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Figure S1. The half-cell holder for gas diffusion electrode (GDE) setup; GDE is composed from a 

GDL and a drop casted catalyst layer. 

 

 

 

 

Figure S2. PEM electrolyzer setup 
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Figure S3. SEM images of (a) MoS(mw), (b) MoS(HT, Ar) and (c) MoS(HT, Ar+H2). 

 

The MoS(mw)  sample (Figure S3a) is made up of particle self-assemblies of spherical shape with an 

average diameter around 100 nm. MoS(HT, Ar) and MoS(HT, Ar+H2) samples (Figure S3b and 3c) present 

an irregular shape and micrometer size particles, and MoS(HT, Ar) reveals a smoother surface. 

 

 

Preparation of a-MoSx nanoparticles via chemical oxidation of [MoS4](NH4)2 

 

We describe here the synthesis of the amorphous molybdenum sulfide (a-MoSx) via chemical 

oxidation as previously reported in reference 
1
. We refer to this material (a-MoSx) when discussing 

the Raman spectra (Figure S4) of our molybdenum sulfides materials obtained by microwave 

irradiation and heat treatment. As detailed below, this comparison highlights the differences and 

similarities to the reported coordination polymer amorphous phase in the reference 
1
.   

 

Synthesis: Sodium persulfate (2 mmol, 480 mg) was added to a deep-red solution of [MoS4](NH4)2 

(1 mmol, 260 mg) in water (50 ml) well degassed with Ar. The solution rapidly turned to a dark 

brown suspension which was continuously stirred under Ar for 2 h. When the reaction was over, a 
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dark brown powder was collected by centrifugation, and thoroughly washed with water, ethanol, 

and diethyl ether. This product was dried under vacuum.
1
 

 

 

 

 

Figure S4. Raman spectra (532 nm green laser excitation with low power 0.5 mW) of (a) a-MoSx, 

(b) MoS(mw), (c) MoS(HT, Ar) and (d) MoS(HT, Ar+H2).  

 

In the amorphous molybdenum sulfide (a-MoSx) prepared via chemical oxidation
1
 (Figure S4a), 

peaks from bridging and sharing disulfide ligands ν(S−S)br/sh were found at 555 cm
−1

, while 

terminal disulfide ligand ν(S−S)t were found at 520 cm
−1

. Mo−S bonds were characterized by 

typical molybdenum sulfide vibration mode of ν(Mo3−μS) at 455 cm
−1

 and ν(Mo−S) at 400−300 

cm
−1

, respectively.
1-2

 

 

The Raman spectrum (Figure S4b) indicates the amorphous nature of the MoS(mw) is significantly 

different from the reported coordination polymer amorphous phase made of [Mo3S13]
2-

 discrete 
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building blocks
1
. A further evidence of this assumption is the lack of extrusion of [Mo3S13]

2-
 

clusters from MoS(mw) material as reported in ref. 
1
, a complete dissolution of MoS(mw) in 

concentrated NaOH solution leading to concluding a lack of such clusters by microwave synthesis. 

The Raman features at 800-1000 cm
−1

 have assigned to molybdenum oxides defects
1
 as well as to 

possible presence of molybdenum oxysulfide MoSxOy.
3
  

 

The structure of the molybdenum sulfides obtained by heat treatment depending on the flowing 

atmosphere used during heat treatment, evolving from amorphous to crystalline by changing the Ar 

atmosphere to the reducing,mixed (Ar+H2) atmosphere.  

The MoS(HT, Ar) sample (Figure S4c) shows Raman signatures typical to polymer amorphous 

molybdenum sulfide
1-2

 but less well-defined, without a proper local structure. This could be due to 

the different polymerization level and/or the presence of more binuclear Mo species than [Mo3S13]
2-

 

clusters. 

