
HAL Id: hal-03033143
https://hal.science/hal-03033143v1

Submitted on 1 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Web-Based Framework for Distributed Music System
Research and Creation

Benjamin Matuszewski

To cite this version:
Benjamin Matuszewski. A Web-Based Framework for Distributed Music System Research and Cre-
ation. AES - Journal of the Audio Engineering Society Audio-Accoustics-Application, 2020. �hal-
03033143�

https://hal.science/hal-03033143v1
https://hal.archives-ouvertes.fr


PAPERS

A Web-Based Framework for Distributed Music
System Research and Creation

Benjamin Matuszewski,
(benjamin.matuszewski@ircam.fr)

CICM/musidance EA1572, Université Paris 8
STMS Ircam-CNRS-Sorbonne Université

Paris, France

This paper presents soundworks, a framework dedicated to prototyping and developing
distributed multimedia applications using Web technologies. Since its first release in 2015,
the framework has been used in numerous artistic and research projects such as concerts,
installations, workshops, teaching or experimental setups. We first present how this diversity
of contexts and objectives permitted to identify a set of patterns able to support recurring needs
of expert users in exploratory tasks. We then detail new developments that have been achieved
to provide better support to these patterns. More particularly, we describe the novel distributed
state management system dedicated at simplifying the implementation of remote control and
monitoring interfaces and, the plug-in system implemented to improve the extensibility of
the framework and foster composition of dedicated functionalities. We believe that these new
developments can provide a solid ground to further research and artistic practices in the area of
distributed music systems. The soundworks framework is open-source and released under
BSD-3-Clause license.

0 INTRODUCTION

The specification and development of the WebAudio
API [1, 2]—alongside Application Programming Inter-
faces (API) such as WebSockets [3] or WebGL [4] and
the possibilities offered by a full-featured scripting lan-
guage such as JavaScript [5]—has permitted to envision
the Web platform [6] as a viable technical platform for ar-
tistic creation and more precisely for computer music prac-
tices [7]. Furthermore, the recent developments of ubiqui-
tous and pervasive computing [8], with the democratiza-
tion of smartphones and large spread of nanocomputers,
led to consider Web technologies as a possible solution for
recurring integration and interoperability issues [9]. These
two complementary aspects therefore authorize to consi-
der the Web as an interesting environment in the deve-
lopment of Networked Music Systems [10, ?, 11]. Moreo-
ver, this novel approach could unfold novel possibilities in
related areas such as multi-source electro-acoustic music
[12, 13] or interfaces for musical expression [14, 15]. In
this context, the development of a dedicated framework,
designed to support both the specificities of the web plat-
form and of computer music research and practices seems
essential.

Indeed, computer music is a field that spans across mul-
tiple disciplines—from scientific to artistic through social

sciences and humanities—and thus gather a great diversity
of goals, skills and methodologies (e.g. experimental stu-
dies, practices-based research). It appears that a common
ground for the support of this diversity can be found in
the concept of experimental systems—as systems compo-
sed of epistemic things and technical objects in constant
evolution and reconfiguration—developed by Rheinberger
[16, 17] and pursued by Schwab in the context of artis-
tic research [18]. We postulate that such epistemological
ground can lead to the implementation of particular pat-
terns [19] in order to support this diversity of research
practices effectively.

soundworks [20]—initiated by S. Robaszkiewicz and
N. Schnell [21] in 2015—is a framework dedicated to
the development of distributed multimedia applications
on the web. It has known two major revisions (in 2016
and 2017) and has been used in numerous artistic and
research projects (e.g. concerts, installations, workshops,
pedagogical or experimental setups) [22, 23, 24]. While
these achievements tended to validate the efficacy of the
framework considered as an experimental platform, they
also permitted to highlight some inherent and recurring
difficulties. The third version of soundworks—initiated
in 2019 [25]—presented in this paper aims to address some
of these difficulties, as well as to provide solid foundations

J. Audio Eng. Sco., Vol. 68, No. 10, author’s prepint, 2020 October 1



Matuszewski PAPERS

upon which environments facilitating the inclusion and
agency of non-expert developers users can be built.

After a short review of the related works (cf. Section 1),
we describe in Section 2 different contexts in which our
framework has been successfully used in last two years,
and which informs us about recurring and important needs
our framework must support. In Section 3, we present an
overview of the framework architecture, philosophy and
basic functionalities. Finally, in Sections 4 and 5, we de-
tail new features dedicated at supporting patterns—namely
remote monitoring and control, composability and extensi-
bility—that we consider of primary importance to provide
an effective experimental platform supporting distributed
music systems research and creation.

