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Abstract

The  healing  process,  occurring  after  intra-cardiac  and  intra-vascular  device

implantation,  starts  with  fibrin  condensation  and  attraction  of  inflammatory

cells, followed by the formation of fibrous tissue that slowly covers the device.

The duration of this process is variable and may be incomplete, which can lead

to  thrombus  formation,  dislodgement  of  the  device  or  stenosis.  To  better

understand  this  process  and  the  neotissue  formation,  animal  models  were

developed: small (rats and rabbits) and large (sheep, pigs, dogs and baboons)

animal models for intra-vascular device implantation; sheep and pigs for intra-

cardiac  device  implantation.  After  intra-vascular  and  intra-cardiac  device

implantation in these animal models, in vitro techniques, i.e. histology, which

is the gold standard and scanning electron microscopy, were used to assess the
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device  coverage,  characterize  the  cell  constitution  and  detect  complications

such  as  thrombosis.  In  humans,  optical  coherence  tomography  and  intra-

vascular ultrasounds are both invasive modalities used after stent implantation

to assess the structure of the vessels, atheroma plaque and complications. Non-

invasive techniques (computed tomography and magnetic resonance imaging)

are in development in humans and animal models for  tissue characterization

(fibrosis),  device  remodeling  evaluation  and  device  implantation

complications (thrombosis and stenosis). This review aims to (1) present the

experimental models used to study this process on cardiac devices; (2) focus

on the in vitro techniques and invasive modalities used currently in humans for

intra-vascular and intra-cardiac devices and (3) assess the future developments

of  non-invasive  techniques  in  animal  models  and  humans  for  intra-cardiac

devices.
AQ1
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Introduction
The healing process is an important stage that follows intra-cardiac and intra-

vascular device implantation and leads to the formation of a neotissue covering

the device [1]. It usually starts with fibrin condensation and an intense

inflammatory reaction, involving cells that migrate from neighboring regions

(host fibroblast-like cells, macrophages, lymphocytes, endothelial mature cells),

extra-cellular matrix and thrombotic material. Circulating endothelial progenitors

are also attracted, as well as angiogenic growth factors. It is followed by the

formation of a poorly vascularized granulating tissue, slowly covering the device

and evolving towards fibrosis, predominantly made of collagen and small vessels

[2, 3, 4]. Chronic inflammatory reactions with multinucleated cells and

lymphocyte infiltration may also be observed [4].
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Ideally, device coverage should occur over a short time-course, be uniform and

complete after implantation [1, 5]. The duration of this process is highly variable

across different studies, depending on the environment (in vivo or in vitro) and

device, its location in the heart and its material composition [2, 6]. In animal

models, the healing process occurs between 28 and 90 days [7, 8]; in humans,

between 6 and 18 months [9]. However, this process may be much longer, as

some devices still remain uncovered 2 years after implantation, such as first-

generation sirolimus-eluting stents [10], atrio-septal device defect occlusion

devices or left atrial appendage occluders [11, 12].

The thickness of the neotissue that develops on the inner surface of stents

presents a great variability, from a few microns to a few millimiters, depending

on multiple factors such as the type of device, implantation time, age of human

or animal [3, 13, 14].

With the recent development of numerous percutaneous devices, this process is

more studied. Intra-vascular devices such as stents and vascular prosthesis, and

intra-cardiac devices, such as atrio/ventricular septal defect occluders and left

atrial appendage occluders, are concerned by this natural process and its potential

short- and long-term complications. Indeed, in case of an incomplete or late

device tissue coverage, thrombus formation, endocarditis, stent stenosis or

dislodgement of the device can complicate the issue after implantation [11, 12,

15, 16]. Thereby, strut coverage of a coronary stent was demonstrated to be a

powerful histological predictor of stent thrombosis [17, 18]. Several factors were

suspected to lead to late stent stenosis : the anti-proliferative drug of the device

that not only prevented smooth muscle cell proliferation but also

endothelialization; and the polymer of the prosthesis by its pro-inflammatory

effect, all this resulting in endothelial denudation and risk of very late stent

stenosis [19]. As for intra-cardiac devices, the surgical explantation showed

incomplete device coverage and presence of thrombus in some cases, sometimes

years after implantation [3].

