roib· Under low Reynolds
assumptions in the tube, the local conductance (resulting 
from a Poiseuille profile) gib can be analytically estimated 

4 

rr ro;b g;b = --.
8J.L 

2.1.3 Throat conductance evaluation 

(4) 

The local conductance gc is the pre-factor which relates 
the local pressure drop !).p and the fluid flux q inside each 
throat 

gc 
q = -1).p (5)



Fig. 4 Sketch of the medialness 
correction geometrical 
algorithm: a the 9 x 9 x 9 
neighborhood of the selected 
(red) dot is threshold for area 
with a lower value of V DT(x), b 
candidates are tagged in orange 
and their barycenter is found (it 
results in one point per area), c 
the media! axis is reported with 
a red line (a straight Iine in this 
simple case) while the black Iine 
represents the skeleton. The red 
dot is the saddle point found 
along the skeleton, when 
traveling across. The black and 
blue points are medialness point 
correction candidates. They are 
maxima of distance transform, 
verifying relation (2). The blue 
point is finally the one selected 
as being the cl oser to the (gray) 
plane P;, locally perpendicular 
to the skeleton 's local tangent at 
the saddle point location 

(a.) 

(c) 

Using an asymptotic approach similar with the one 

derived in [39] in two-dimensional configuration, it is 

possible to show that (cf. Appendix A) the effective 

conductance of each throat is given by the discrete 

contribution of conductance in each critical point previously 

defined (see Section 2.1.l), when E = .jrorzz « 1 with 

'zz being the second derivative of the throat's radius at the

saddle point (which is a fair approximation of the surface 

curvature, at this point) 

2./2 ,: 
gc=---.

5 E 

(6) 

This result is consistent with the results available in [9]. 

2.2 lmage-based EMA method 

This image-based EMA method is an extension to 3D 

sample of the critical point EMA method previously 

proposed in the context of fracture flows modeling [38, 54]. 

The critical point approach is based upon the approximation 

that the main pressure drops happen at most constricted 

throats which then drive the flow. Hence, a detailed local 

description at these spots should provide a good estimate of 

the transport properties. In some sense, this approximation 

is a first-step upscaling associated with a lubrication 
to Stokes matching. The EMA is used to approximate 

a randomly connected conductance network. The EMA 

is valid when the considered network is far from the 

(b) 

geometrical percolation threshold, i.e., one needs to build 

a pore-to-throat network whose links connect the input 

faces to the output faces in most cases. It can be noted 

that the second constraint is also implicitly adopted when 

using DNS to evaluate permeability since simulation on 

non-percolant samples is not possible. 

In order to estimate the permeability, the proposed EMA 

uses local estimation of the conductance using Eq. 4 or 

Eq. (6) at the pore throats to form new pairs {xi, g,i}. 
Introducing the PDF of the conductances gn as p(g11),
the following integral equation can be solved for the 

macroscopic conductance G11 [54]: 

lo
oo g" - G11 

+ ZG 
p(g11) dgn = 0 

0 gll n 
(7)

using the reduced network coordinance Z, with z the 

coordinance, i.e., the number of incident paths inputting and 

outputting from a pore (respectively network's node), 

z 
Z=--1. 

2 
(8) 

In order to solve (7), it is required to derive the PDF 

p(gn). It is done using kernel density estimation (l(DE)

library [15, 26] with asymptotic mean integrated squared 
error (AMISE) bandwidth estimator. As the conductances 

are physically defined to be positive, the kernel is 

approximated to be Gaussian distributed for the logarithm 

values of local conductances ln(g11). The last step is then to 

solve (7) for G11 .



The complete image-based EMA algorithm presented in
Sections 2.1 and 2.2 is synthetized on Alg. (1) as on Fig. 5.

Algorithm 1 Image-based EMA algorithm step by step.

