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The theory of regularity structures enables the denition of the following parabolic Anderson model in a very rough environment: ∂tut(x) = 1 2 ∆ut(x) + ut(x) Ẇt(x), for t ∈ R + and x ∈ R d , where Ẇt(x) is a Gaussian noise whose space time covariance function is singular. In this rough context, we shall give some information about the moments of ut(x) when the stochastic heat equation is interpreted in the Skorohod as well as the Stratonovich sense. Of special interest is the critical case, for which one observes a blowup of moments for large times.

Introduction

The parabolic Anderson model (sometimes abbreviated as pam in the sequel) is a linear partial dierential equation in a random environment. As for other widely studied objects, many dierent versions of the model have been analyzed in the literature. In this paper we are concerned with the following continuous version of pam dened for (t, x) ∈ R + × R d :

∂ t u t (x) = 1 2 ∆u t (x) + u t (x) Ẇt (x), (1.1) 
where ∆ stands for the Laplace operator and Ẇ is a centered Gaussian noise. Equation (1.1) is obviously a stochastic PDE, and the generalized dierential element u t (x) Ẇ (x) will be interpreted either in the Skorohod sense (for which the product u t (x) Ẇt (x) is considered as a Wick product) or in the Stratonovich sense (where the product u t (x) Ẇt (x) is the usual one). Notice that we consider those two versions of the model for the sake of generality, but also because we will transfer some information from the Skorohod to the Stratonovich equation.

The study of moments for equation (1.1) is at the heart of Anderson's initial motivation in the model. Indeed, the moments of u t (x) characterize the so-called intermittency phenomenon, as described in e.g. [START_REF] Khoshnevisan | Analysis of stochastic partial dierential equations[END_REF]. Moments are also related to the localization of eigenvectors for the Anderson operator L = 1 2 ∆ + Ẇ , since u t (x) can be seen as the Laplace transform of the spectral measure of L (see [START_REF] König | The Parabolic Anderson Model: Random Walk in Random Potential[END_REF]Relation (2.27)]). This is why quantities of the form E[|u t (x)| p ], for a given p > 1 and for the solution u to (1.1), have been intensively analyzed in the recent past. Let us mention [START_REF] Conus | On the existence and position of the farthest peaks of a family of stochastic heat and wave equations[END_REF][START_REF] Conus | On the chaotic character of the stochastic heat equation II[END_REF][START_REF] Conus | On the chaotic character of the stochastic heat equation, before the onset of intermittency[END_REF] when Ẇ is a white noise in time and [START_REF] Chen | Quenched asymptotics for Brownian motion in generalized Gaussian potential[END_REF][START_REF] Chen | Spatial asymptotics for the parabolic Anderson model driven by a Gaussian rough noise[END_REF][START_REF] Hu | Stochastic Heat Equations with General Multiplicative Gaussian Noises: Hölder Continuity and Intermittency[END_REF] for fractional noises.

The current paper can be seen as an additional step towards moment estimates for the parabolic Anderson model. Namely our study aims at giving some information about the moments of equation (1.1) when Ẇ is a very rough environment, given as the formal derivative of a multiparametric fractional Brownian motion W . Specically, consider a centered Gaussian process W indexed by R + ×R d and dened on a complete probability space (Ω, F, P), whose covariance is expressed as:

E [W t (x) W s (y)] = R 0 (s, t) d j=1 R j (x j , y j ),
where {H j ; 0 ≤ j ≤ d} is a family of Hurst indices in (0, 1) and the covariance function R j is dened by

R j (u, v) = 1 2 |u| 2Hj + |v| 2Hj -|u -v| 2Hj , u, v ∈ R.
(1.2)

Then the noise Ẇ driving equation (1.1) has to be thought of as the (ill-dened) derivative

∂ d+1 t x1•••x d W t (x).
In this paper we are interested in noises which are rougher than white noise in at least some directions. Otherwise stated we wish imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 some of the H j 's in (1.2) to be smaller than 1 2 . Recall that the covariance function of Ẇ is formally written as E Ẇt (x) Ẇs (y) = γ 0 (t -s) γ(x -y), with γ(x -y) ≡ d j=1 γ j (y j -x j ), (1.3) where each γ j is the distributional derivative ∂ 2 uv R j . Notice that whenever H j < 1 2 the covariance γ j is a distribution. Therefore we will often express γ 0 and γ in Fourier modes as

γ 0 (t) = R
e ıλt µ 0 (dλ), and γ(x) = R d e ıξ•x µ(dξ), (1.4) where the measures µ 0 and µ on R d are respectively dened by µ 0 (dλ) = c 0 |λ| 1-2H0 dλ, and µ(dξ

) = c H d j=1 |ξ j | 1-2Hj dξ, (1.5) 
where H denotes the vector (H 1 , . . . , H d ) and where c 0 , c H are explicit positive constants. We should already observe at this point that the mere existence of a solution to equation (1.1) in the rough environment given by (1.3) requires a delicate analysis of intersection local times in the Skorohod setting [START_REF] Chen | Parabolic Anderson model with rough or critical Gaussian noise[END_REF], and a cumbersome renormalization procedure for the Stratonovich case (see [START_REF] Deya | On a modelled rough heat equation[END_REF][START_REF] Deya | Construction and Shorohod representation of a fractional K-rough path[END_REF][START_REF] Hairer | Multiplicative stochastic heat equations on the whole space[END_REF] for some related models).

In order to describe the main results contained in this article let us start with the Skorohod setting for equation (1.1), for which we will assume that H 0 > 1 2 . Within this framework we dene a family of coecients describing the behavior of our model. Namely set

J * = 1 ≤ j ≤ d; H j < 1 2 , d * = |J * |, H * = j∈J * H j , H = d j=1 H j .
(1.6) We also dene some similar quantities J * , d * , H * for the indices such that H j ≥ 1 2 . Then the reference [START_REF] Chen | Parabolic Anderson model with rough or critical Gaussian noise[END_REF] exhibits a subcritical regime, for which there is existence and uniqueness of the solution to (1.1) interpreted in the Skorohod sense. This subcritical regime is characterized by the following set of conditions on J * , d * , H * :

d -H < 1, and 4(1 -H 0 ) + 2(d -H) + (d * -2H * ) < 4.
(1.7)

Denoting by u this solution, it is also proved in [START_REF] Chen | Parabolic Anderson model with rough or critical Gaussian noise[END_REF] that u admits moments of all orders, namely, E |u t (x)| p < ∞, for all t ≥ 0, x ∈ R d , and p ≥ 1.
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In contrast with this nice situation, in the current article we will focus on the so-called critical regime. This means that (1.7) is replaced by the following condition on J * , d * , H * :

d -H = 1, and 4(1 -H 0 ) + (d * -2H * ) < 2.

(1.8)

Under condition (1.8), the moments of u t (x) blow up for large time. This assertion will be quantied precisely in our article, leading to our rst contribution (which will be stated more rigorously in Theorem 3.14).

Contribution 1. Assume that condition (1.8) is met, and recall that u designates the Skorohod solution of equation (1.1). For all p > 1 we dene a critical time t 0 (p) as t 0 (p) = C H0,H (p -1) 1/(2H0-1)

(1.9) where C H0,H is given by an explicit variational inequality. Then the following holds true:

(i) For any p ≥ 2, if t < t 0 (p) we have E |u t (x)| p < ∞ for all x ∈ R d ;

(ii) For all p > 1, if t > t 0 (p) the p-th moment of u t (x) blows up. Remark 1.1. Our Contribution 1 gives a rather complete picture of the moments problem for the Skorohod equation (1.1) in the critical regime. In addition, it is also clear from equation (1.9) that p → t 0 (p) decreases from +∞ to 0 as p varies in (1, ∞). We rmly believe that t 0 (p) separates well behaved from ill-behaved p-th moments for u , and this is what our Contribution 1 asserts for p ≥ 2. However, item (ii) in Contribution 1 only yields an upper bound for the critical time t 0 (p) when p ∈ (1, 2). Hence a full characterization of t 0 (p) for p < 2 is still an open problem. Remark 1.2. Note that Contribution 1 covers the particular and important case in which d = 2 and H 0 = 1, H 1 = H 2 = 1 2 , that is, Ẇ is the spatial white noise. In this situation, the constant C H0,H in (1.9) is given by κ(2, 2) -4 where κ(2, 2) is the Gagliardo-Nirenberg constant for p = 2, d = 2 (see Remark 3.13 below for more details).

Our second contribution focuses on equation (1.1) interpreted in the Stratonovich sense. Assuming that the coecients H 0 , H ∈ (0, 1) d+1 verify

d + 2 3 < 2H 0 + H ≤ d + 1, (1.10) 
a global Stratonovich solution u can indeed be constructed in a suitable weighted space, using the regularity structure formalism and a renormalization procedure (see Section 4.1 for further details).