With all of these potential device-related complications, patients should be

screened for device compatibility, and high-risk patients should be selected by

non-invasive assessment of device coverage. This strategy was well developed

for all devices in the in vitro setting and in vivo for intra-vascular devices. Yet, it

remains challenging in vivo for intra-cardiac devices.
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Objectives
This review aims to (1) present the experimental models used to study this

process on cardiac devices; (2) focus on the in vitro techniques and invasive

modalities used currently in humans for intra-vascular and intra-cardiac devices

and (3) assess the future developments of non-invasive techniques in animal

models and humans for intra-cardiac devices.

Experimental models to study the healing process after intra-
vascular and intra-cardiac device implantation

Animal models were developed to study the healing process after device

implantation, especially after stent positioning. An ideal animal model should

reflect the evolution of healing processes in humans, allowing understanding of

the genesis of complications, such as stenosis, and guidance for post-

implantation treatment [20]. This process appears to be similar in animals and

humans in terms of the healing response, but the duration is much longer in

humans. However, the selection of the animal is not benign as several factors can

interfere with the healing process: species in terms of duration of the healing

process; senescence of the animal as a longer duration of healing process exists

for older animals; anatomical dimensions and graft surface/vessel caliber that

will interfere with blood flow conditions [21, 22]. Cost-effectiveness,

accessibility, time frame of the healing process, post-operative risk of death and

cellular imaging tools available are other factors that will be useful to decide

which model should be retained [20].

Animal models for intra-vascular devices

Intra-vascular devices include stents and vascular prosthesis. Stents have been

widely studied starting with bare-metal stents, then followed by drug-eluting

stents. Drug-eluting stents allow localized elution of neointimal inhibiting drugs

(sirolimus, paclitaxel, everolimus…) and prevent in-stent restenosis. Absorbable

drug reservoirs and platforms have been then developed followed by bio-

engineered stents coated with antibodies specific to CD 34 to capture circulating

endothelial progenitor cells [15].

Intra-vascular device healing processes has been extensively studied.

Animal models are therefore well developed and cross-compared, from small
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animals such as rats [20, 23, 24, 25] and rabbits [2, 7, 8, 26, 27, 28, 29, 30] to

large animals such as sheep [31, 32, 33], pigs [1, 5, 24, 34, 35, 36, 37, 38, 39,

40], baboons [41] and dogs [25]. Mouse models can serve to assess very small

conduit (less than 2 mm) healing processes with serial examinations, small

synthetic tubular vascular grafts made of multicellular spheroids [42] or

decellularized extracellular matrix [43], and to study the molecular mechanisms

of graft failure in pre-clinical assessment [20]. Rabbits are recommended for

small vascular grafts (1–4 mm). Studies involving the closest anatomic and

physiologic relatives to humans, the primates, are few. But some studies were

conducted to assess the healing process after vascular graft and stent

implantation, showing 60% of ePTFE artery conduits fully endothelialized after

12 months [44] and demonstrating the reduction of intimal hyperplasia with

heparin-coated balloon-expandable stents compared with non-coated stents [45].

However, due to the cost and protected status of primates, alternative large

animal models grew momentum. The use of dogs was assessed for vascular graft

studies. However, because of a marked difference with the human hemostatic

system and a lack of relevance to study graft patency and endothelialization,

sheep and pigs were finally preferred [22]. Their availability, low cost,

size/anatomy and blood/coagulation systems were found to better complement

humans, especially for 4–6 mm grafts. Sheep are closer matches to human results

for vascular graft studies and pigs for coronary stents. Sheep present a

coagulation system closer to humans than pigs, with few post-operative

complications; therefore an appropriate model to assess patency and anastomotic

intimal hyperplasia after graft implantation [22]. Pigs are suitable to assess stent

patency, calcification and endothelialization albeit with faster healing kinetics

than in humans. The influence of ageing and growth on device efficacy and

longevity is an important parameter for infantile and adolescent patients. Pigs

present an appropriate model with most common strains having indeterminate

growth.