Require: Binarized core sample image
1: Get the Distance Transform [Euclidian]
2: Get the Skeleton [Torsello corrected Hamilton-Jacobi]
3: Evaluate the reduce coodinance Z (8) of the Skeleton-

network
4: for all network edges ei do
5: Localize local minima
6: Correct medialness
7: Filter obtained values
8: Evaluate conductances {gn} from Eqs. 4 or 6
9: end for

10: Construct PDF p(gn) using KDE [Gaussian kernel with
AMISE optimal]

11: Solve the EMA integral (7)

2.3 Algorithm complexity

Referring to Fig. 5, the bottleneck step is found during the
image processing stage. Local treatments are performed on
a restricted set of voxels, the dimension of which is orders
of magnitude lower than the whole core sample image. The
EMA system solution is computationally cheap for sim-
ilar reason. Both computational complexity and memory
cost are then driven by the implementation choices for the
distance map and skeletonization. The distance transform
is implemented following the algorithm proposed in [34].
It consists of an approximation of the squared Euclidian
distance using sequential directional sweeps after initial-
ization. The computational complexity is O(6n) in terms
of numbers of operations, n being the number of vox-
els of the image. The memory cost is also dominated
by O(am) for peak-use, a being the pre-factor depending
on the chosen type (i.e., float or double) to store dis-
tance information and m the byte size of the initial binary
image. The skeletonization used in this work is based on
[16]. It consists in two stages, the first is associated with
the discovery of the end points having an O(n) com-
plexity, the second being graph traversing/discovering also
of O(n) complexity. The memory costat peak reaches
O((5a + 2)m) because of flux correction steps [55] which
are required to produce the final skeleton. The above-
mentioned computational complexity and memory cost are
confirmed by various test runs on subdivisions of a 1283

voxels binary image reported in Table 1 on an Intel(R)
Core(TM) i5-10210U CPU @ 1.60GHz with 2 x
4096 MB DDR4 RAM. ib-EMA allows to run up to 10003

Fig. 5 Graphical representation of the proposed image-based EMA
algorithm for permeability estimation directly from 3D binary images

core sample on a desktop station. Finally it is interesting to
mention that efficient parallel implementations for both dis-
tance transform [19, 32] and skeletonization [20] are active
research topics.

Running the same 1283 voxels image with the CFD
OpenFOAM tools [23, 25], the observed memory cost
also scales linearly, i.e., αn. However since the α factor
is close to 50, it leads to a memory cost of 128Mb for
a 1283 voxels image. This memory cost reaches 230Gb
for a more realistically sized core image of 10003 voxels.
This impediment running CFD computation for larger



Table 1 Computational and 
space complexity of ib-EMA 

algorithm tested on 1283 core 
images using gperf tools [49] 

Distance map Skeletonization 

Case (size) 

Eighth (264Kb) 

Quarter (520Kb) 

Half(l.lMb) 

Whole (2.1Mb) 

Order 

Peak (Mb) 

2 

5 

10 

20 

� o(8m) 

image samples on a desktop laptop. On the other hand, 

the computational complexity of CFD computations is 

limited by two key hindrances: the void space meshing 

and the Stokes solver. The first one is the subject of 

ongoing optimization, while the Stokes solver iterates 

until convergence using a classical implementation of a 

geometric agglomerated algebraic multigrid. The numerical 

cost of the implemented method has been tested and it scales 

linearly with the size of the problem ranging from 2 min on 

our small 1283 voxels image to a 16-h run on a 10003 voxels 

image on a single core. 

3 Results and discussions 

3.1 Validation 

To validate the method, we confront it with direct numerical 

simulations on simple and idealized objects, simply solving 

Stokes' equation. These simulations are carried out with the 

open-source finite volume library OpenFOAM [57] which is 

widely used in the community. Notably, the very same CFD 

software was also used in the reference study [41] in order 

to characterize real rocks. Furthermore, OpenFOAM is also 

used in several recent studies dealing with real porous media 

[23, 25], and also for other physical configurations such as 

two-phase flows [42], particle transport [ l l], inertial flows 

[36], or compressible flows [24]. 

3.1.1 Straight tube 

The finite-size voxelization correction is illustrated inside a 

straight cylinder having a diameter ro in Fig. 6. Changing 

the number of voxels (from l to 25 per radius) used to 

discretize the circular edge of the cylinder, we compare 

the true theoretical conductance with the image-based 

geometrical approach as well as with a finite volume CFD 

numerical evaluation (over the structured grid of voxels). 