As for the Skorohod case mentioned above, we are mostly interested here in getting some information about the moments of the Stratonovich solution u. This problem is challenging in a renormalized context, and to the best of our imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 knowledge unaddressed in the literature. We are only aware of the reference [START_REF] Gu | Moments of 2D parabolic Anderson model[END_REF] about existence of moments in small time for the 2-dimensional spatial white noise case. Our next contribution, which is summarized below, aims at lling this gap. Contribution 2. Under the assumption (1.10), let u t (x) be the (renormalized) Stratonovich solution of equation (1.1) constructed from the regularity structure formalism. Then the following holds true:

Under the additional subcritical assumption (1.7), the random variable u t (x) admits moments of all orders. More specically, we have

E |u t (x)| p < ∞, for all t ≥ 0, x ∈ R d , and p ≥ 1.
Remark 1.3. To the best of our knowledge, the above Contribution 2 is the rst result establishing moments of any order in a renormalized Stratonovich setting. Remark 1.4. On top of [START_REF] Gu | Moments of 2D parabolic Anderson model[END_REF] let us mention the work [START_REF] Allez | The continuous Anderson Hamiltonian in dimension two[END_REF], in which the authors study equation (1.1) driven by a spatial white noise on a 2-d torus. The exponential tail bounds for the minimal eigenvalue of the Anderson operator established in [START_REF] Allez | The continuous Anderson Hamiltonian in dimension two[END_REF] would certainly lead to a blowup of moments result for equation (1.1). However, their setting is restricted to the spatial white noise on a compact 2-d space, while we are considering a more general class of noises on the whole space R d for all d. The 2-d white noise analyzed in [START_REF] Allez | The continuous Anderson Hamiltonian in dimension two[END_REF] happens to be a critical case within our more global picture. It should also be highlighted that our approach aims at obtaining the critical exponential integrability of the solution, instead of a simple non quantied exponential integrability.

Gathering our Contributions 1 and 2, our main goal in this paper is thus to exhibit the complexity of the moments problem for the PAM in very rough environments.

Let us say a few words about the methodology invoked in order to achieve the main contributions summarized above. We have relied on the following tools:

(a) In order to analyze the moments of the Skorohod solution in the critical case (i.e Contribution 1), we hinge on the Feynman-Kac representation of u . This representation involves intersection local times of a Brownian motion weighted by the covariance function of the noise Ẇ . We then proceed to a thorough analysis of those intersection local times, thanks to a delicate truncation procedure involving a Girsanov type transform on the Brownian paths. Notice that the basic aim of the truncation mechanism is (in the end) to apply some classical asymptotic results for Feyman-Kac functionals. For the case of p-th moments for p ∈ (1, 2) (that is item (ii) in our Contribution 1), we use an additional ingredient based on S-transforms from white noise analysis. (b) The fact that the Stratonovich solution admits moments of any order (Contribution 2 item 2) stems again from Feynman Kac representations. More precisely, the dierence between the Feynman-Kac representations of u and u corresponds to some uctuations of the Brownian intersection local times. Then imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 the bulk of our analysis consists in quantifying the fact that the intersection local time uctuations are negligible with respect to the term involving Ẇ .

As one can see, Feynman-Kac representations are the key ingredient in order to get our main contributions. Those are combined throughout the paper with regularity structures and Malliavin calculus elements. As a conjecture, let us also recall from Remark 1.1 that t 0 (p) dened by (1.9) seems to be the critical time for the moments of u when p < 2 (as well as for the moments of the Stratonovich solution u in the critical case). We hope to prove this claim in the future, although it currently seems to resist our method of analysis.

The study is organized as follows. First, in Section 2, we will recall some basics about the Malliavin calculus setting and the Skorohod integration procedure. This preliminary material will in fact set the stage for Section 3, where equation (1.1) will be investigated in the Skorohod sense, leading to the abovedescribed Contribution 1. Then, in Section 4, we will turn to the Stratonovich interpretation of the model, starting with a brief reminder on how the equation is interpreted and solved in a rough regime (Section 4.1). Our second main Contribution 2 will be the topic of the subsequent Section 4.2, which will conclude the study. Notation 1.5. In the sequel we set (Ω, F, P) for the probability space related to W , with E for the related expected value. We denote by ( Ω, G, P) the probability spaces corresponding to the Brownian motions in Feynman-Kac representations, with a related expected value E. The heat kernel on R d is denoted by p t (x), and recall that

p t (x) = 1 (2πt) d/2 exp - |x| 2 2t
.

(1.11) Also notice that the inner product of a, b ∈ R d is written as a • b throughout the paper. In the following we will often deal with product measures, for which we adopt the following convention: for m, n ≥ 1, a measure ν on R m and ξ = (ξ 1 , . . . , ξ n ) ∈ (R m ) n , we set

ν(dξ) = ν ⊗n (dξ) = n k=1 ν(dξ k ).
(1.12)

Finally, recall that we write H for the vector of Hurst parameters (H 1 , . . . , H d ).

Elements of Malliavin calculus

In this section we recall the basic Malliavin calculus notation which will be invoked in the forthcoming computations. The reader is sent to [START_REF] Hu | Stochastic Heat Equations with General Multiplicative Gaussian Noises: Hölder Continuity and Intermittency[END_REF] and [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF] for more details.

Let us start by introducing some basic notions on Fourier transforms of functions. The space of real valued innitely dierentiable functions with compact support is denoted by D(R d ) or D. We write S(R d ), or simply S for the space of imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 Schwartz functions. Its dual, the space of tempered distributions, is

S (R d ) or S . If f is a vector of n tempered distributions on R d , then we write f ∈ S (R d , R n ).
In the sequel we will play with two dierent kinds of Fourier transforms on R d+1 . Namely for a function f (t, x) on R d+1 , the Fourier transform on the full spacetime domain R d+1 is dened with the normalization

Ff (η, ξ) = R d+1 e -ı (tη+ξ•x) f (t, x)dtdx,
(2.1) so that the inverse Fourier transform is given by F -1 u(η, ξ) = F f (-t,-ξ) (2π) d+1 . Our analysis will also rely on a Fourier transform denoted by F s , which is dened on the spatial variables only. It is given by

F s f (t, ξ) = R d e -ı ξ•x f (t, x)dx.
(2.2) 2.1. Wiener space related to W On a complete probability space (Ω, F, P) we consider a Gaussian noise W encoded by a centered Gaussian family {W (ϕ); ϕ ∈ D(R + ×R d )}. As mentioned in the introduction (see relation (1.4)), the covariance structure of W is given by (2.3) where γ 0 and µ are respectively dened by (1.3) and (1.5), and where F s ϕ designates the spatial Fourier transform of ϕ. One can thus consider W as an isonormal Gaussian family {W (ϕ); ϕ ∈ H} on a space H obtained as the completion of Schwartz functions with respect to the inner product given by the right hand side of (2.3).

E [W (ϕ) W (ψ)] = R 2 + R d F s ϕ(s 1 , ξ) Fs ψ(s 2 , ξ) γ 0 (s 1 -s 2 ) ds 1 ds 2 µ(dξ),
We refer to [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF] for a detailed account of the Malliavin calculus with respect to a Gaussian process, while we focus here on the basic denitions allowing to state our results in the remainder of the article. We will denote by D the derivative operator in the sense of Malliavin calculus. That is, if F is a smooth and cylindrical random variable of the form

F = f (W (φ 1 ), . . . , W (φ n )) , with φ i ∈ H, f ∈ C ∞ p (R + × R d ) (
namely f and all its partial derivatives have polynomial growth), then DF is the H-valued random variable dened by

DF = n j=1 ∂f ∂x j (W (φ 1 ), . . . , W (φ n )) φ j .
The operator D is closable from L 2 (Ω) into L 2 (Ω; H) and we dene the Sobolev space D 1,2 as the closure of the space of smooth and cylindrical random variables under the norm (2.4) where the series converges in L 2 (Ω). Moreover, the functions f n ∈ H n are determined by F . Identity (2.4) is called the Wiener chaos expansion of F .

DF 1,2 = E[F 2 ] + E[ DF 2 H ] 1/
F = E [F ] + ∞ n=1 I n (f n ),

Extended Skorohod integrals

The standard denition of Skorohod's integral is obtained by a duality relation in L 2 (Ω). Namely, we denote by δ the L 2 -adjoint of the derivative operator given by the duality formula

E [δ (u) F ] = E [ DF, u H ] , (2.5) 
for any F ∈ D 1,2 and any element u ∈ L 2 (Ω; H) in the domain of δ . More specically, the domain of δ is dened as the set of processes u ∈ L 2 (Ω; H) such that for all cylindrical functions F we have

|E[ DF, u H ]| ≤ C u F L 2 (Ω) .
The operator δ is also called the Skorohod integral because in the Brownian motion case, it coincides with an extension of the Itô integral introduced by Skorohod.

In the sequel we consider random variables which are only L p -integrable with p ∈ (1, 2). We thus need the following extension of the Skorohod integral with respect to the noise W . Denition 2.1. Fix p > 1. Let u = {u(t, y), t ≥ 0, y ∈ R d } be a random eld such that

u(t, y) H L p (Ω) < ∞.
Then we say that u is Skorohod integrable in L p , denoted by u ∈ Dom p δ , if for any smooth and cylindrical random variable F ∈ S, we have

E [ DF, u H ] ≤ c u F L q (Ω) ,
imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 where 1 p + 1 q = 1. We say that u is Skorohod integrable if u ∈ Domδ = ∪ p>1 Dom p δ . If u ∈ Dom p δ , the Skorohod integral

δ (u) = R+×R d u s (y)d W s (y)
is the random variable in L p (Ω) dened by the duality relationship

E [ DF, u H ] = E [δ (u) F ] , for all F ∈ S.

Skorohod Case

This section focuses on equation (1.1) interpreted in the Skorohod sense. In Section 3.1 below we rst recall some existence and uniqueness results for the equation. Then we will give some information about the moments in the subcritical case.