Animal models for intra-cardiac devices

Intra-cardiac devices include bioprosthetic heart valves and cardiac defect

occluders. Bioprosthetic valves are usually created from animal valve leaflets

mounted on a polymer material stent. Atrial septal defect occluders are mostly

made of nickel-titanium skeleton and biostable membranes such as PET and

e-PTFE membrane. Biodegradable materials are in development. Intra-cardiac
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device investigations have been primarily studied in sheep and pig models. The

sheep is one of the most widely used animal models for bioprosthetic heart valve

and tissue-engineered valve investigations [6, 46, 47, 48]. Such models have

enabled pre-clinical evaluations comprising of leaflet motion; effective orifice

area; mechanical properties; remodeling of the extracellular matrix;

endothelialization and calcification. As for septal defect occluders, experimental

models were necessary to assess the healing process [49] and biocompatibility

after implantation [4]. Before placing the device, a defect must be created in the

fossa ovalis, by transeptal puncture. Pig and sheep models were selected thanks

to their close anatomy of the fossa ovalis and dimensions representative of

humans, with a special interest in pigs for assessment of device longevity during

growth.
AQ2

Bioengineering and in vitro models

Bio-engineered small-diameter vascular grafts consist of a biodegradable

scaffold on which endothelial cells are cultured [50]. Customizing the cell

populations and neotissue formations in vitro is one of the major goals of this

technique. Instead of using a static system to enhance cell culture of the scaffold,

a tubular perfusion system bioreactor was developed, allowing a greater

maturation and differentiation of cells [51].

The influence of stent struts on local blood flow and the migration of endothelial

cells were also studied on in vitro models, using a flow chamber that mimic the

geometry of stent struts. It was shown that unidirectional flow leads to a unified

forward migration of cells in the flow direction, whereas in the presence of

bidirectional flow, complex non-uniform distributions were observed [52].

Human studies

Explanted grafts and devices directly from humans have enabled the study of

neotissue formation after implantation. Farb et al. provided a detailed

histological study of 116 coronary stents, identifying a spectrum of risk factors

for stenosis [13]. A central segment of in vitro femoropopliteal bypass was

analyzed 41 months after implantation by Deutsch et al., showing the presence of

a mature endothelium covering the graft [14]. Experiments on human homograft

valves were also used to investigate the influence of valve-preservation
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techniques on endothelial cell growth [53]. Tissue-engineered pulmonary valves

could also be studied after explantation from humans, allowing a cross-sectional

study of magnetic resonance imaging (MRI) and histology to better understand

graft failure mechanisms [54]. Atrial and ventricular septal defect occluders were

studied after surgical explantation by Foth et al., providing crucial information

about the neotissue formation from five days to four years post-implantation [3].

In vitro techniques to assess the healing process on devices

Histology, the gold standard

Histology is the gold standard to evaluate the healing process, as it allows the

most accurate characterization of the tissue covering the device [34]. As the

device is metallic, the choice of embedding process before histological and

immunohistochemical analysis is important. The hard resin inclusion should be

preferred to paraffine inclusion in order to preserve the interface tissue-implant

and allow assessment of local processes [3]. Standard histology includes

hematoxylin and eosin staining and Richardson blue staining to distinguish cells

and scaffold material; Lawson van Gieson, Masson trichrome and Movat

pentachrome stainings to detect collagen fibers [35, 54]. Immunohistochemistry

has also been applied to characterize specific cell types: von Willebrand factor,