These grids are castellated, mimicking the voxelization of 

original binarized image. The chosen procedure neither 

introduces bias nor needs additional smoothing parameters 

for surface generation. 

Runtime (ms) Peak(Mb) Runtime (ms) 

370 11 39,060 

670 23 84,160 

1280 46 178,540 

3980 93 368,310 

o(n) � o(42m) o(n) 

Figure 6 then displays the ratio between the numerically 

estimated conductances and the analytical value for various 

degrees of voxelization. It is interesting to observe that 

the image-based evaluation always under-estimates the 

conductance. However, for small voxel number inside the 

cylinder, we hereby provide a simple way to correct the 
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Fig. 6 Illustration of finite-size voxelization effect on the evaluation of 
the conductance inside a tube. Example of voxelized tube section for 
a 4-voxels per radius and b 8-voxels per radius. c compares predicted 
permeability with those obtained with direct numerical simulations 
(blue buJJets), basic distance map (w/o corr, upper brown star) , and the 
proposecl finite-size correctecl distance map (w corr, upper recl triangle 
symbols). Ali estimations are normalized by the expected theoretical 
result, so that one is the expected asymptotic li mit 



image-based estimate. Our voxelization correction applies 
when there are various candidate voxels for being the local 
maxima of the distance transform map, i.e., various voxels 
for which the distance map has a maximal value. In the 
cylindrical case, in the transverse plane, the four central 
voxels are all possible candidates for the local maxima of 
the aperture map. Our voxelization correction consists in 
adding to the value of the distance map inside the candidate 
voxels, the average distance between each candidate and the 
barycenter of the candidate's group. From doing so, a small 
correction can be applied to roib, providing a much better 
estimate of the local conductance, as shown in Fig. 6. 

3.1.2 ldealized throath 

The surface curvature approximation is compared into an 
idealized constriction with a CFD approximation for various 
E values. The throat radius is defined by r(z) = R0 -

a sinc2f z) over a half-period. This leads to a parabolic 
variation of small parameter E with respect to a variations 
with a maximal value for aM = Ro/2. The cases where 
a E ]O, aM[ are qualified as "near-tube" cases, whereas 
when cases with a > aM are considered as "constricted" 
ones. Monitoring the conductances values obtained using 
direct numerical simulations (DNS) of Stokes' equations 
will allow us to assess the validity range of Eqs. 4 and 6 
as the throat's curvature increases. The conductances values 
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107 
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105 tube 
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Fig. 7 Illustration of curvature corrected formula on an ideal throat. 
a and b exemplify two generated throats. a (R0, a) = (25, 5) and b 
(R0, a)= (25, 20). c Variation of conductance values with respect toa 

parameter either computed by curvature corrected formula (6) in red or 
(4) for maximal tube or minimal tube (resp. horizontal and decreasing 
black lines). d ONS relative errer to a reference conductance versus

 

associated with Eqs. 4 and 6 are reported versus a = R0 -r 0 

at the constriction in Fig. 7 and confronted to the values 
obtained from DNS. These simulations have been run on 
castellated grids extracted from generated binarized images, 
so that the smallest radius is always composed of ten voxels 
(ensuring mesh convergence as shown in Fig. 6c). They 
validate (6) in the white zone (i.e., for a > 8) since it 
asymptotes the theoretical curve (in red in Fig. 7) as the 
throat gets more and more constricted. The L2 relative error 
between the developed model and DNS values versus small 
parameter E is also reported in Fig. 7d. The model is taken 
to be (4) for near-tubes cases and Eq. 6 for more constricted 
ones, following the best choice illustrated in Fig. 7c. 