Existence and uniqueness results

In this section we rst give some existence and uniqueness results for equation (1.1) considered in the Skorohod sense. Those results are mainly taken from [START_REF] Chen | Parabolic Anderson model with rough or critical Gaussian noise[END_REF], although we will also deal with extended solutions in the sense of Denition 2.1. Specically, we consider equation (1.1) considered in the Skorohod sense, that is

∂ t u t (x) = 1 2 ∆u t (x) + u t (x) Ẇt (x), t ∈ R + , x ∈ R d .
(3.1)

Recall from Notation 1.5 that we denote by p t (x) the d-dimensional heat kernel p t (x) = (2πt) -d/2 e -|x| 2 /2t , for any t > 0, x ∈ R d . We dene the solution of equation (3.1) as follows.

Denition 3.1. Let T > 0. Consider a random eld u = {u t (x); 0 ≤ t ≤ T, x ∈ R d } such that there exists p > 1 satisfying

sup 0≤s≤T sup y∈R d u s (y) L p (Ω) < ∞. (3.2) 
Then u is said to be a mild solution to equation (3.1) up to time T with initial condition u 0 ∈ C b (R d ), if for any t ≥ 0 and x ∈ R d , the process {u s (y); s ≥ 0, y ∈ R d } is Skorohod integrable in the sense of Denition 2.1, and the following equation holds for any t ≥ 0 and x ∈ R d :

u t (x) = p t u 0 (x) + t 0 R d p t-s (x -y)u s (y)d W s (y). (3.3) 
If we impose p = 2 in Denition 3.1, then our denition coincides with the usual notion of Skorohod solution for equation (1.1). In the subcritical regime L p moments are available for all p ≥ 2, and therefore equation (3.1) can be solved in the usual sense. We recall this result (taken from [START_REF] Chen | Parabolic Anderson model with rough or critical Gaussian noise[END_REF]) for the sake of completeness.

imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 Proposition 3.2. We assume that the coecients H 0 , . . . , H d satisfy the subcritical relation (1.7) and that H 0 > 1 2 . Then equation (3.1) admits a unique solution, considered in the sense of Denition 3.1 with p = 2. Remark 3.3. Proposition 3.2 has been extended in [START_REF] Chen | Parabolic Anderson model with a fractional Gaussian noise that is rough in time[END_REF] to the case H 0 < 1/2.

In contrast with the subcritical situation, in the critical case one can only guarantee the existence of a usual Skorohod solution up to a critical time. This is the content of the following proposition, also borrowed from [START_REF] Chen | Parabolic Anderson model with rough or critical Gaussian noise[END_REF]. Proposition 3.4. Assume that the critical condition (1.8) on H 0 and H holds true, where we recall that the vector H is introduced in Notation 1.5. Then one can nd a strictly positive time t * = t * (H 0 , H, d) such that there exists a unique L 2 (Ω)-mild solution u of equation (3.3) for t ∈ [0, t * ).

Proposition 3.4 opens the way to a possible denition of the solution to equation (3.3) in the L p sense for p ∈ (1, 2). While the existence of such a solution relies heavily on moment bounds which are obtained through Feynman-Kac representations, uniqueness holds true by just invoking the fact that we are dealing with a linear equation. This is summarized in the following proposition. Proposition 3.5. As in Proposition 3.4, we assume that the critical condition (1.8) on H 0 and H holds true. For p ∈ (1, 2), suppose that one can nd a strictly positive time t * p = t * (p, H 0 , H, d) such that there exists a L p (Ω)-mild solution u of equation (3.3) on the interval [0, t * p ). Then this solution is unique. Proof. Suppose that u and v are two mild solutions in the L p sense (given by Denition 3.1) with the same initial condition. Set w = u -v. Then, w satises

w t (x) = t 0 R d p t-s (x -y)w s (y) d W s (y).
(3.4)

Iterating this relation we get

w t (x) = t 0 R d s 0 R d p t-s (x -y)p s-r (y -z)w r (z)d W r (z) d W s (y).
(3.5) That is, w t (x) is an iterated Skorohod integral. By Proposition 2.6 and Proposition 2.7 in [START_REF] Nualart | Generalized multiple stochastic integrals and the representation of Wiener functionals[END_REF] this iterated Skorohod integral coincides with a double Skorohod integral (notice that in the reference [START_REF] Nualart | Generalized multiple stochastic integrals and the representation of Wiener functionals[END_REF] these results are proved for Skorohod integrals in L 2 (Ω), but they can be easily extended to the Skorohod integral in L p (Ω) introduced in Denition 2.1). Moreover, using (3.4), (3.5) and iterated versions in higher order chaoses, one can prove that w t (x) is orthogonal to any element in a nite Wiener chaos. This does not imply immediately that w t (x) = 0, because w t (x) ∈ L p (Ω) for some p > 1. However, given any random variable F ∈ L q (Ω) where 1 p + 1 q = 1, we can approximate F in L q by a sequence F n of elements on a nite Wiener chaos. Then, E[w t (x)F ] = lim n→∞ E[w t (x)F n ] = 0, which implies w t (x) = 0.
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Feynman-Kac representation

In order to analyze the moments of u t (x) and compare the Skorohod and Stratonovich settings for equation (1.1), we rst give a Feynman-Kac representation for an approximating sequence of the solution u to equation (3.1). To this end, let p be a d + 1 dimensional heat kernel given by (1.11). To separate its rst coordinate from the others, we write p (x) = p (x 0 , x) with x = (x 0 , x) ∈ R d+1 . Consider now the smoothed noise

W t (x) = (p * Ẇ ) t (x) = W (p (t -•, x -•)). (3.6)
In the same spirit as (1.3), we denote by γ 0 and γ the corresponding covariance functions (in time and space) of W , with µ 0 and µ their spectral measures. Similar to (1.5), it is readily checked that

µ ε 0 (dλ) = c 0 e -|λ| 2 |λ| 1-2H0 dλ, and µ ε (dξ) = c H e -|ξ| 2 d j=1 |ξ j | 1-2Hj dξ, (3.7 
) With the above notions in hand, we set

V ε,B t (x) = t 0 W t-s (B x s )ds = W (φ) , (3.8) 
where the second notation W (φ) corresponds to the Wiener integral introduced in (2.3) and where the function φ is given by

φ(s, y) = t 0 p (u -s, B x t-u -y)du.
(3.9)

Moreover, in relation (3.9) B x stands for a d-dimensional Brownian motion independent of W with initial condition x ∈ R d . The functional (3.8) gives rise to an approximate solution of the Skorohod equation, as stated in the following proposition:

Proposition 3.6. For ε > 0, t ∈ R + and x ∈ R 2 , let V ε,B t (x) be dened by (3.8) and set

β ε,B t ≡ [0,t] 2 R d+1 e -ε (|ξ| 2 +|λ| 2 ) e ı(ξ•(Bs 1 -Bs 2 )+λ(s2-s1)) µ 0 (dλ)µ(dξ) ds 1 ds 2 , (3.10)
where we write B 0 = B for notational sake, where µ is introduced in (3.7) and where γ 0 is the inverse Fourier transform of µ ε 0 . We dene u ε, on R + × R d by:

u ε, t (x) = E e V ε,B t (x)-1 2 β ε,B t , (3.11) 
where we recall that the expectation E has been introduced in Notation 1.5. Then the process u ε, is the unique solution to the following Skorohod type equation:

∂ t u ε, t (x) = 1 2 ∆u ε, t (x) + u ε, t (x) Ẇ ε (x), t ∈ R + , x ∈ R d , (3.12) 
where Ẇ ε is the smoothed noise Ẇ ε = Ẇ * p ε dened in (3.6).
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Proof. Similarly to the proof of Proposition 5.2 in [START_REF] Hu | Stochastic heat equation driven by fractional noise and local time[END_REF], we can show that

u ε, t (x) = E exp V ε,B t (x) - 1 2 E V ε,B t (x) 2 .
Now a direct application of (2.3) reveals that

E |V ε,B t (x)| 2 = [0,t] 2 R d+1 e -ε (|ξ| 2 +|λ| 2 ) e ı(ξ•(Bs 1 -Bs 2 )+λ(s2-s1)) µ 0 (dλ)µ(dξ) ds 1 ds 2 = β ε,B t , (3.13) 
which proves our claim.

We now prove the convergence of the regularized Feynman-Kac representation to the solution of the Skorohod equation (3.1). Proposition 3.7. Let u ε, be the process dened by (3.11), and recall that u designates the solution to equation (3.1) as given in Proposition 3.2 or Proposition 3.4. We assume that one of the following situations is met: (i) The subcritical condition (1.7) is satised and t is any positive number.

(ii) The critical assumption (1.8) prevails and t ∈ [0, t * ), where t * is dened in Proposition 3.4.