CD31 and CD34 for endothelial cells [5, 35, 42]; CD 68 for macrophages, CD 79

for B- and CD 3 for T- cells, CD 45 for leukocytes, CD 34 for endothelial cells

progenitors [3, 54, 55]. Inflammation and endothelialization scores involving the

extent and severity of inflammation, thrombus/fibrin formation and

recellularization of graft tissue can help to better evaluate the healing process

[35, 54, 56]. Specific scores concern intimal fibrin content for stent struts [7, 36]

and endothelialization extension [36]. Serial examinations on animal and human

models have further enabled descriptions of the time frame of the healing process

[3, 7, 8] (Fig. 1).

Fig. 1

Histology example. Overview of an Amplatzer atrial septal defect-occlusion device

24  months  after  implantation.  Micrographs  show  representative  staining  with

Richardson blue (cellular components, blue; metal wires, black). Overview of an

Amplatzer  atrial  septal  defect–occlusion device 24 months  after implantation.  a

Representative  image  of  pattern  of  neotissue  within  the  implant  with  irregular
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orientation  of  cells  (detail).  b  Representative  image  of  pattern  of  cells  of

pseudointima with longitudinal orientation (parallel to the neoendothelium, detail)

Microscopy techniques

Microscopy techniques are used to characterize the coverage of tissue on cardiac

devices. While light microscopy is still important to magnify histologic slides,

scanning electron microscopy is largely used in vascular graft engineering [7, 14,

20]. This high-resolution electron-based technique can provide 3D images of the

surface covering a stent or a scaffold [7, 20, 31] (Fig. 2). Local organization and

the interactions of neotissue with devices can also be investigated [31].

Quantifying endothelialized area [7, 8, 37] and characterizing the time-frame of

the healing process [23] can also be performed by studying stent struts coverage

by smooth muscle cells, collagen and endothelium after stent implantation.
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Moreover, incomplete endothelialized protruding parts of the metal framework

after atrial septal defect-occlusion device implantation can be identified [4, 14,

20, 24]. Regions of devices lacking coverage typically show adherence of

platelets and macrophages [7].

Fig. 2

Scanning electron microscopy example. Magnified scanning electron microscopy

views of overlapping Absorb (Everolimus-eluting bioresorbable vascular scaffold).

Magnified scanning electron microscopy (SEM) view of the overlapping Absorb at

28  days  (upper),  demonstrating  multiple  uncovered  Absorb  struts  primarily

secondary to the direct overlay configuration of the “stacked inner” struts (white

asterisks) to the corresponding “stacked outer” struts located abluminally. At 90

days (lower), all “stacked inner” struts (white asterisks) are covered.
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Transmission microscopy is another microscopic technique with a nanometric

resolution, higher than scanning electron microscopy. It enables to appreciate the

ultrastructure of the components of the neotissue and characterize more precisely

the cells [14].

Two-photon microscopy or multi-photon microscopy, is a fluorescent imaging

approach that combines a deep penetration and high resolution [1, 50]. Collagen,

elastin and endothelial cells can be distinguished, as well as their localization in

the tissue [1].
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Fiber optic-based imaging

An vitro imaging technique, described by Whited and al [50], consists of

mapping fluorescently labelled endothelial cells placed in a half-vessel scaffold.

A micro-imaging channel is embedded in the wall of a scaffold through which

the excitation fiber optic is inserted. The endothelial cell fluorescence may then

be captured by a photosensitive detector to map the cell distributions within the

scaffold. This allows for non-destructive, dynamic imaging of the endothelium of

the vascular graft with no impact on the adjacent structures.

Invasive techniques available in humans

Histology and microscopy techniques can only be used on explanted devices.

Intra-vascular ultrasounds (IVUS) and optical coherence tomography (OCT)

were developed for intra-vascular grafts, allowing an invasive evaluation of the

healing process on stents.