The characteristics vibrations of crystalline molybdenum sulfide at 382 cm
−1

 (E
1
2g) and 406 cm

−1
 

(A1g) occur consistent with the formation of the crystalline phase in the MoS(HT, Ar+H2) sample 

(Figure S4d).
4 
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Figure S5. X-ray diffraction (XRD) patterns recorded for the different materials synthesized in this 

study. The different peaks are assigned with the following symbols according to previous literature:
 

 c-MoS2;
5-8

  Mo-oxides and  Mo, Fe-oxides;
9-10 

 Fe, Mo-sulfide;
 11

  Fe-sulfides
12
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Figure S6. XPS spectra of Mo 3p region of MoS(mw) (a), MoS(HT, Ar) (b), MoS(HT, Ar+H2)  (c).  

 

 

 

Figure S7. X-ray photoelectron spectroscopy (XPS) spectra of Fe2p. 

 

a b 

c 
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Figure S8. XPS survey spectra of MoS(mw) (a), MoS(HT, Ar) (b), MoS(HT, Ar+H2)  (c). 

 

Determination of the electrochemically active surface area (ECSA) from CV measurements in 

K3[Fe(CN)6] 

 

The ECSA was estimated by cyclic voltammetry using ferricyanide as a redox probe.
13-15

 The cyclic 

voltammograms (CVs) were recorded at various scan rates (e.g.,  = 10, 20, 40, 60, 80 and 100 

mVs
1

) in 10 mM K3[Fe(CN)6] with 0.1 M KCl as supporting electrolyte, under nitrogen degassed 

atmosphere. The applied potential ranged between 0.1 and 0.5 V vs Ag/AgCl reference electrode 

with a Pt counter electrode. The working electrode was a GC electrode ( = 3 mm, 0.07 cm
2
) with 

a drop casted electrocatalyst layer. A catalyst ink including 1 mg of electrocatalyst, 80 µL of 

ethanol, 20 µL of water, 5 µL of 5 wt. % Nafion solution was prepared by sonication. Then, 4 µl of 

the ink were deposited on the GC disk to reach a catalyst loading of 0.55 mgcm
2

. 

Figure S9 displays a series of CVs on the GC/catalyst electrode. The peak reduction current (Ip) was 

plotted as a function of the square root of the potential scan rate (
1/2

). The dependence of the peak 

current on the scan rate is described by the Randles-Sevcik equation at room temperature (1): 

                                                                                                                            (1) 

where:  
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Ip is the reduction peak intensity of the redox couple illustrated in Figure S9 (mA) 

n is the number of electrons involved in the reaction (n = 1 for [Fe(CN)6
3

] / [Fe(CN)6
4

]) 

A is the active area (cm
2
) 

C is the concentration of the bulk solution, K3[Fe(CN)6] (molL
1

) 

 is the scan rate (Vs
1

) 

D is the diffusion coefficient of Fe(CN)6
3

 (cm
2
s
1

) 

The ECSA can be calculated from the value of the slope = Ip/
1/2

, since n, C, D are constant values. 

The diffusion coefficient of Fe(CN)6
3

 (10 mM K3[Fe(CN)6] in 0.1 M KCl) was determinated 

experimentally 
15

 in this study and found to be 3.85  10
6

 cm
2
s
1

.  

 

Table S1. ECSA values of the as-synthesized materials 

Catalyst slope = Ip/
1/2

 ECSA (cm
2
) 

FeMoS(mw) 0.157 2.7  10
2

 

MoS(mw) 0.064 1.1  10
2

 

FeMoS(HT, Ar) 0.022 0.38  10
2

 

MoS(HT, Ar) 0.057 0.98  10
2

 

FeMoS(HT, Ar+H2) 0.017 0.29  10
2

 