Then for all

x ∈ R d , the random variable u ε, t (x) converges to u t (x) in L 2 (Ω) as ε → 0.
Proof. We will prove the proposition under condition (ii), the other case being handled similarly. In order to show the L 2 -convergence of u ,ε t , we consider the quantity α t (also denoted by α 12 t in the sequel) dened by

α t ≡ [0,t] 2 R d e ı(ξ•(B 1 s 1 -B 2 s 2
)+λ(s1-s2)) µ 0 (dλ)µ(dξ) ds 1 ds 2

(3.14)

In the above, B 1 , B 2 are two independent Brownian motions starting from x, which are also independent of the noise W . Then in order to prove that u ε,

t (x) converges in L 2 (Ω), it is sucient to verify that E[e αt ] < ∞ and lim ε1,ε2→0 E u ε1, t (x) u ε2, t (x) = E [e αt ] . (3.15) 
In order to prove (3.15), we resort to expression (3.11), which yields

E u ε1, t (x) u ε2, t (x) = E E exp V ε1,B 1 t (x) + V ε2,B 2 t (x) - 1 2 β ε1,B 1 t + β ε2,B 2 t .
Applying Fubini's theorem we thus get: Moreover, recall that

E u ε1, t (x) u ε2, t (x) = E exp 1 2 E V ε1,B 1 t (x) + V ε2,B 2 t (x) 2 - 1 2 β ε1,B 1 t + β ε2,B 2 t . ( 3 
β ε,B t = E[|V ε,B t (x)| 2 ]
according to (3.13). Plugging this identity into (3.16), we thus get

E u ε1, t (x) u ε2, t (x) = E e α ε 1 ,ε 2 t ,
where the quantity α ε1,ε2 t is dened by

α ε1,ε2 t = E V ε1,B 1 t (x) V ε2,B 2 t (x) (3.17) = [0,t] 2 R d+1 e -(ε 1 +ε 2 ) 2 (|ξ| 2 +|λ| 2 ) e ı(ξ•(B 1 s 1 -B 2 s 2 )+λ(s2-s1)) µ 0 (dλ)µ(dξ) ds 1 ds 2 .
Notice that for xed ε 1 , ε 2 > 0, the fact that α ε1,ε2 t is well-dened stems easily from the presence of the exponential term e -(ε1+ε2) |ξ| 2 in the right hand side of (3.17). In addition, [9, inequality (3.1)] implies that

E[e αt ] < ∞, for t < t * . Since [0,t] 2 E e ı(ξ•(B 1 s 1 -B 2 s 2 )+λ(s1-s2)) ds 1 ds 2 = t 0 E e ı(ξ•B 1 s 1 +λs1) ds 1 2 ≥ 0,
an easy monotone convergence argument together with a Taylor series expansion of the exponential function yields

lim ε1,ε2→0 E u ε1, t (x) u ε2, t (x) = lim ε1,ε2→0 E e α ε 1 ,ε 2 t = E [e αt ] ,
which is our claim (3.15). We have thus obtained the L 2 convergence of u ε, .

We now claim that the process u t (x) dened as the limit of u ε, t (x) is a mild solution to equation (3.1) in the sense of Denition 3.1 with p = 2. First notice that (3.2) holds for the process u because of the relation

sup ε>0 sup t≤t * sup x∈R 2 u ε, t (x) L 2 (Ω) < ∞,
which stems from (3.15). Then owing to relation (2.5), u satises (3.3) in the Skorohod sense if for any smooth and cylindrical random variable F , we have

E [F (u t (x) -p t u 0 (x))] = E [ DF, G H ] , (3.18) 
where the process G is dened by

G s (y) = p t-s (x -y)u s (y)1 [0,t] (s).
Relation (3.18) is obtained by taking limits on a similar equation for u ε, t

(see [START_REF] Hu | Stochastic Heat Equations with General Multiplicative Gaussian Noises: Hölder Continuity and Intermittency[END_REF]Theorem 3.6] for a similar argument).
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Moments estimates in the subcritical case

In this section we recall some moment estimates and representations established in [START_REF] Chen | Parabolic Anderson model with rough or critical Gaussian noise[END_REF] for the Skorohod equation. We label those results here since they will be invoked in order to get integrability results for the Stratonovich equation. We start with a bound on the L p moments.

Proposition 3.8. Assume that the subcritical condition (1.7) is satised, and let u be the unique solution of equation (3.1). Then for all t ≥ 0 and p ≥ 1 we have

E [|u t (x)| p ] = c p,t < ∞.
Let us now dene a generalization of the quantity α t dened by (3.14), which is used for moment representations. Namely for two coordinates 1 ≤ j 1 , j 2 ≤ p we set

α j1j2 t = [0,t] 2 γ B j1 s1 -B j2 s2 γ 0 (s 1 -s 2 ) ds 1 ds 2 , (3.19) 
where γ and γ 0 are the (generalized) covariance function given by (1.3), and B j , j = 1, . . . , p are independent Brownian motions starting from x. With this notation in hand and thanks to the representation (3.11) for the approximation u ε, of u , we also get the following representation for the moments of u t (x).

Proposition 3.9. We suppose that the subcritical condition (1.7) is fullled, and recall that u is the unique solution of equation (3.1). Then for all t ≥ 0 and any integer p ≥ 2 we have

E [|u t (x)| p ] = E   exp   1≤j1<j2≤p α j1j2 t     , (3.20) 
where α j1,j2 t is introduced in (3.19). Moreover, for any λ > 0 one has

E exp λα j1j2 t < ∞. 3.4. Critical moments for p ≥ 2
We assume throughout this section that the critical condition (1.8) is satised.

In this case we will see that the moments of u blow up after a critical time t * and we shall identify the time t * in some cases. Before we proceed to the proof of this fact, let us introduce some functional spaces and inequalities of interest.

Denition 3.10. Let W 1,2 (R d ) be the usual Sobolev space of order (1, 2) in R d . We dene a subset A d of functions dened on [0, 1] × R d as follows: It is readily checked that there exists a constant C such that the following inequality holds for all g ∈ A d :

A d = g : [0, 1]×R d → R; g(s, •) ∈ W 1,2 (R d ),
[0,1] 2 (R d ) 2 γ 0 (s-t)γ(x-y)g 2 (s, x)g 2 (t, y)dxdydsdt ≤ C 4 [0,1]×R d |∇ x g(s, x)| 2 dsdx.
(3.21) Remark 3.11. When the noise W is time independent, that is when H 0 = 1 (hence γ 0 ≡ 1), equality (3.21) can be established using the same method as in [START_REF] Bass | Large deviations for Riesz potential of additive processes[END_REF]. The general case then follows from [8, Lemma 5.2]. Notation 3.12. We call κ = κ(H 0 , H) the best constant in inequality (3.21). Remark 3.13. The classical Gagliardo-Nirenberg inequality asserts that for p(d-

2) ≤ d we have f L 2p (R d ) ≤ κ ∇f d(p-1) 2p L 2 (R d ) • f 1- d(p-1) 2p L 2 (R d ) .
(3.22)

The best constant κ in the above inequality is called the Gagliardo-Nirenberg constant. Now in equation (3.21) consider the special case when d = 2, p = 2, and

H 0 = 1, H 1 = H 2 = 1/2.
In this situation it is clear that the quantity κ dened in Notation 3.12 coincides with the Gagliardo-Nirenberg constant in relation (3.22).

We can now state the main result of this section, which identies the exact time of blowup for the integer moments of u t (x) in the critical case. Theorem 3.14. We suppose that condition (1.8) is met for our indices H 0 and H. For any integer p ≥ 2 we dene a critical time t 0 (p) by

t 0 (p) = 1 κ 4 (p -1) 1/(2H0-1)
, where we recall that κ is the constant introduced in Notation 3.12. For > 0, let u , be the unique solution to equation (3.12). Then the following assertions holds true: (i) If t < t 0 ≡ t 0 (2) = κ -4/(2H0-1) , then for every x ∈ R d the sequence

{u , t (x), > 0} converges in L 2 (Ω) to an element u t (x). The process {u t (x) : t ∈ [0, t 0 ), x ∈ R d } is said to be the solution of equation (3.1). (ii) For any p ≥ 2, if t < t 0 (p) the sequence {u , t (x); > 0} also converges in L p (Ω) to u t (x). (iii) For p ∈ (1, ∞), if t > t 0 (p) and x ∈ R d we have lim →0 u , t (x) L p (Ω) = ∞.
Remark 3.15. In the critical case when Then for any t 1 , t 2 > 0 and θ ∈ R + , the following inequality holds true:

∞ n=0 θ n n! 1 (t 1 + t 2 ) n E H n t1+t2 ≤ ∞ n=0 θ n n! 1 t n 1 E H n t1 ∞ n=0 θ n n! 1 t n 2 E H n t2 (3.23)
whenever the right hand side is nite. Remark 3.17. We could obviously have stated (3.23) However, equation (3.23) is the one which will be used for our computations below.

We will now separate the upper bound computations for u t (x) into a L 2 bound and L p bounds for p > 2.

Convergence for p = 2

Our aim in this section is to prove item (i) in Theorem 3.14. According to the Feynman-Kac representation (3.20), an upper bound on the L 2 moments of u t (x) amounts to prove the following relation

E exp(α 12 t ) < ∞, for all t < 1 κ 4/(2H0-1) ≡ t 0 (2), (3.24)
where we recall that the constant κ is dened in Notation 3.12. Also notice that the random variable α 12 t introduced in (3.19) will be written as

α 12 t = [0,t] 2 γ 0 (s -r) γ(B s -B r ) dsdr, (3.25) 
for two independent Brownian motions B and B. In addition, notice that only the large positive values of α 12 t might be responsible for the blowup of exponential moments. Therefore relation (3.24) can be easily deduced from the following asymptotic tail behavior

lim sup b→∞ 1 b log P α 12 t ≥ b ≤ - 1 κ 4 t 2H0-1 .
(3.26)

We now proceed to prove (3.26), and we divide our proof in several steps.