Intra-vascular ultrasounds

This invasive, catheter-based technique relies on the use of ultrasound impulses,

emitted from a miniaturized transducer, mounted on the tip of a catheter [57]. It

provides real-time, cross-sectional tomographic images of the internal surface of

the blood vessel [58, 59]. The axial resolution is around 50 µm, depending on the

catheter type. High ultrasound reflection between variable tissue interfaces

enables differentiation of the layers of the vessel wall [57].

It can be used to evaluate a vessel in terms of lesion quantification and

morphology assessment: before or after stent implantation or vascular grafting

with higher sensitivity in assessing coronary artery lumen morphology [60] (Fig.

3), after cardiac transplantation to detect coronary transplant vasculopathy and

for evaluation of atherosclerotic plaque formation [7, 57, 58].

Fig. 3

OCT and IVUS example. OCT evidence of uncovered struts in drug-eluting stent

late stent thrombosis. Representative angiographic (a), intravascular ultrasound (b–

d), and optical coherence tomography (e–g) cross-sectional images from a patient

with very late  stent  thrombosis  at  1836 days in  a  single  sirolimus-eluting stent

implanted in proximal left anterior descending artery. After thrombus aspiration,

uncovered  struts  are  detected  by  OCT,  with  remaining  intraluminal  thrombus
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adherent to some strut. Positive remodeling was not observed by IVUS.

To customize the technique, the near-infrared spectroscopy imaging system was

incorporated in the IVUS catheter and used to analyze the atherosclerotic plaque

composition [57]. The reflected signal is converted in a chemogram that

represents a color map of the location of lipid core plaques to characterize the

composition of the plaque and select patients at high-risk of adverse outcome

[57].

IVUS has not been extended to other devices, especially intra-cardiac devices

such as occluders.

Intravascular optical coherence tomography

OCT is a near-infrared light-based modality that provides high resolution

imaging (10 µm for axial resolution and 20–40 µm for lateral resolution) of the

microstructure of the tissue and blood vessel wall in vivo [26, 34, 61].

In the interventional cardiology field, this invasive technique is used to evaluate

the microstructure of the vessels, atheroma plaque and stents [34, 62] (Fig. 3).

The OCT catheter is placed at the distal part of the stent and the entire length of

the region is scanned using the integrated automated pullback device [26, 34,

57].
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OCT enables distinction of the three layers of the vessels, to identify lesions such

as unstable atherosclerotic plaques, macrophage accumulations and thrombi [61].

For stented arteries, neointimal hyperplasia can be detected [63, 64] and a

morphometric analysis of the stent strut coverage can be performed [63, 65].

Dissection of stents, noncoverage, calcification and misalignment of struts may

also be detected [17, 26, 34, 57, 61, 66]. Such information can thus far only be

obtained in vivo using OCT, thanks to its 10-fold higher resolution than IVUS

[67], which has successfully been applied to guide pharmalogical therapy for the

prevention of late stent thrombosis [26]. It is also used in tissue-bioengineering,

but to date, has not been evaluated in the assessment of intra-cardiac device

coverage [68]. One of the drawbacks of this technique is the inability to detect

the endothelial layers that measure less than 10 µm and complications due to the

invasiveness of the procedure [68].

Future developments of non-invasive techniques in animal
models and humans

MRI

In cardiovascular tissue engineering, MRI is used as a non-invasive technique to

monitor the remodeling of vascular grafts and their patency, to follow the cells

implanted in vitro in the graft and to evaluate inflammation and thrombosis after

implantation [31, 69]. This is made possible by the adjunction of ultra-small

superparamagnetic iron oxide biocompatible particles in the scaffold to render it

visible and provide morphological information of the graft [31, 69].

In humans, even if most of the modalities have been developed for intra-vascular

devices, imaging the tissue covering intra-cardiac devices, such as septal

occluders or left atrial appendage occlusion devices, is also challenging and

clinically relevant.