3.2 Method's parametrization 

Like most image-based methods, the hereby proposed one 
requires parameters that are calibrated from the observations 
and analysis of the results, depending on the original image 
quality and resolution. This is the case for the flux threshold 
in the skeletonization step where several values have been 
tested to finally define the value of the threshold limiting 
the appearance of spurious branches. The same applies 
to neighborhood box size of the medialness geometrical 
correction step which must be enough large to capture the 
possible neighboring points without varying the initial box 
size. Note that the tests carried out permit to converge 

(b) 
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smalJ parameter E. The reference conductance is taken as in Eq. 6 
for the minimal tube or radius r O for a < 8 (gray area on c) and as 
in Eq. 6 for a > 8 (white area on c). The blue circle at the end <0f 
(a > 8) branch exhibits an error increase in ONS values due to a poor 
discretization at the throat 
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Fig. 8 Rock facies of core samples from [41), respectively, a Ketton and b Estaillades limestones and c Doddington and d Bentheimer sandstones 

towards an optimal box size which is dependent on the 

image resolution at the throat 

In addition, some heuristic choices have been made 

for the different methods and algorithms used but others 

would also be justifiable and operable without changing 

the principle of the EMA developed herein. This is notably 

the case for the spline interpolation method used for 

radius evaluation. Since permeability is highly dependent 

on conductance evaluation (and thus on radius), we found 

appropriate to use a high order method rather than a simpler 

linear or cubic method. Similarly, the KDE associated with 

the AMISE bandwidth estimator allowed us to obtain easily 

integral distributions but alternatives could possibly be just 

as effective. 

3.3 Permeability estimation on real porous media 
samples 

The main interest of the proposed method is to provide a 

fast and reasonable estimate of permeability directly from 

the 3D images, without using CFD, e.g., finite volumes 

or lattice Boltzmann methods. Thus, a set of images 

representative of the various rocks encountered in DRP 

bas been chosen for testing the proposed method. As a 

preamble to this section, we can observe on Fig. 2b that 

the parameter E is sufficiently small for the considered rock 

samples (mode is about 0.2). This confirms the relevance 

of the considered asymptotic approximation, a prerequisite 

of our image-based EMA. The core samples considered for 

the image-based EMA validation have been introduced in 

Secion 2. A selected slice of each of them is presented in 

Fig. 8. These data have been used in several studies [l , 

11, 12, 41), as mentioned in [41). The images have been 

Table 2 Global information on 
core samples used to evaluated 
the method 

Resolution (µ,m) 

Porosi ty ( -) 

Permeability (10-12 1112)

classically obtained using micro-computed tomography and 

binarized using a watershed segmentation algorithm. For 

each image, formed of 10003 voxels, the resolution is 

reported in Table 2 along with the numerical reference 

values for porosity and permeability. We have cross

validated the DNS permeability evaluations provided in [41) 

and obtain very similar results. 

The relative error of the proposed image-based method 

to the reference DNS values [41) is presented in Table 3 

depending on the three parametrization methods: the 

cylindrical (4) conductance with lowest filtering, the 

cylindrical (4) conductance with cluster filtering, or the 

curvature corrected (6) conductance with lowest filtering. 

Note that the use of clustering-based filtering in the case 

of curvature approximation is not tested since it does not 

represent a consistent choice. As a matter of fact, clustering

based filtering is based upon the proximity of the throat 

center without considering individual curvature. As for the 

CFD permeability evaluation, the EMA method is used 

considering the largest connected component of the voiid 

space in the binarized images. However, one bas to keep in 

mind that the image-based EMA method does not require 

to remove non-percolating components contrary to CFD 

evaluations. However, for the considered images, the non

percolating components represent a smalt percentage of the 

total empty space and does not significantly modify the 

conductance statistics. 

CFD computations display finite-size sensitivity, whose 

origin is discussed in Section 3.1.l . As stressed in [23, 

25) even if CFD provides a sensible approximation of the

permeability, it is difficult to assess its precise accuracy

even when the discretization condition of a minimum of

five voxels per constriction is fulfilled. It might turn that,

Ketton Estaillades Doddington Bentheimer 

3.00 3.311 2.693 3.003 

0.132 0.109 0.194 0.216 

5.91 0.218 3.76 3.55 

These data are provided in [ 41]. The original binarired images bave a size of 10003 voxels. The permeability 
evaluations are obtained using CFD for a spatial discretization equivalent to the image voxels one 



Table 3 Relative error of the
proposed image-based EMA
method to DNS results
provided in [41] for
permeability estimations

Ketton Estaillades Doddington Bentheimer

Cylindrical approx. 38% 100%+ 63% 57%

+ Filter lowest

Cylindrical approx. 28% 100%+ 51% 44%

+ Filter cluster

Curvature approx. 6% 100%+ 20% 21%

+ Filter lowest

refining the mesh below the image resolution, result in a
noticeable influence on permeability evaluations.