Step 1: Scaling arguments. We recall once again that γ 0 and γ are introduced in (1.3). Formally they are given by As mentioned in the introduction, expressions like (3.28) are better expressed in Fourier modes, thanks to (1.4) and (1.5). We get

γ 0 (u) = C H0 |u| -α0 , and γ(x) = C H d j=1 |x j | -αj , where α j = 2 -2H j .
α 12 t (d) = b -1 t 2H0-1 [0,b] 2 γ 0 b -1 (σ -ρ) γ B σ -B ρ dσdρ.
α 12 t (d) = b -1 t 2H0-1 × R d+1 µ 0 (dλ)µ(dξ) b 0 e i(λb -1 s+ξ•Bs) ds b 0 e -i(λb -1 s+ξ• Bs) ds .
In order to write the above expression in a more compact way, let us dene the following random variables, (3.29) and denote by Z b the weighted integral of η b and ηb , namely

η b (λ, ξ) = b 0 e i(λb -1 s+ξ•Bs) ds, and ηb (λ, ξ) = b 0 e -i(λb -1 s+ξ• Bs) ds,
Z b = R d+1 η b (λ, ξ)η b (λ, ξ)µ 0 (dλ)µ(dξ).
We end up with the following identity in law

α 12 t (d) = b -1 t 2H0-1 Z b . (3.30)
We now go back to our main objective. Plugging (3.30) into (3.26), a few elementary algebraic manipulations yield that (3.24) can be reduced to the following bound,

lim sup b→∞ 1 b log P |Z b | 1/2 ≥ b t H0-1/2 ≤ - 1 κ 4 t 2H0-1 . (3.31)
Moreover, since t is an arbitrary positive number above, we simply set u = t -(H0-1/2) . We get that (3.24) is implied by the inequality

lim sup b→∞ 1 b log P |Z b | 1/2 ≥ ub P ≤ - u 2 κ 4 , (3.32) 
which should hold for all u > 0.

As a last preliminary step, we set up a cuto procedure on the random variable Z b . Namely for δ > 0 we dene

µ δ 0 (dλ) = e -δ|λ| 2
µ 0 (dλ), and μδ

0 (dλ) = (1 -e -δ|λ| 2
)µ 0 (dλ).

(3.33) Accordingly, we also set Step 2: Identication of a negligible term. In this step we prove that the contribution of Zδ b in (3.32) is negligible. Specically, recalling that Zδ b is dened by (3.34), given any > 0 and L > 0 we prove that

Z δ b = R d+1 η b (λ, ξ)η b (λ, ξ)µ δ 0 (dλ)µ(dξ) Zδ b = R d+1 η b (λ, ξ)η b (λ, ξ)μ δ 0 (dλ)µ(dξ), (3.34 
lim sup b→∞ 1 b log P | Zδ b | 1/2 ≥ b ≤ -L, (3.35) 
when δ is small enough. As a rst step in this direction, introduce an additional parameter α0 ∈ (α 0 , 1), where we recall that α 0 is dened by (3.27). According to the denition (3.33) of μδ 0 we have

μδ 0 (dλ) = 1 -e -δ|λ| 2 µ 0 (dλ) ≤ 1 -e -δ|λ| 2 α0 -α 0 2 µ 0 (dλ).
Owing to the elementary relation 1 -e -x ≤ x for x ≥ 0, recalling from (1.5) that µ 0 (dλ) = c 0 |λ| -(1-α0) dλ, and setting

μ0 (dλ) = c 0 |λ| -(1-α0) dλ,
we get

μδ 0 (dλ) ≤ δ α0 -α 0 2 |λ| α0-α0 µ 0 (dλ) = δ α0 -α 0 2 μ0 (dλ).
(3.36)

We now compute the n-th moment of the random variable Zδ b . Starting from denition (3.34) and invoking our convention (1.12) on product measures, for all n ≥ 1 we have 

E Zδ b n = (R d+1 ) n E n k=1 η b (λ k , ξ k )η b (λ k , ξ k ) μδ 0 (dλ)µ(dξ).
E Zδ b n = (R d+1 ) n E n k=1 η b (λ k , ξ k ) 2 μδ 0 (dλ)µ(dξ).
(3.38)

Note that from the right-hand side of the above identity, the n-th moment of Zδ b is non-negative. Plugging inequality (3.36) in the above identity, we have

E Zδ b n ≤ δ α0 -α 0 2 n (R d+1 ) n E n k=1 η b (λ k , ξ k ) 2 μ0 (dλ)µ(dξ).
(3.39)

In order to bound the right-hand side of (3.39), we rst go back to the denition (3.29) of η b and set λ := b -1 λ therein. We let the patient reader check that the scaling can be read in (3.39) as 

E Zδ b n ≤ δ α0 -α 0 2 n b n α0 (R d+1 ) n E n k=1 b 0 e i(λ k s k +ξ k • Bs k ) ds k 2 μ0 (dλ)µ(dξ).
E Zδ b n ≤ C n δ ( α0 -α 0 )n 2 (n!) b n α0 b n(1-α0) = C n (n!) δ ( α0 -α 0 )n 2 b n .
(3.41)

Starting from this inequality we can easily get a similar bound for E[| Zδ b | n ] by changing the constant C in the right-hand side of (3.41). Namely, when n is even,

note that E[( Zδ b ) n ] = E[| Zδ b | n ]
due to the fact that our measures µ and µ 0 are symmetric. For any odd number n = 2k +1, we just invoke the Cauchy-Schwartz inequality, which yields

E | Zδ b | 2k+1 ≤ E Zδ b 2k 1/2 E Zδ b 2k+2 1/2 .
We let the reader check that this slight elaboration yields (3.41

) with E[| Zδ b | n ]
on the left-hand side. Therefore, inserting (3.41) into a Taylor expansion for

x → e x , we get that, for some constant C > 0,

Q ≡ sup b≥1 E exp | Zδ b | Cδ α0 -α 0 2 b < ∞. (3.42) 
We can now go back to our claim (3.35). Indeed, plugging (3.42) into a standard application of Chebyshev's inequality, we obtain (3.43)

P | Zδ b | 1/2 ≥ b = P | Zδ b | ≥ 2 b 2 ≤ Q exp -
Step 3: Cuto procedure in space. In order to prove (3.43), we further decompose (3.46)

Z δ b as follows. Z δ b = Z δ,M b + Zδ,M b , (3.44 
Similarly to the previous step, we will now prove that there exists l > 0 such that

lim sup b→∞ 1 b log P | Zδ,M b | 1/2 ≥ b ≤ -l.
(3.47)

To this aim we will rst upper bound the moments of Zδ,M b as in (3.41). Namely, along the same lines as for (3.38) we have

E Zδ,M b n = (R×([-M,M ] d ) c ) n E n k=1 η b (λ k , ξ k ) 2 µ δ 0 (dλ)µ(dξ), (3.48) 
which shows in particular that E[( Zδ,M b

) n ] ≥ 0 for all n ≥ 1. Furthermore, recall from (3.29) that

E n k=1 η b (λ k , ξ k ) = E [0,b] n n k=1 e -(iλ k b -1 s k +ξ k •Bs k ) ds = [0,b] n e -iλ k b -1 s k E n k=1 e -iξ k •Bs k ds.
One can then trivially bound the terms |e -iλ k s k | by 1 in the right-hand side above and resort to the fact that E n k=1 e -iξ k Bs k ≥ 0. This yields

E n k=1 η b (λ k , ξ k ) ≤ [0,b] n E n k=1 e -iξ k •Bs k ds.
Reporting this inequality into (3.48) we get

E ( Zδ,M b ) n ≤ µ δ 0 (R) n E H c b (M ) n , (3.49) 
where we have set (3.50)

H c b (M ) = ([-M,M ] d ) c b 0 e iξ•
We now wish to apply subadditivity properties of H c b (M ), such as (3.23), in order to obtain relation (3.47). A rst step in this direction is to apply Chebyshev's inequality, which asserts that for all , b > 0 and k ≥ 1 we have

( 2 b 2 N ) 2k P | Zδ,M b | 1/2 ≥ b ≤ N 2k E | Zδ,M b | 2k = N 2k E ( Zδ,M b ) 2k , (3.51)
where we have introduced an additional parameter N ≥ 0 to be specied later on. We sum inequality (3.51) over k and resort to the elementary inequality in order to get

1 2 e 2 b 2 N P | Zδ,M b | 1/2 ≥ b ≤ ∞ k=0 ( 2 b 2 N ) 2k (2k)! P | Zδ,M b | 1/2 ≥ b ≤ ∞ k=0 N 2k (2k)! E ( Zδ,M b ) 2k .
Therefore invoking the fact that E ( Zδ,M b ) k ≥ 0 for all k ≥ 0, we have

1 2 exp{ 2 b 2 N }P | Zδ,M b | 1/2 ≥ b ≤ ∞ k=0 N k k! E ( Zδ,M b ) k ,
and owing to inequality (3.49), the above becomes

1 2 exp{ 2 b 2 N }P | Zδ,M b | 1/2 ≥ b ≤ ∞ k=0 (N µ δ 0 (R)) k k! E H c b (M ) k ,
where we recall that H c b (M ) is dened by (3.50). Summarizing our considerations for this step, we have found that for all , b > 0 and N > 0 we have

P | Zδ,M b | 1/2 ≥ b ≤ 2 exp{-2 b 2 N } ∞ k=0 (N µ δ 0 (R)) k k! E H c b (M ) k = 2 exp{-2 b 2 N } ∞ k=0 (bN µ δ 0 (R)) k k! 1 b k E H c b (M ) k .
We can now apply Lemma 3.16 in the following way: we set θ = bN µ δ 0 (R)

and we assume that b is an integer (generalizations to an arbitrary positive b are left to the reader). Then iterating (3.23) b times and writing R = N b we end up with

P | Zδ,M b | 1/2 ≥ b ≤ 2 exp{-2 bR} A δ (M, R) b , (3.52) 
where the quantity A δ (M, R) is dened by

A δ (M, R) = ∞ k=0 (Rµ δ 0 (R)) k k! E H c 1 (M ) k .
(3.53)

Finally, one can use the dominated convergence theorem to show that the righthand side of relation (3.52) satises, for every R > 0 small enough,

lim M →∞ A δ (M, R) = 1.
(3.54) Indeed, rst note that the bound (3.1) in [START_REF] Chen | Parabolic Anderson model with rough or critical Gaussian noise[END_REF], already used for our relation (3.41), can be extended to the case when H 0 = 1 (i.e., the setting without time dependence). A direct application of this bound (or generalization of (3.41) to α 0 = α0 = 0 and b = 1) yields that for all k ≥ 1 we have Hence one can choose R small enough such that the following domination of the general term of (3.54) holds true,

E H c 1 (M ) k ≤ E H 1 (R) k ≤ C k k!,
A δ (M, R) ≤ ∞ k=0 (Rµ δ 0 (R)) k k! E H 1 (R) k ≤ ∞ k=0 CRµ δ 0 (R) k < ∞. (3.55)
Moreover, invoking relation (3.50) it is readily checked that the k-th moment of

H c 1 (M ) in (3.53) is such that E H c 1 (M ) k = ([-M,M ] d ) c ) k [0,1] k E k i=1 e iξ k •Bs k ds 2 µ(dξ).
Thus the mapping

M → E H c 1 (M )
k is monotone and decreasing. As a direct consequence, relation (3.54) follows by dominated convergence.