1 RELATED WORKS

Max/MSP or Pure Data [26, 27] are well established
environments used since many years by artists and resear-
chers in a wide range of contexts. The success of these
visual programming environments lies in part in their suc-
cessful implementation of certain patterns that permitted
users to create and compose their own application in a
very interactive fashion [24]. However, the environments
also come with their drawbacks in our context. First, there
are not primarily oriented toward distributed applications
and are difficult to operate in large and dynamic networks
of computers. Second, they necessitate the installation of
a software, making applications difficult to distribute and
thus to deploy in large collective settings, precluding new
forms of public and collective participation.

On the Web platform, attempts have been made to im-
plement equivalent environments [28]. However, while in-
teresting, these tools are far for from being as mature as
the original ones. Also, they tends to neglect one of the
most interesting aspects of using the Web platform, na-
mely the network. Finally, some frameworks dedicated to
network music systems, such as Rhizome [29] or Nexus,
[30] have been proposed. While similar to soundworks
in their scope, these tools do not seem to be maintained or
in active development.

2 CONTEXTS

In this section we review different contexts in which
we deployed web-based distributed systems implemented
using our framework. Each of these contexts will be illus-
trated with a particular project that have been developed
in the last years. Note that while these 3 applications have
been designed and developed with the previous version of
soundworks, two of them (i.e. Playground and CoMo)
have already been ported to the novel version. These rewri-
tings permitted to simplify the code base, and moreover,
enabled new artistic and research possibilities, assessing
thus the concepts and design decisions presented in this
paper.

2.1 Concerts and Performances
Playground is an application that allows a composer /

performer to remotely distribute and control audio mate-
rials rendered on the smartphones of the audience.

FIGURE 1. On the left, Garth Paine performing Future Perfect.
On the right, screenshots of two of the four control interfaces of
the Playground application.

The application expose several dynamic control inter-
faces, optimized for touch interfaces such as tablets (see
Figure 1), that can be jointly used :

— The first one allows for triggering sound files on a
given smartphone represented on the screen as a co-
lored square.

— The second one allows for controlling granular syn-
thesis among subsets of the audience’s smartphones.

— The third one is dedicated at controlling the spa-
tial rendering of audio files synchronized among all
smartphones.

— Finally, the fourth one is dedicated at managing all
presets and configuration variables as well as at as-
signing particular sound banks to the other control
interfaces.

In this application, a number of strategies are implemen-
ted to provide the composer and performer a dynamic envi-
ronment in which they can test sonic material and configure
many aspect of the synthesis (e.g. dynamic update of sound
files, creation of presets) in the studio, but also have use-
ful feedback on the state of audience’s smartphones (e.g.
loading states, position in concert hall) during the perfor-
mance.

Playground has been designed together with the compo-
ser Garth Paine and implemented for the creation of Fu-
ture Perfect, an immersive 3D audio visual performance 1.
Since then, the application has been used for the crea-
tion of several pieces—by the composer himself or other
composers—, as well as in workshops and pedagogical si-
tuations.

2.2 Installations
The context of an installation comes with different

constraints and requirements than the ones of perfor-

1. Future Perfect has been composed and realized during a re-
search / creation residency that took place in 2018 between Ircam
and ZKM.

2 J. Audio Eng. Sco., Vol. 68, No. 10, author’s prepint, 2020 October



PAPERS Soundworks

mances. In such contexts, the usage of so-called nano-
computers is interesting for several reasons [24], the most
important one being the simplicity they offer in term of
orchestration and tasks automations compared to smart-
phones.

FIGURE 2. On the left, screenshot of the centralized control-
ler developed for the installation Biotope composed by Jean-Luc
Hervé. On the right, session of measurement during the EmoDe-
mos research project.

For example, Biotope [31], composed by Jean-Luc
Hervé 2, is a generative and interactive installation that
features 27 Raspberry Pi nanocomputers running Node.js
soundworks clients. The audio synthesis is achieved
using a Node.js wrapper on top of the libpd library [32, 33].

In this system, a number of strategies have been imple-
mented to provide a dynamic and testable environment to
the composer and to the computer music designer. Among
them, we have implemented a centralized controller dedi-
cated at controlling and monitoring the state and parame-
ters of each agent in real-time. For example, each square
in Figure 2 right, represents a musical agent in its relative
position in the exhibition space, the different colors giving
an overview of their state in real-time.

2.3 Scientific Settings and Measurements
A third important context of computer music researches

relates to scientific experimental research. In this context,
some the characteristics of our framework such as clock
synchronization [34] enabled novel possibilities in scienti-
fic experimentations.