Hence, using the most favorable parametrization (last
line of Table 3) provides for three typical samples (Ketton,
Doffington, and Bentheimer) a value of permeability close
to 10 to 20% of the value given using CFD. Furthermore,
whatever the chosen parametrization, the EMA method
provides poor predictions for one sample (Estaillades). This
result was expected since this sample is very close to
the percolation threshold, a specific case for which EMA
method fails. This type of rock is a carbonate, well known
for their very strong heterogeneities, closer to a disordered
fracture/matrix model than a pore/throat network. On the
contrary, Ketton sample is similar to the compaction of
nearly spherical objects. In this case, one can observe that
the estimation is clearly improved using curvature corrected
approximation.

Now discussing the variant of the EMA method, provided
in Table 3, it should be noted that clustering the saddle
point conductances has a beneficial effect when considering
the tube-like (4) conductance model. Since there is no
geometrical correction for taking into account the local
curvature of the throat with this model, the combination of
tube-like approximations in series for the various minima
of a throat provides an improvement compared with only
considering the lowest constriction. On the other hand,
the use of curvature correction for single constriction
consideration improves the estimation for each case and
even more in the Ketton case.

Hence, for porous media sufficiently far from percolation
threshold, we found that the proposed image-based CFD-
free method provides a satisfactory approximation of the
permeability. These results also confirm the relevance of
a “critical-point” approach to pore-scale modeling. Indeed,
we found that the small parameter ε related to the principal
curvature ratio at the throat’s saddle points is always small
enough so as to justify the use of lubrication approximation
inside the throat. To our knowledge, this important
geometrical issue has not been reported previously from
real images in core samples. We believe that other pore-
scale modeling problems might benefit from this asymptotic
framework.

From the construction of the methods arises the
definition of a statistical representative sample similarly
to a representative elementary volume. Reaching this limit
is attempted in sub-sampling core images. Indeed, as
long as the sub-sampling provides enough data, while
not drastically changing the pore-size distribution, the
algorithm should then still give accurate results. This is
tested on the previously presented type of rocks. The results
are summarized on Fig. 9. The whole set of core images
are then divided into 8 equal sub-blocks and the throat data
are extracted from them. The numerical processing of ib-
EMA is then run onto each sub-block and compared with the
original estimation. The resulting statistics are then reported
in Fig. 9. Despite the cuts, the Doddington and Bentheimer
rocks keep a robust distribution of conductance. They then
lead to the smallest variation from the entire sample. The
sub-sampling is satisfying the elementary representativity
constraint. On the other hand, the Ketton rock, which is
composed of large interconnected pores, is providing highly
variable and deteriorated results after sub-sampling. The

Fig. 9 Subsampling tests from Cartesian grid partitioning of the
10003 voxel images. A boxplot representation of the permeability
estimation is sketched for the four samples previously considered in
Table 3. The ratio between each sub-sample permeability estimation
to the reference image permeability estimation is represented so as
to illustrate the statistical fluctuations resulting from downscaling the
reference volume



Estaillades rock, which is close to the limiting case of non-
percolating rocks, is also leading to up to 30% variation on
the estimates by cutting.

Finally it is interesting to mention that the limitation of
the proposed method regarding geometrical and statistical
properties of the core sample shares many similar features
with other DRP methods. Indeed, in these methods, a
reliable permeability estimation necessitates the sample size
being larger than REV. In the presented method, we also
need the number of pores to be large enough for being robust
to finite sampling effects, but this constraint also holds for
any DRP approach.