Let us now turn to our partial objective (3.47). Namely recast relation (3.52) as

1 b log P | Zδ,M b | 1/2 ≥ b ≤ log 2 b -2 R + log A δ (M, R).
In the right-hand side above, one can x R > 0 small enough and then take M large enough so that

log A δ (M, R) ≤ 4 .
Therefore for small enough we get

1 b log P | Zδ,M b | 1/2 ≥ b ≤ log 2 b - 1 2 2 R,
from which (3.47) is easily deduced. Summarizing our considerations from this step, having (3.43), (3.44) and (3.47) in mind we get that our claim (3.32) is achieved as soon as we can prove

lim sup b→∞ 1 b log P |Z δ,M b | 1/2 ≥ ub ≤ - u 2 κ 4 , (3.56) 
where we recall that Z δ,M b is dened by (3.45).

Step 

|Z δ,M b | 1/2 ≤ 1 2 R×[-M,M ] d |η b (λ, ξ)| 2 µ δ 0 (dλ)µ(dξ) 1/2 + R×[-M,M ] d |η b (λ, ξ)| 2 µ δ 0 (dλ)µ(dξ) 1/2 .
Taking into account the fact that η and η are independent, this entails

E exp θ|Z δ,M b | 1/2 ≤ E exp θ 2 |X δ,M b | 1/2 2 , (3.58) 
where the random variable X δ,M b is dened by

X δ,M b = R×[-M,M ] d |η b (λ, ξ)| 2 µ δ 0 (dλ)µ(dξ).
(3.59)

Putting together (3.57) and (3.58) and setting θ = 2 θ, we are reduced to prove

lim sup b→∞ 1 b log E exp θ|X δ,M b | 1/2 ≤ κ 4 θ 2 2 .
(3.60)

In addition, condition (3.60) can be expressed in terms of the moments of X δ,M b . Indeed, taking into account the fact that X δ,M b is a positive random variable, a direct application of [5, Lemma 1.2.6] asserts that (3.60) is equivalent to the following property:

lim sup b→∞ 1 b log ∞ n=0 θ n n! E (X δ,M b ) n 1/2 ≤ κ 4 θ 2 .
(3.61)

We will use the formulation (3.61) below in order to replace the Brownian motion B in X δ,M b by a Ornstein-Uhlenbeck process.

Step 5: Expression in terms of an Ornstein-Uhlenbeck process. Similarly to a strategy borrowed from [START_REF] Huang | Large time asymptotics for the parabolic Anderson model driven by space and time correlated noise[END_REF], we now introduce a family of R d -valued Ornstein-Uhlenbeck processes indexed by α > 0, denoted by B α . The process B α solves the equation

dB α t = -αB α t dt + dB t , (3.62) 
where B is our standing d-dimensional Wiener process. Now notice that B can also be seen as an Ornstein-Uhlenbeck type process of the form Therefore, if we denote by P α the law of B α , a standard application of Girsanov's theorem yields

dP α dP [0,τ ] = exp -α τ 0 B s • dB s - α 2 2 τ 0 |B s | 2 ds .
(3.63)

In addition, Itô's formula applied to B entails that for any τ > 0 we have

|B τ | 2 = 2 τ 0 B s • dB s + τ d.
Therefore the exponential term in (3.63) can be recast as

dP α dP [0,τ ] = exp 1 2 ατ d -α|B τ | 2 -α 2 τ 0 |B s | 2 ds .
(3.64)

In particular, it is readily checked that

dP α dP [0,τ ] ≤ exp 1 2 ατ d .
(3.65)

Let us also recall a moment comparison inequality which is obtained in [9, relation (6.20)]. Namely for n ≥ 1 and the random variables X δ,M b dened by (3.59) we have

E (X δ,M b ) n ≤ E α (X δ,M b ) n ,
for all α > 0, where E α denotes the expectation under P α . Hence in order to prove (3.61) it will be enough to show a uniform bound in α, namely lim sup

α→0 lim sup b→∞ 1 b log ∞ n=0 θ n n! E α (X δ,M b ) n 1/2 ≤ κ 4 θ 2 .
Therefore, invoking again the equivalence between (3.60) and (3.61) for positive random variables, we are reduced to prove

lim sup α→0 lim sup b→∞ 1 b log E α exp θ|X δ,M b | 1/2 ≤ κ 4 θ 2 2
(3.66) for every θ > 0. We now focus on inequality (3.66) for a generic θ > 0.

Step 6: Space-time cuto for the Ornstein-Uhlenbeck process. Let us introduce an additional parameter N > 0 and write Next we consider a new parameter K > 0 and we x a value α > 0. We further decompose X δ,M,N b and write

X δ,M b = X δ,M,N b + Xδ,M,N b , with X δ,M,N b = [-N,N ]×[-M,M ] d |η b (λ, ξ)| 2 µ δ 0 (dλ)µ(dξ), (3.67) Xδ,M,N b = [-N,N ] c ×[-M,M ] d |η b (λ, ξ)| 2 µ δ 0 (dλ)µ(dξ).
X δ,M,N b = X δ,M,N b 1 Ω b,K + X δ,M,N b 1 Ω c b,K , (3.69) 
where

Ω b,K = 1 b b 0 |B s |ds ≤ K .
We will prove that for K large enough, the quantity

X δ,M,N b 1 Ω c b,K is negligible with respect to X δ,M,N b
1 Ω b,K . Indeed, resorting to (3.64) we have,

E α exp b 0 |B s |ds ≤ E exp b 0 |B s | - α 2 2 |B s | 2 ds + αd 2 b .
Now we can use the elementary inequality x -α 2 x 2 /2 ≤ 1/2α 2 , valid for all x > 0, in order to get

E α exp b 0 |B s |ds ≤ e Cαb , where C α = 1 2α 2 + αd 2 .
Hence given l > 0 one can choose K > 0 large enough (say K = l + 2C α ) such that uniformly in b we have

P α (Ω c b,K ) ≤ e -lb , (3.70) 
where we recall that Ω b,K is dened by (3.69). In addition, one can trivially bound the quantity

|η b (λ, ξ)| 2 in the denition (3.67) of X δ,M,N b by b 2 .
This yields

E α exp θ|X δ,M,N b | 1/2 1 Ω c b,K ≤ exp C 1/2 δ,M,N θb -lb ,
where l above can be made arbitrarily large. In conclusion of this step, it is enough to prove that for all θ, δ, M, N > 0, we have

lim sup α→0 lim sup b→∞ 1 b log E α exp θ|X δ,M,N b | 1/2 1 Ω b,K ≤ κ 4 θ 2 2 .
(3.71)
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Step 7: Linearization procedure. One way to recast the denition (3.67) of

|X δ,M,N b | 1/2 is to write |X δ,M,N b | 1/2 = η b G , (3.72) 
where the functional space G is dened by

G = h ∈ L 2 ([-N, N ] × [-M, M ] d ; µ δ 0 ⊗ µ); h(-λ, -ξ) = h(λ, ξ) .
(3.73)

In this step we show how to linearize the G-norm above when ω ∈ Ω b,K . To this aim, going back to (3.29), notice that for λ 1 , λ 2 ∈ R and ξ 1 , ξ 2 ∈ R d we have

|η b (λ 2 , ξ 2 ) -η b (λ 1 , ξ 1 )| ≤ b 0 |e ı(b -1 λ2+ξ2•Bs) -e i(b -1 λ1+ξ1•Bs) |ds ≤ |λ 2 -λ 1 | + b 0 |B s |ds |ξ 2 -ξ 1 | ≤ |λ 2 -λ 1 | + Kb|ξ 2 -ξ 1 |,
where we have invoked the fact that ω ∈ Ω b,K , with Ω b,K given by (3.69), for the last inequality. Therefore, setting

C = h(•, •) ∈ G; |h(λ, ξ)| ≤ 1, |h(λ 1 , ξ 1 )-h(λ 2 , ξ 2 )| ≤ (1+K)|(λ 1 , ξ 1 )-(λ 2 , ξ 2 )| , (3.74) 
it is easily seen that b -1 η b ∈ C for all b ≥ 1, whenever ω ∈ Ω b,K . Moreover, some standard uniform continuity arguments show that the closure K of C in G is a compact set. We have thus proved that for all b ≥ 1 and ω ∈ Ω b,K we have

b -1 η b ∈ K.
Our next step will be to construct a nite cover of K. To this aim consider the unit ball in G, denoted by B G (0, 1). We also consider the following set for any f ∈ B G (0, 1):

O f = {h ∈ G; f, h G > h G -}.
(3.75) Then we claim that the family

{O f ; f ∈ B G (0, 1)} covers K. Indeed, consider f ∈ B G (0, 1) such that f G = 1 and a constant a > 0. We set h = af . Then it is readily checked that f, h G = h G . Therefore we get K ⊂ {af ; f G = 1, a > 0} ⊂ {O f ; f ∈ B G (0, 1)} .
Otherwise stated, {O f ; f ∈ B G (0, 1)} covers K. In the sequel we will extract a nite family {O fi , 1 ≤ i ≤ m} which still covers K, which is possible since K is a compact set.