For example, the project EmoDemos [35] included an
experiment dedicated at measuring precision and synchro-
nization of the movement in groups of children practicing
music (see Figure 2, right). This experimental setup has
been developed on top of CoMo—an application dedica-
ted at creating movement-based distributed Interactive Ma-
chine Learning scenarios—[15], and allowed to record the
motion sensors of smartphones tagged with synchronized
timestamps. The portability and simplicity of deployment
of the system permitted us to measure almost 200 children,
divided by groups of 10 to 15.

Once again, the system exposes a dedicated client to
control and monitor the state of the application, allowing
the experimenters to prototype and refine the protocol as
well as to ensure smooth measurements in a very constrai-
ned timeline and environment.

2. Biotope has been realized at Ircam and created at the Centre
Georges Pompidou, Paris in the context of the exhibition “La fa-
brique du vivant”

CoMo has also been used in different settings such as
music, design and dance researches, artworks [36] and
workshops.

2.4 Common Requirements and Patterns
These different examples show the large diversity of

contexts a framework dedicated at computer music re-
search and creation must support. Furthermore, they all
implied intertwined periods of research, development,
composition and tests in the laboratory or the studio (pos-
sibly with musicians and performers), that deepen further
the diversity of spaces and temporalities involved.

To adapt to these different contexts and their inherent
constraints, the technological system must thus be easily
developed, modified or extended. This leads us to consider
that two design aspects are of primary importance in the
development of our framework.

First, the importance for remote monitoring and control
that allows a single user in working situation (e.g. compo-
ser, researcher) to operate the distributed system—possibly
composed of hundreds of devices—as a “single coherent
system” [37]. We will describe in Section 4 how our frame-
work proposes to support and facilitate the implementation
of such functionality.

Second, the importance of being able to easily reuse
existing functionalities but also to extend the framework
with novel and dedicated components, to support explora-
tory workflows. Such problems can be addressed by intro-
ducing and supporting composability and extensibility in
the system. We will describe in Section 5 how we propose
to promote such aspects in soundworks.

3 ARCHITECTURE OVERVIEW

In this section, we present some high-level and general
aspects of the soundworks framework. We present first
the general architecture and scope of the framework, and
second, a formalization of its most basic functionalities.

3.1 General Principles
Since its inception, soundworks has been dedicated

to simplifying the development of web-based and distribu-
ted real-time musical systems. Applications created using
soundworks follow a star network topology centered
around a server written using Node.js (see Figure 3). In
these applications, clients can have multiple responsibili-
ties (e.g. audio rendering, visual rendering, control) and be
of different kinds (e.g. mobile, desktop, nanocomputers).

In previous versions, the framework was mainly focu-
sed on mobile applications and therefore privileged certain
characteristics of these platforms (e.g. graphical user inter-
face, usability). However, to support more diverse applica-
tions and use-cases, it must evolve toward more modula-
rity and extensibility considering both software (e.g. inte-
gration of third party components and libraries) and hard-
ware (e.g. integration of IoT elements). In this objective,
the scope of the framework has been refined and narro-

J. Audio Eng. Sco., Vol. 68, No. 10, author’s prepint, 2020 October 3



Matuszewski PAPERS

FIGURE 3. Overview of the architecture of a typical
soundworks application.

wed down to focus only on four key aspects : initialization,
communications, distributed state management and plug-in
host for external and dedicated functionalities. As a conse-
quence, a number of functionalities (e.g. templating, gra-
phical and audio rendering) have been removed from the
core of the framework and delegated to external and spe-
cialized libraries. These developments also permitted to re-
duce the API surface area of the framework, the number of
dependencies, and finally improved its maintainability and
learnability.

3.2 Initialization and Communications
The most basic functionality exposed by the frame-

work, is to easily bootstrap an application by taking
care of initializing processes and communications. Figure
4 summarizes the initialization process common to all
soundworks clients :

— The init step consists in connecting two WebSo-
ckets to the server, one dedicated to JSON compliant
string data and a second one to binary data. The API
of both sockets is similar and exposes a simple pu-
blish / subscribe interface.

— Once sockets are connected, the plug-ins initiali-
zation can start. To support dependencies between
plug-ins, soundworks can create a dependency
graph start each plug-in accordingly.

— Finally, when all plug-ins are in a ready state the
application specific code (called Experience in
soundworks’ terminology) can start.

FIGURE 4. Initialization steps of a soundworks client, mobile
browser or Node.js process running on embedded hardware.