However, the proposed method makes it possible
to evaluate the sensitivity to REV without additional
calculation, only in post-processing, and without boundary
condition effects. Finally, a more specific limit of the
presented method is related to the closeness to percolation
threshold. Since EMA is known to provide poor results
near percolation, our image-based application of EMA
also shares this limit. Nevertheless, such limitation is not
absolutely diriment for applicative relevance of the method
since most core samples share porosity around 20% and
most often display largely interconnected structures.

4 Conclusion

In this work, a new image-based pore network method
based upon the identification of saddle points inside
throats coupled with lubrication analysis of the flow has
been developed. It is largely inspired by previous work
on 2D fractures but its adaptation to 3D core samples
has required specific image processing steps as well as
adapted asymptotic considerations. The proposed approach
is validated on simple and idealized objects, and then
compared with the usual CFD method used in the porous
media community for the estimation of permeability on real
objects of large sizes. The obtained results are satisfactory
compared with CFD ones. In addition, this approach has a
distinct potential advantage in terms of computational time.
This efficiency has even room for improvement if the most
detrimental step, e.g., skeletonization could be parallelized,
a task which might necessitate further developments. In
the future, it is also conceivable to couple the proposed
approach with a “thumbnail” imaging method, as long as
some statistical convergence criteria are met.
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Appendix

A conductance of an axisymmetrical tubular
throat

In this section, we show how the leading order approxima-
tion for the conductance inside a tubular throat is given by
Eq. (6). We consider Stokes equation associated with the
velocity field u, the pressure p, and the dynamic viscosity μ

μ�u − ∇p = 0, (9)

inside an axisymmetrical tubular throat having a variable
radius R(z) along the longitudinal direction z, considering
cylindrical coordinates (r, θ, z) (as the one represented in
Fig. 2a). We chose the origin of the coordinate system at
the throat minimum radius r0, so that R(z = 0) = r0. We
consider a finite length throat where a fixed pressure drop
is applied at edges z = ±L/2. Using the usual lubrication
non-dimensionalization u = U(εur , εuθ , uz), where U is
the main longitudinal velocity along the z direction. From
axisymmetry uθ = 0. In the vicinity of the constriction, the
following Taylor expansion of the local radius is

R(z) = r0(1 + 1

2

Rzz

r0
z2 + ...).

Considering tilde dimensionless variables, r = r̃r0, R =
R̃r0 and z = z̃

r0√
r0Rzz

, one finds

R̃(z̃) = (1 + 1

2
z̃2 + ...).

Using ε = √
r0Rzz � 1 as a small parameter, one can

seek for an asymptotic expansion the velocity and pressure

ũr̃ = ũ0
r̃ + εũ1

r̃ + ..

p̃ = p̃0 + εp̃1 + ..

when inserted into the expansion in power of ε of the
operators of the Stokes problem (9) leads to the following
leading order problem

1

r0r̃

∂

∂r̃

(
r̃
∂ũ0

∂r̃

)
− ε

r0

∂p̃0

∂z̃
= 0.

The solution of this problem can be found easily

ũ0 = ε

4

∂p̃0

∂z̃
(r̃2 − R̃2).



Computing the resulting leading order flux q̃0 from
integrating the velocity in cylindrical coordinates between 0
and R̃(z̃) leads to

q̃0 = −πε

8

∂p̃0

∂z̃
R̃4.

Looking for the head pressure loss gradient ∂z̃p̃
0,

∂p̃0

∂z̃
= −8q̃0

πε
R̃−4,

integrating between 0 and z̃, considering p̃(0) = 0 as
pressure reference,

p̃0(z̃) =
[

5

16

√
2 arctan

(
z̃√
2

)

+15z̃5 + 80z̃3 + 132z̃

24(z̃2 + 2)3

](
−8q̃0

πε

)
,

and considering limits for an infinitely long throat,

lim
z̃→+∞

p̃0 = 5ε√
2
q̃0,

finally provides the following conductance for the whole
throat:

Gn = 2
√

2

5

r4

ε
.

References

1. Alhashmi, Z., Blunt, M., Bijeljic, B.: The impact of pore structure
heterogeneity, transport, and reaction conditions on fluid–fluid
reaction rate studied on images of pore space. Transp. Porous
Media 115(2), 215–237 (2016)
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