Thanks to its high spatial and temporal resolutions, significant focus has been

applied to tissue characterization using MRI [70, 71, 72], especially to detect

myocardial fibrosis [73], myocardial edema and microvascular obstruction [70].

Fibrosis can be identified by late gadolinium enhancement, favored for

visualization of myocardial focal fibrotic scar [74], as seen in ischemic and non-

ischemic cardiomyopathy. T1 and T2 MRI provides has further been used to

enhance images of fibrotic, inflammatory and edematous tissue [75, 76, 77].
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Intra-cardiac imaging devices, has been mostly used to detect device position and

cardiac remodeling after implantation [78]. Yet, work is still to be done to

optimize MRI for neo-tissue detection due to challenges associated with the

required resolution and to alleviate image artefacts, particularly due to the metal

framework of the prosthesis, especially occlude screw hubs.

Computed tomography

Computed tomography [CT] is known to detect focal myocardial fibrotic scars

[74], providing an infra-millimetric resolution (0.5 mm compared to 1–2 mm for

MRI) [79, 80].

Multidetector computed tomography angiography and ultra-high-resolution

computed tomography angiography are now in development to detect coronary

stent stenosis. Thanks to its higher temporal and spatial resolution than 4 and 16-

slice CT, 64-slice multidetector computed tomography angiography presents a

good correlation with angiography and IVUS for detection of diameter and area

stent stenosis for > 3 mm stents. The motion and blooming artefacts are less

important but the temporal resolution is not as good as IVUS [81]. For calcified

lesions, ultra-high-resolution CT presents fewer artefacts and a better spatial

resolution for in-stent lumen assessment > 2.5 mm [82].

Regarding intra-cardiac devices, cardiac CT is mostly used for the follow-up of

patients after percutaneous left atrial appendage occlusion to assess the presence

of device thrombosis and peri-device leaks and to guide post-procedural anti-

thrombotic therapy durations [83, 84]. However, for some cases, cardiac CT

cannot discriminate between laminated thrombus (reinforcement of anti-

thrombotic treatment recommended) and locally prominent device covering (no

treatment needed).

Thus, dedicated CT sequences to precisely identify the fibrotic tissue covering

intra-cardiac devices could provide improved tailored patient management.

Sensors to detect endothelialization on coronary stents

Musick and al. [18]. described the use of a piezoelectric microcantilever placed

in the strut of an active stent to detect endothelialization of the struts. When cells

attach to the cantilever, they cause an increase in mass and decrease in the

resonant frequencies of the cantilever. The goal of this non-invasive process is to
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monitor the healing process after stent implantation, but without the possibility

to differentiate the types of covering tissues (endothelium versus fibrin). There is

potential future clinical application of such sensors to provide non-invasive

follow-up of healing status and determine the patient’s anti-platelet therapy. An

approach beneficial to intra-vascular devices but also intra-cardiac applications.

High frame rate ultrasound imaging

Noninvasive high frame rate ultrasound imaging may be a promising technique

to detect neotissue formation. It was recently experienced in different fields of

cardiology, notably to visualize the epicardial and intramural coronary

vasculature to assess coronary microcirculation and coronary blood flow in

normal and pathologic situations. It offers a visualization of the pre-arteriolar

coronary vessel structure which size is 100 to 500 microns, in animals and

humans [85]. The shear wave imaging that relies on the mapping of the

propagation velocities of shear waves related to tissue viscoelastic properties is

another technique in development [86, 87].

Conclusion
Imaging neotissue covering a cardiac device is a necessary step yet remains

challenging. In vitro techniques, such as histology, remain the gold standard even

if several invasive techniques (OCT, IVUS) have been developed to detect vessel

structure and coronary stent restenosis. Most of these techniques were developed

for intra-vascular devices. With the evolution of MRI and CT imaging of cardiac

fibrosis, we hope that such techniques will provide insight in to neotissue intra-

cardiac device coverage in the near future.
AQ3
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