Figure 4 also illustrates a novel feature of the fra-
mework that enables the seamless implementation of
soundworks clients in the two main JavaScript en-
vironments : browsers and Node.js. Indeed, while this
approach has already been tested and deployed in a pro-
duction setting (cf. 2.2), the novel version the framework
properly integrates it by making most of the code compa-
tible to both platforms. This novel feature should foster
IoT approaches [38, 24] by simplifying the creation of
applications composed of diverse type of clients (e.g.
smartphones, nanocomputers).

4 DISTRIBUTED STATE MANAGEMENT

An important novel feature of soundworks is the in-
tegration of a distributed state management system. This
component is dedicated to support and simplify the im-
plementation of remote control and monitoring functiona-
lities.

Since the introduction of the Flux pattern proposed by
Facebook [39], usage of libraries that enforce unidirectio-
nal and circular data flow in the application is considered
a good practice among the JavaScript community. In our
case, using such pattern that consider rendering as a pure
function of the state, could therefore be very interesting,
as the state of any node could be modified from a remote
control interface in a transparent way for the node itself.
However, existing libraries are not firstly designed for dis-
tributed applications and are difficult to adapt to our speci-
fic context for two main reasons. First, they do not forma-
lize nor integrate the notion of discrete and volatile events
very common in our applications (e.g. triggering a sound).
Second, they do not provide a simple way to synchronize
states across several nodes in the network. To tackle these
issues, we designed a novel component implementing such
unidirectional and circular data flow approach, and adapted
to the particular requirements of our applications.

4.1 Concepts and Requirements
In our contexts, the application of such an unidirectional

and circular pattern presents certain particularities illustra-
ted in Figure 5.

FIGURE 5. Conceptual overview of a state management system
enforcing unidirectional and circular data flow in a distributed
context.

4 J. Audio Eng. Sco., Vol. 68, No. 10, author’s prepint, 2020 October



PAPERS Soundworks

First, the state of every client has to be kept synchro-
nized server-side. The rationale for this design strategy
stands in the importance of being able to remotely moni-
tor and control any client of the system from a centralized
point. Indeed, the possibility to dynamically interact with
any node of the network, and the rapid feedback loop it en-
ables, is of primary importance in working situations. Fur-
thermore, it appears to be crucial in exploratory contexts
(such as artistic and research activities) where the final ap-
plication cannot be specified beforehand and emerges from
an iterative process.

Second, Figure 5 highlights the need of a certain gra-
nularity in the definition and synchronization of the states.
More precisely, while some variables and parameters (na-
med globals in Figure 5) needs to be accessible to every
client (e.g. master volume, mute), the particular state a
client (clients[2] in Figure 5) should not be shared
with all its peers. It only needs to be monitored or control-
led by particular types of clients dedicated to authoring and
/ or performance situations.

4.2 Protocol and API
To fulfill these requirement while preserving the idea of

unidirectional and circular flow between actions, data and
rendering, we designed a simple protocol and implemented
a new component. The main principles of the protocol we
propose are :

— Allow any node to create a new state from a declared
schema.

— Allow to keep the state synchronized with the server.
— Allow any node to observe new states created on the

network.
— Allow any node to attach to a state created by ano-

ther node.

Figure 6 illustrates a generic scenario enabled by this
protocol. A client (named controller) observes the ser-
ver and attach to the state created by another client (na-
med player). Once attached, the controller receives
a notification each time the state is updated by its creator
(or any other attached node), enabling remote monitoring.
The controller can also update values of the attached state,
enabling remote control. At any moment, the controller can
detach from the state and stop receiving update notifica-
tions 3.

The protocol is abstracted behind a reduced API illus-
trated in the pseudo-code example of Figure 7. This simple
example also highlights two interesting aspects of the com-
ponent :

— The complete abstraction of network communica-
tions, allowing users to focus on the application logic
rather than routing of network messages.

— The possibility to use schemas declarations to gene-
rate controls and monitoring interfaces, simplifying
fast prototyping and testing of ideas as well as im-
plementation of dynamic and complex interfaces.

3. Note that no particular guard has been implemented to
prevent race conditions, therefore the last event received wins.

FIGURE 6. Overview of the protocol designed for the
soundworks state management system.