Let us now go back to the random function b -1 η b , seen as an element of K. From the previous consideration we know that for almost every ω ∈ Ω b,K imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 there exists j = j(ω) ∈ {1, . . . , m} such that b -1 η b ∈ O fj . Hence from the very denition (3.75) of O fj , we get

b -1 η b (•, •) G ≤ + max 1≤j≤m f j , b -1 η b G
Plugging this inequality into (3.72) we end up with

E α exp θ|X δ,M,N b | 1/2 1 Ω b,K = E α exp (θ η b G ) 1 Ω b,K ≤ E α exp θ max 1≤j≤m f j , η b G + bθ ≤ e bθ m j=1 E α [exp (θ f j , η b G )] .
Hence some elementary properties of the logarithmic function (see e.g [19, Lemma 1.2.15]) entail

lim sup b→∞ 1 b log E α exp θ|X δ,M,N b | 1/2 1 Ω b,K ≤ θ + max 1≤j≤m lim sup b→∞ 1 b log (E α [exp (θ f j , η b G ])) . (3.76)
We will now treat each term in the right-hand side of (3.76) separately.

Step 8: Feynman-Kac type asymptotics. Due to the fact that G is a subspace of

L 2 ([-N, N ] × [-M, M ] d : µ δ 0 ⊗ µ), for j = 1, . . . , m we have f j , η b G = [-N,N ]×[-M,M ] d f j (λ, ξ)η b (λ, ξ)µ δ 0 (dλ)µ(dξ).
Recalling once again the denition (3.29) of η b , this yields

f j , η b G = b 0 fj s b , B s ds,
where the functions fj are given by the following relation,

fj (s, x) = [-N,N ]×[-M,M ] d f j (λ, ξ)e ı(λs+ξ•x) µ δ 0 (dλ)µ(dξ).
(3.77) Also notice that according to the denition (3.73) of G we have f j (λ, ξ) = f j (-λ, -ξ) for all j = 1, . . . , m, λ ∈ R and ξ ∈ R d . With the expression (3.77) in mind, this yields that fj is real-valued. Thus inequality (3.65) entails With (3.78) in hand, we are now back to a more classical Feynman-Kac computation. Specically, fj can be seen as the Fourier transform of a nite and compactly supported measure, as is apparent from (3.77). Therefore it fullls all the regularity assumptions allowing to apply [START_REF] Chen | Exponential asymptotics for timespace Hamiltonians[END_REF]Proposition 3.1]. Applying this proposition we thus get

E α [exp (θ f j , η b G )] ≤ exp
lim b→∞ 1 b log E exp θ b 0 fj s b , B s ds (3.79) = sup g∈A d θ 1 0 R d fj (s, x)g 2 (s, x)dxds - 1 2 1 0 R d |∇ x g(s, x)| 2 dxds ,
where the space A d is introduced in Denition 3.10.

Step 9: Evaluation of the Feynman-Kac asymptotics. Let us analyze the righthand side of relation (3.79). Owing to the denition of fj in (3.77), it is readily checked that

1 0 R d fj (s, x)g 2 (s, x)dxds = f j , F(g 2 ) G ,
where we recall that the space G is given by (3.73), and where we have set

F(g 2 )(λ, ξ) = 1 0 R d g 2 (s, x)e -ı(λs+ξ•x) dxds.
(3.80) Furthermore, each f j sits in the unit ball B G (0, 1) and thus

1 0 R d fj (s, x)g 2 (s, x)dxds ≤ F(g 2 ) G .
Now it is easily seen that

F(g 2 ) 2 G = [-N,N ]×[-M,M ] d | F(g 2 )(λ, ξ)| 2 µ δ 0 (dλ)µ(dξ) ≤ R d+1 | F(g 2 )(λ, ξ)| 2 µ 0 (dλ)µ(dξ) = [0,1] 2 R d ×R d γ 0 (s -r)γ(x -y)g 2 (x)g 2 (y)dxdydrds.
Plugging this information into (3.79), we have obtained that

lim b→∞ 1 b log E exp θ b 0 fj s b , B s ds (3.81) ≤ sup g∈A d θ [0,1] 2 R d ×R d γ 0 (s -r)γ(x -y)g 2 (x)g 2 (y)dxdydrds 1/2 - 1 2 ∇ x g(s, x) 2 L 2 ([0,1]×R d ) .
imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020

Now resorting to (3.21), the right-hand side of (3.81) can be upper bounded by

sup g∈A d θκ 2 ∇ x g L 2 ([0,1]×R d ) - 1 2 ∇ x g 2 L 2 ([0,1]×R d ) = sup z>0 θκ 2 z - 1 2 z 2 = 1 2 κ 4 θ 2 ,
where the last equality stems from a trivial optimization procedure. Summarizing our computations for this step, we have found that for j = 1, . . . , m we have

lim b→∞ 1 b log E exp θ b 0 fj s b , B s ds ≤ 1 2 κ 4 θ 2 .
(3.82)

Step 10: Conclusion. Recall that our desired upper bound has been successively reduced to (3.71). Moreover, we have seen that the left-hand side of (3.71) is bounded by the right-hand side of (3.76) for any arbitrary small . Therefore, we are left with the evaluation of

A θ, ,α ≡ θ + max 1≤j≤m lim sup b→∞ 1 b log (E α [exp (θ f j , η b G )]) .
Now putting together (3.78) and (3.82) we obtain that

A θ, ,α ≤ θ + αd 2 + 1 2 κ 4 θ 2 .
Since and α can be made arbitrarily small, we have shown that relation (3.71) holds true. This nishes the proof of relation (3.24). With (3.24) in hand, Theorem 3.14-(i) is obtained along the same lines as for Proposition 3.7. Remark 3.18. According to Remark 3.15-(a), we could prove that the limit of u ε, in Theorem 3.14-(i) also solves the mild Skorohod equation (3.1). Moreover, thanks to a slight elaboration of Proposition 3.7 we could also obtain the uniqueness of the solution. We have not included those details for sake of conciseness.

Convergence for p > 2

Recall that we have proved item (i) in Theorem 3.14. Namely we have shown the L 2 convergence of u ε, t to the solution u t of (3.1) (see Remark 3.18 about a notion of solution) for t < t 0 = t 0 (2). In this section we extend this result to a general p > 2, that is we prove item (ii) in Theorem 3.14. As in Section 3.5.1, we will rst focus on showing that E[|u t (x)| p ] is nite whenever t < t 0 (p).

In order to prove the L p -boundedness of u t (x), we introduce an additional intensity parameter ζ > 0 and consider the process u (ζ) , solution of the following slight extension of (3.1):

∂ t u (ζ) t (x) = 1 2 ∆u (ζ) (x) + ζ u (ζ) (x) Ẇt (x),
imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 with initial condition u 0 (x) = 1. According to an hypercontractivity inequality shown in [29, Theorem 1], the following inequality holds true for all p ≥ 2 and

(t, x) ∈ R + × R d u (ζ) t (x) L p (Ω) ≤ u ((p-1)ζ) t (x) L 2 (Ω) , (3.83) or otherwise stated for ζ = 1, E [|u t (x)| p ] ≤ E |u (p-1) t (x)| 2 p/2 .
(3.84)

In addition, writing formula (3.20) for p = 2 and for a noise

√ p -1 Ẇ , we get E |u (p-1) t (x)| 2 = E exp (p -1) [0,t] 2 γ 0 (s -r)γ B s -B r dsdr .
Now resorting to a simple change of variables and invoking formula (3.20) again, we end up with

E |u (p-1) t (x)| 2 =E exp [0,(p-1) 1/(2H 0 -1) t] 2 γ 0 (s -r)γ B s -B r dsdr =E |u (p-1) 1/(2H 0 -1) t (x)| 2 .
(

, we have thus obtained

E [|u t (x)| p ] ≤ E |u (p-1) 1/(2H 0 -1) t (x)| 2 p/2 . (3.86) 
Applying Theorem 3.14 -item (i) to the right hand side of (3.86), we obtain that u t (x) ∈ L p (Ω) when t < t 0 (p).