MoS(HT, Ar+H2) 0.037 0.64  10
2
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Figure S9. Cyclic voltammograms and peak currents as a function of scan rate on the GC/catalyst 

electrodes in degassed 10 mM K3[Fe(CN)6] with 0.1 M KCl as supporting electrolyte at different 

scan rates. 
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Figure S10. Double-layer capacitance measurements for determining electrochemically-active 

surface area of GDL/FeMoS(mw) and GDL/(FeMoS(mw)+CNTs)  electrodes (catalyst loading: 0.24 

mgcm
1

). (a, b) Cyclic voltammograms were measured in a non-Faradaic region of the 

voltammogram at the following scan rate: (─) 5, (─) 10, (─) 20, (─) 40, (─) 60, (─) 80, and (─) 100 

mV/s. All current is assumed to be due to capacitive charging; (c, d) The cathodic () and anodic () 

charging currents measured at 0.22 V vs. RHE are plotted as a function of scan rate. The double-

layer capacitance of the system is taken as the average of the absolute value of the slope of the 

linear fits to the data.  
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Figure S11. Polarization curves for HER on: (a). GDL/(FeMoS(mw)+CNTs) and (b). 

GDL/(MoS(mw)+CNTs); (N2-saturated 0.5 M H2SO4, scan rate 5 mVs
1

, Ti wire counter electrode, 

catalyst loading 0.97 mgcm
2

) 

 

 

Figure S12. Polarization curves for HER on: (a). GDL/(FeMoS(HT, Ar)+CNTs), (a). GDL/(MoS(HT, 

Ar)+CNTs), (b). GDL/(FeMoS(HT, Ar+H2)+CNTs) and (b). GDL/(MoS(HT, Ar+H2)+CNTs);  (0.5 M 

H2SO4, scan rate 5 mVs
1

, Ti wire counter electrode, catalyst loading 0.97 mgcm
2

) 

 

 

 

 

 

 

 



S14 
 

 

Figure S13. Polarization curves for HER corresponding to two electrode formulations with 

FeMoS(mw) electrocatalyst:  

a). GDL/(FeMoS(mw)+CNTs) - catalyst loading 0.97 mgcm
2

 and mass ratio catalyst:CNTs = 1:0.2,  

10
HER 

= 140 mV 

b). GDL/(FeMoS(mw)+Vulcan) - catalyst loading 0.97 mgcm
2

 and mass ratio catalyst:Vulcan = 

1:0.2, 10
HER 

= 160 mV 

 

The Vulcan is a large surface area carbon black with high corrosion resistance and the most 

conductivity of commercially available carbon support.
16-17

 

 

 

 

Figure S14. Single cell polarization curves for PEM electrolysis (80 °C, continuous line or RT, 

dashed line) using three distinct MEA: (a). Ir black/NRE-212/Pt-C and (b). Ir black/NRE-

212/(FeMoS(mw)+Vulcan). 

 



S15 
 

 

Figure S15. Graphical representation of the accelerated stress test (AST) 

 

Figure S16. Performances of PEM electrolyzers (80 °C) with Pt-C (0.5 mgcm
2

, in gray) or 

(FeMoS(mw)+Vulcan) (4 mgcm
2

, in red) as the HER catalysts and commercial Ir black (2 mgcm
2

) 

as the OER catalyst: potential evolution (E, mV) after 24 h-AST to reach 0.05 Acm
2 

or 0.5 

Acm
2
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Table S2. Performances of PEM electrolyzers at RT and 80 °C 

Cathode catalyst Curren density 

(mA·cm
2

) 

E (V) Reference 

RT 80 °C  

Pt-C 0.05 1.52 1.44 this work 

 0.1 1.54 1.45 

 0.5 1.62 1.50 

 1 1.70 1.54 

FeMoS(mw)+Vulcan 0.05 1.72 1.63 this work 

 0.1 1.77 1.66 

 0.5 1.93 1.77 

 1 - 1.85 

MoS2/C 0.3 - 1.90 18 

 MoS2/RGO 0.1 - 1.90 

MoSx-CB 0.5 - 1.860.03 19 

Mo3S13-CB 0.5 - 1.810.03 

1 - 1.95 

electrodeposited 

MoSx 

0.38 - 1.90
(**) 

20 

FeS2/C 0.5 - 2.00 21 

1 - 2.10 

In all cases, MEAs were prepared using Nafion membrane and Ir-based anode catalyst. 
(**)

 PEM electrolyzer working at 90°C 

C and CB – carbon black, RGO – reduced graphene oxide, CC – carbon cloth 
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