1 // SERVER-SIDE
2 const synthSchema = {
3 volume: { type: 'float', min: -80, max: 6 },
4 trigger: { type: 'any', event: true },
5 };
6 stateManager.registerSchema('synth', synthSchema);
7
8 // CLIENT-SIDE
9 const playerState = await stateManager.create('synth');

10 playerState.subscribe(updates => {
11 for (let [key, val] of Object.entries(updates)) {
12 if (key === 'volume') {
13 mixer.volume = val;
14 } else if (key === 'trigger') {
15 synth.trigger();
16 }
17 }
18 });
19 // ...later (or from any other attached node)
20 playerState.set({ volume: -6 });

FIGURE 7. Pseudo-code - Main aspects of the soundworks
state manager API.

The simplicity of these synchronized data structures also
enables more advanced uses of dynamic composition of
states or distributed hierarchical state machines.

5 A HOST FOR PLUG-INS

Another important evolution of soundworks lies in its
ability to act as a plug-in host for extending its basic func-
tionalities. We believe this feature will also to enhance mo-
dularity, allowing to combine predefined components for a
specific application, but also to simplify maintenance and
evolutions of both the framework and the applications. A
number of plug-ins dedicated at synchronizing clocks, re-
cording data, parsing and watching the file system, to name
a few, are already available.

In this section, we first present a technical overview of
the implementation and registration of a soundworks
plug-in. Second, we illustrate this feature with two novel

J. Audio Eng. Sco., Vol. 68, No. 10, author’s prepint, 2020 October 5



Matuszewski PAPERS

components dedicated at runtime distributed scripting and
logging of arbitrary data.

5.1 Implementing and Registering Plug-ins
Thanks to the dynamic nature of the JavaScript lan-

guage, the implementation of a new plug-in is relatively
simple.

1 // export a factory function
2 export default function pluginFactory(AbstractPlugin) {
3 return class DelayPlugin extends AbstractPlugin {
4 constructor(client, name, options) {
5 super(client, name);
6 this.options = this.configure({ delayTime: 1 }, options);
7 }
8
9 start() {

10 super.start();
11 // emulate asynchronous bootstrapping task 1
12 setTimeout(() => {
13 // notify manager that the plugin is started
14 this.started();
15 // emulate asynchronous starting task 2
16 setTimeout(() => {
17 // notify manager that the plugin is ready
18 this.ready();
19 }, this.options.delayTime * 1000);
20 }, Math.random() * 1000);
21 }
22 }
23 }

FIGURE 8. Pseudo-code - Main aspects of the implementation of
a soundworks plug-in.

Figure 8 illustrates several important aspects of the im-
plementation of a new plug-in. First, the module exports
a factory function that itself returns the plug-in class de-
finition. This simple pattern allows soundworks to dy-
namically pass the AbstractPlugin parent class to the
plug-in factory function and thus avoid hard-coded and cir-
cular dependencies between the plug-in and the host. Se-
cond, it shows (cf. start method) the different states that
the plug-in must report to the host. Indeed, reporting these
steps are important to be able to deal with all the different
asynchronous tasks that has to be performed (e.g. network
communication, particular GUI and user interactions) du-
ring the initialization of the application.

1 import { Server } from '@soundworks/core/server';
2 import delayPluginFactory from '@soundworks/plugin-delay/server';
3
4 const server = new Server();
5 // override the default `delay` option
6 server.registerPlugin('delay-1', delayPluginFactory, { delay: 2 });
7 // declare that 'delay-2' must wait for 'delay-1'
8 // to be ready before starting itself
9 server.registerPlugin('delay-2', delayPluginFactory, {}, ['delay-1']);

FIGURE 9. Pseudo-code - Server-side configuration and registra-
tion of a plug-in into soundworks.

Figure 9 illustrates how a plug-in is registered into
soundworks (while Figure 9 shows the process server-
side, similar code would be written client-side) as well
as two other possibilities. First, the possibility for a given
plug-in factory to be used several times by registering it
with a different identifier (e.g. delay-1 and delay-2).
For example, this capacity could be used to synchronize
different clocks (e.g. audio clock and high precision clock)
on the same client. Second, it shows how dependencies bet-
ween several plug-ins can be declared, enabling the possi-
bility of implementing higher-order plug-ins on top of the
functionalities offered by lower-level ones.

5.2 Examples
To illustrate the kind of functionalities the plug-in host

system enable, we present two plug-ins we created for
the novel version of the CoMo application (cf. Section
2.3). While designed and implemented with this specific
use-case in mind, these two examples stands to be good
examples of how this architecture facilitate the creation of
modular and reusable components.

5.2.1 Runtime Distributed Scripting
The first plug-in we present, illustrated in Figure 10 is

dedicated at the scripting of focused parts of the applica-
tion at runtime 4. As such, the plug-in seeks to simplify the
test of ideas and strategies (e.g. mappings, audio synthesis)
in a very efficient manner : without having to reload the
whole application—server and / or clients—nor having to
implement each time a dedicated control interface.

FIGURE 10. Screenshot of the runtime distributed scripting in-
terfaces. The function written on the editor (right) is dynamically
executed on the two other clients (left) when updated.

Additionally, we think this plug-in can play an important
pedagogical role by providing to users without expert pro-
gramming knowledge (e.g. researcher, composers), a focu-
sed entry point where they can work within their own do-
main of expertise without having to understand the whole
code base and architecture.

We believe this functionality may turn out as an impor-
tant addition to the tools our framework provide to support
rapid prototyping, exploration and testing of ideas.

5.2.2 Logging and Data Recording
The second component we present is dedicated to log-

ging and storing on the server, arbitrary data produced by
any node of the network 5. Indeed, simplifying access to
such functionality to record and analyze data is obviously
central to many scientific and research practices.

However, we believe that the simplicity of usage illus-
trated in the Figure 11 will also help to develop usages in
other directions. For example, for auditing the system, tes-
ting components or benchmarking concurrent implemen-

4. https://github.com/collective-soundworks/
soundworks-plugin-scripting

5. https://github.com/collective-soundworks/
soundworks-plugin-logger

6 J. Audio Eng. Sco., Vol. 68, No. 10, author’s prepint, 2020 October

https://github.com/collective-soundworks/soundworks-plugin-scripting
https://github.com/collective-soundworks/soundworks-plugin-scripting
https://github.com/collective-soundworks/soundworks-plugin-logger
https://github.com/collective-soundworks/soundworks-plugin-logger


PAPERS Soundworks

1 const pathname = `${date}-${uuid}/${username}.csv`;
2 const log = await loggerPlugin.create(pathname);
3
4 // later
5 log.write(`${time}; ${x}; ${y};`);

FIGURE 11. Pseudo-code - Creation of a ‘csv‘ log file and wri-
ting of arbitrary data using the logger plug-in.

tations in real-world situations, or, for recording and re-
playing examples of interactions (e.g. sensor data) to work
on mappings and audio synthesis in the studio.

6 CONCLUSION AND FUTURE WORKS

In this paper, we have presented the motivations, de-
sign and implementation aspects of the novel version of
soundworks, a framework dedicated at developing dis-
tributed multimedia applications on the web. First, we have
presented the different contexts such a framework should
support, and illustrated these contexts with three projects
we developed last few years. These different contexts al-
lowed us to show that supporting particular patterns is
important for exploratory tasks. We then presented the
general architecture and two novel features of our fra-
mework : 1. the distributed state management system,
dedicated at simplifying the implementation of remote
control and monitoring, and 2. its capacity to host external
plug-ins, to foster composability and extensibility.

While we think this novel version of soundworks pro-
vides solid foundations to further explore the possibilities
of the web platform in the area of distributed music sys-
tems, it also opens new questions and large areas for new
developments. An important aspect that needs to be recon-
sidered and solved is the interoperability between the fra-
mework and other tools, such as graphical or audio libra-
ries. In this regard, we think that while the schema format
used for the state management component could provide a
good basis in that direction, it is for now insufficiently spe-
cified. Another important limitation and direction of im-
provement is the lack of support for collections in the state
management system, such addition would facilitate the im-
plementation of advanced features such as presets or sound
banks. Finally, to further simplify and fasten the implemen-
tation of new applications, a Command Line Interface tool
for scaffolding components, clients or plug-ins would be
an important addition. We believe that the addition of these
features could foster further research and artistic practices
and maybe provide a common ground for pluralistic ap-
proaches in the area of distributed music systems.

7 ACKNOWLEDGMENT

The presented work has been initiated in the CoSiMa
research project funded by the French National Research
Agency (ANR, ANR-13-CORD- 0010) and further deve-
loped in the framework of the Rapid-Mix Project from the
European Union’s Horizon 2020 research and innovation
program (H2020-ICT-2014-1, Project ID 644862). It has

also been supported by the Ircam project BeCoMe, which is
featured in the Constella(c)tions residency of the STARTS
program of the European Commission.

We would like to thank our projects partners and our col-
leagues at IRCAM for their precious contributions to the
project.

8 Bibliographie

[1] “WebAudio API Specification,” URL https://
www.w3.org/TR/webaudio/.

[2] H. Choi, “AudioWorklet : The future of web audio,”
presented at the Proceedings of the International Computer
Music Conference, p. 7.

[3] “The WebSocket Protocol,” URL https://
tools.ietf.org/html/rfc6455.

[4] “WebGL Specification,” URL https://
www.khronos.org/registry/webgl/specs/
latest/.

[5] A. Wirfs-Brock, B. Eich, “JavaScript : the first 20
years,” Proceedings of the ACM on Programming Lan-
guages, vol. 4, pp. 77 :1–77 :189, doi :https://doi.org/10.
1145/3386327.

[6] T. Berners-Lee, R. Cailliau, J. Groff, B. Pollermann,
“World-Wide Web : The Information Universe,” Internet
Research, vol. 20, no. 4, pp. 461–471, doi :https://doi.org/
10.1108/10662241011059471, initially published in Elec-
tronic Networking, vol.2, no.1, Spring 1992.

[7] L. Wyse, S. Subramanian, “The viability of the web
browser as a computer music platform,” Computer Music
Journal, vol. 37, no. 4, pp. 10–23, doi :https://doi.org/10.
1162/COMJ\ a\ 00213.

[8] M. Weiser, “The Computer for the 21st Century,”
ACM SIGMOBILE Mobile Computing and Communica-
tions Review, vol. 3, no. 3, pp. 3–11, doi :https://doi.org/10.
1145/329124.329126, initially published in Scientific ame-
rican, vol. 265, no.3, 1991.

[9] D. Guinard, V. Trifa, “Towards the Web of Things :
Web Mashups for Embedded Devices,” presented at the In
MEM 2009 in Proceedings of WWW 2009. ACM, p. 8.

[10] S. Gresham-Lancaster, “The Aesthetics and His-
tory of the Hub : The Effects of Changing Technology
on Network Computer Music,” Leonardo Music Journal,
vol. 8, pp. 39–44, doi :https://doi.org/10.2307/1513398.

[11] G. Weinberg, “Interconnected Musical Networks :
Toward a Theoretical Framework,” Computer Music Jour-
nal, vol. 29, no. 2, pp. 23–39, doi :https://doi.org/10.1162/
0148926054094350.

[12] F. Bayle, “Space, and more,” Organised Sound,
vol. 12, no. 3, pp. 241–249, doi :https://doi.org/10.1017/
S1355771807001872.

[13] B. Taylor, “A History of the Audience as a Spea-
ker Array,” presented at the Proceedings of the NIME’17
Conference (2017).

[14] I. Poupyrev, M. J. Lyons, S. Fels, T. Blaine (Bean),
“New Interfaces for Musical Expression,” presented at the
CHI ’01 Extended Abstracts on Human Factors in Com-
puting Systems, CHI EA ’01, pp. 491–492, doi :https:
//doi.org/10.1145/634067.634348.

J. Audio Eng. Sco., Vol. 68, No. 10, author’s prepint, 2020 October 7

https://www.w3.org/TR/webaudio/
https://www.w3.org/TR/webaudio/
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://www.khronos.org/registry/webgl/specs/latest/
https://www.khronos.org/registry/webgl/specs/latest/
https://www.khronos.org/registry/webgl/specs/latest/


Matuszewski PAPERS

[15] B. Matuszewski, J. Larralde, F. Bevilacqua, “Desi-
gning Movement Driven Audio Applications Using a Web-
Based Interactive Machine Learning Toolkit,” presented at
the Proceedings of the 4th Web Audio Conference (2018).

[16] H.-J. Reinberger, “Experimental Systems : Histo-
riality, Narration, and Deconstruction,” Science in Context,
vol. 7, no. 1, pp. 65–81, doi :https://doi.org/10.1017/
S0269889700001599, publisher : Cambridge University
Press.

[17] H.-J. Rheinberger, “Consistency from the pers-
pective of an experimental systems approach to the
sciences and their epistemic objects,” Manuscrito,
vol. 34, no. 1, pp. 307–321, doi :https://doi.org/10.1590/
S0100-60452011000100014.

[18] M. Schwab, Experimental Systems : Future Know-
ledge in Artistic Research, Orpheus Institute series (Leuven
University Press).

[19] C. Alexander, Notes on the Synthesis of Form (Har-
vard University Press).

[20] “Soundworks Repository,” URL https:
//github.com/collective-soundworks/
soundworks.

[21] S. Robaszkiewicz, N. Schnell, “Soundworks – a
playground for artists and developers to create collabora-
tive mobile web performances,” presented at the Procee-
dings of the 1rst Web Audio Conference (2015).

[22] N. Schnell, B. Matuszewski, J.-P. Lambert, S. Ro-
baszkiewicz, O. Mubarak, D. Cunin, S. Bianchini, X. Bois-
sarie, G. Cieslik, “Collective Loops : Multimodal Interac-
tions Through Co-located Mobile Devices and Synchro-
nized Audiovisual Rendering Based on Web Standards,”
presented at the Proceedings of the Tenth International
Conference on Tangible, Embedded, and Embodied Inter-
action, pp. 217–224, doi :https://doi.org/10.1145/3024969.
3024972.

[23] B. Matuszewski, N. Schnell, F. Bevilacqua, “In-
teraction Topologies in Mobile-Based Situated Networ-
ked Music Systems,” Wireless Communications and Mo-
bile Computing, vol. 2019, pp. 1–9, doi :https://doi.org/10.
1155/2019/9142490.

[24] B. Matuszewski, F. Bevilacqua, “Toward a Web of
Audio Things,” presented at the Proceedings of the 15th
Sound and Music Computing Conference (2018).

[25] B. Matuszewski, “Soundworks A Framework for
Networked Music Systems on the Web,” presented at the
Proceedings of the 5th Web Audio Conference, p. 6.

[26] M. Puckette, “Combining Event and Signal Pro-
cessing in the MAX Graphical Programming Environ-
ment,” Computer Music Journal, vol. 15, no. 3, pp. 68–77,
doi :https://doi.org/10.2307/3680767, publisher : The MIT
Press.

[27] M. Puckette, “A case study in software for artists :
Max/MSP and Pd,” in Art++ (David-Olivier Lartigaud),
hyx ed. (2016).

[28] “WebAudio-Patcher,” URL https://github.
com/Fr0stbyteR/webaudio-patcher.

[29] S. Piquemal, “Rhizome,” URL https://
github.com/sebpiq/rhizome.

[30] J. Allison, Y. Oh, B. Taylor, “NEXUS : Collabo-
rative Performance for the Masses, Handling Instrument
Interface Distribution through the Web,” presented at the
Proceedings of the NIME’13 Conference (2013).

[31] “Biotope Presentation,” URL https://youtu.
be/RmSujqdT6L0.

[32] P. Brinkmann, C. McCormick, P. Kirn, M. Roth,
R. Lawler, H.-C. Steiner, “Embedding Pure Data with
libpd,” presented at the Pure Data Convention Weimar
2011.

[33] “Node-libpd Repository,” URL https://
github.com/ircam-jstools/node-libpd.

[34] J.-P. Lambert, S. Robaszkiewicz, N. Schnell, “Syn-
chronisation for Distributed Audio Rendering over Hete-
rogeneous Devices, in HTML5,” presented at the Procee-
dings of the 2nd Web Audio Conference.

[35] “Emodemos Website,” URL https://www.
unige.ch/cisa/emodemos/.

[36] “Constella(c)tions - Residency,” URL https://
vertigo.starts.eu/calls/starts-residencies-call-3/
residencies/constellactions/detail/.

[37] M. van Steen, A. S. Tanenbaum, “A brief in-
troduction to distributed systems,” Computing, vol. 98,
no. 10, pp. 967–1009, doi :https://doi.org/10.1007/
s00607-016-0508-7.

[38] L. Turchet, C. Fischione, G. Essl, D. Keller,
M. Barthet, “Internet of Musical Things : Vision and
Challenges,” IEEE Access, vol. 6, pp. 61994–62017, doi :
https://doi.org/10.1109/ACCESS.2018.2872625.

[39] “Flux Pattern,” URL https://facebook.
github.io/flux/.

THE AUTHORS

8 J. Audio Eng. Sco., Vol. 68, No. 10, author’s prepint, 2020 October

https://github.com/collective-soundworks/soundworks
https://github.com/collective-soundworks/soundworks
https://github.com/collective-soundworks/soundworks
https://github.com/Fr0stbyteR/webaudio-patcher
https://github.com/Fr0stbyteR/webaudio-patcher
https://github.com/sebpiq/rhizome
https://github.com/sebpiq/rhizome
https://youtu.be/RmSujqdT6L0
https://youtu.be/RmSujqdT6L0
https://github.com/ircam-jstools/node-libpd
https://github.com/ircam-jstools/node-libpd
https://www.unige.ch/cisa/emodemos/
https://www.unige.ch/cisa/emodemos/
https://vertigo.starts.eu/calls/starts-residencies-call-3/residencies/constellactions/detail/
https://vertigo.starts.eu/calls/starts-residencies-call-3/residencies/constellactions/detail/
https://vertigo.starts.eu/calls/starts-residencies-call-3/residencies/constellactions/detail/
https://facebook.github.io/flux/
https://facebook.github.io/flux/