We now turn to the proof of the fact that u , t (x) converges to u t (x) in L p (Ω) for t < t 0 (p). To this aim, we x a p > p such that t < t 0 (p ) < t 0 (p). By the same argument that we used to get (3.86), we obtain the following inequality for u , t (x),

E u , t (x) p 
≤ E u , (p -1) 1/(2H 0 -1) t (x) 2 p /2 . (3.87) 
Furthermore, it is easily seen from the proof of Proposition 3.7 that the L 2 (Ω)norm of u , t (x) is dominated by that of u t (x). Therefore relation (3.87) implies

E u , t (x) 
p

≤ E u (p -1) 1/(2H 0 -1) t (x) 2 p /2
. Now by our choice of p (such that t < t 0 (p )), we conclude

sup >0 E |u , t (x)| p < ∞.
Therefore, the family {|u , t (x)| p } >0 is uniformly integrable. This together with the fact that u , t (x) converges to u t (x) in L 2 (Ω) gives us the convergence in L p (Ω). The proof of Theorem 3.14 -item (ii) is thus completed.

imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 3.6. Proof of Theorem 3.14 -item (iii) Recall that u ε, t (x) is dened in Proposition 3.6. In the previous section, we essentially proved that u ε, t (x) converges to u t (x) in L p when t < t 0 (p). In this section, we show that u ε, t (x) p diverges as → 0 when t > t 0 (p). In order to state a lower bound on the L p (Ω) moments of u , , we rst dene a functional space G 0 which generalizes the space G introduced in (3.73). Denition 3.19. Let C 0,b (R × R d ) be the space of compactly supported and bounded functions on R × R d . We set

G 0 = h ∈ L 2 (R×R d , µ 0 ⊗µ)∩C 0,b (R×R d ); h(-λ, -ξ) = h(λ, ξ), µ 0 ⊗µ-a.e. .
We can now state a rst lower bound on the moments of u , in terms of a variational quantity. Proposition 3.20. For > 0 consider the solution u , to the regularized Skorohod equation (3.12). We assume that the critical conditions (1.8) are met. Let p > 1 and denote its conjugate exponent by q. Then for t > 0 and x ∈ R d we have

lim inf ε→0 u ε, t (x) p ≥ sup h∈G0 E exp t 0 h(s, B s )ds - q -1 2 R d+1 |h(λ, ξ)| 2 µ 0 (dλ)µ(dξ) , (3.88) 
where the function h is dened similarly to fj in (3.77), namely,

h(s, x) = R×R d
h(λ, ξ)e i(λs+ξ•x) µ 0 (dλ)µ(dξ).

(3.89)

Proof. Recall that u , t (x) is also given by expression (3.11), where V ,B t (x) is introduced in (3.8). Next we recall the denition of S-transform on the Wiener space related to our noise W (see [START_REF] Hida | White noise. An innitedimensional calculus[END_REF] for more details about the S-transform).

Having in mind the notation introduced in Section 2.1, the S-transform of F ≡

u , t (x) is dened for ϕ ∈ H by SF (ϕ) = E[F E ϕ ],
where the martingale exponential E ϕ is given by

E ϕ = exp W (ϕ) - 1 2 ϕ 2 H . (3.90) 
As highlighted in [23, Chapter 2], the S-transform has to be considered as the equivalent of the Fourier transform on a Wiener space. However in our context we will just use the following basic estimate for F = u , t (x): where we recall that q is the conjugate of p. We will now analyze the right-hand side of relation (3.91).

F p ≥ sup SF (ϕ) E ϕ q ; ϕ ∈ H , (3.91) 
In order to evaluate the S-transform SF (ϕ) in (3.91), We resort to the Feynman-Kac formula (3.11) for u , t (x), Fubini's theorem and the isometry (2.3) on our standing Wiener space. Similarly to (3.16)-(3.17), albeit with a time-space Fourier transform, we get

SF (ϕ) = E exp R×R d Fϕ(λ, ξ) Fψ t (λ, ξ)µ 0 (dλ)µ(dξ) , (3.92)
where the function ψ t is given by

ψ t (τ, x) = t 0 p (τ -(t -s), x -B s )ds.
Evaluating the Fourier transform of ψ t and plugging into (3.92), we thus get

SF (ϕ) = t 0 R×R d e -2 (λ 2 +|ξ| 2 )/2 e i(λ(t-s)+ξ•Bt) Fϕ(λ, ξ)µ 0 (dλ)µ(dξ) ds. (3.93) 
Let us now compute the quantity E ϕ q in (3.91). Owing to the fact that E g 1 = 1 for any g ∈ H, we easily get that

E ϕ q = exp q -1 2 R×R d |Fϕ(λ, ξ)| 2 µ 0 (dλ)µ(dξ) . (3.94) 
Therefore gathering (3.93) and (3.94) into (3.91), taking limit → 0 in (3.93) and observing that Fϕ ∈ L 2 (R × R d ; µ 0 ⊗ µ) whenever ϕ ∈ H, we end up with our claim (3.88).

Remark 3.21. By the local niteness and the symmetry of µ 0 and µ, the function h is real-valued, bounded and uniformly continuous on [0, 1] × R d whenever h ∈ G 0 . Our next step is to relate the lower bound (3.88) to the space A d introduced in Denition 3.10. This is summarized in the following lemma. Lemma 3.22. Let us assume that the conditions of Proposition 3.20 are met. We also suppose that the following condition is satised,

sup h∈G0 sup g∈A d φ t (h, g) - 1 2 1 0 R d |∇ x g(s, x)| 2 dxds > 0, (3.95) 
where we recall that G 0 is the space introduced in Denition 3.19 and where the variational quantity φ t (h, g) is dened by (3.96) imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 with Fg 2 being the truncated Fourier transform given in (3.80). Then we have that

φ t (h, g) = R×R d h(λ, ξ) Fg 2 (λ, ξ)µ 0 (dλ)µ(dξ) - 1 2t 2H0-1 (p -1) R×R d |h(λ, ξ)| 2 µ 0 (dλ)µ(dξ),
lim →0 u , t (x) p = ∞. (3.97) 
Proof. We start from the right-hand side of (3.88) and consider a generic h ∈ G 0 .

Then for b, t > 0 we also introduce a family of rescaled functions {h t,b ; t, b > 0} given by

h t,b (λ, ξ) = 1 t 2H0-1 h tλ, t b 1/2 ξ .
Each h t,b is an element of G 0 and we will now evaluate the expression (3.88) for those functions. We will take the next two observations into account: 

(ii) Under our standing assumption d -H = 1 we also have (3.100)

R×R d |h t,b (λ, ξ)| 2 µ 0 (dλ)µ(dξ) = b t 2H0-1 R×R d |h(λ, ξ)| 2 µ 0 (dλ)µ(dξ).
We are now in a position to apply [9, Proposition 3.1] and take limits as b → ∞ in (3.100). Indeed it is readily checked that h is bounded and uniformly continuous whenever h ∈ G 0 . Hence [9, Proposition 3.1] reads

lim b→∞ 1 b log E exp b 0 h s b , B s ds = sup g∈A d 1 0 R d h(s, x)g 2 (s, x)dxds - 1 2 1 0 R d |∇ x g(s, x)| 2 dxds . (3.101)
We also trivially have 

lim b→∞ 1 b log exp (q -1)b 2t 2H0-1 R×R d |h(λ, ξ)| 2 µ 0 (dλ)µ(ds) = (q -1) 2t 2H0-
sup g∈A d 1 0 R d h(s, x)g 2 (s, x)dxds - 1 2 1 0 R d |∇ x g(s, x)| 2 dxds - q -1 2t 2H0-1 R×R d |h(λ, ξ)| 2 µ 0 (dλ)µ(dξ) > 0. (3.103)
In order to go from (3.103) to (3.95), we proceed as follows: recalling the denition of F in (3.80), we will see in the next Lemma 3.23 that if g ∈ A d then Fg 2 ∈ G 0 , where G 0 is dened by (3.105). With the expression (3.89) for h(s, x) in mind, a direct application of Parseval's identify yields

1 0 R d h(s, x) g 2 (s, x) dxds = R×R d h(λ, ξ) Fg 2 (λ, ξ) µ 0 (dλ)µ(dξ). (3.104)
Invoking the fact that q -1 = 1/(p -1), we thus deduce that

1 0 R d h(s, x)g 2 (s, x)dxds - q -1 2t 2H0-1 R×R d |h(λ, ξ)| 2 µ 0 (dλ)µ(dξ) = φ t (h, g),
where φ t (h, g) is dened by (3.96). Hence it is readily checked that condition (3.103) is equivalent to (3.95), which nishes our proof.

We now turn to the technical result used in the proof of Lemma 3.22. Lemma 3.23. Recall that the space A d is given in Denition 3.10. Let G 0 be the space dened by

G 0 = {h ∈ L 2 (R × R d ; µ 0 ⊗ µ); h(-λ, -ξ) = h(λ, ξ) µ 0 ⊗ µ -a.e.} (3.105)
Then for any g ∈ A d , we have F(g 2 ) ∈ G 0 . Proof. This is a direct consequence of inequality (3.21) and denition of F in (3.80). Now we are ready to prove the main result of this section.

Proof of Theorem 3.14 -item (iii). We have shown that u , t (x) p diverges as → 0 as long as relation (3.95) is satised. Note that since F(g 2 ) ∈ G 0 , the functional φ t (h, g) dened in (3.96) is continuous in h with respect to the L 2 (R d+1 , µ 0 ⊗ µ)-norm. Therefore, Hence, we aim to show that (3.95) is satised for a suitable family of functions h ∈ G 0 . Namely, we want to nd some functions h ∈ G 0 such that

sup g∈A d φ t (h, g) - 1 2 1 0 R d |∇ x g(s, x)| 2 dxds > 0.
(3.106)

To this end, we will consider a family of functions {h θ,g ; θ ∈ R, g ∈ A d }. Each h θ,g is dened by

h θ,g (λ, ξ) = θ F(g 2 ) (-λ, -ξ) = θ F(g 2 ) (λ, ξ),
where we recall that F(g 2 ) ∈ G 0 according to Lemma 3.23. For such a function h θ,g we have

φ t (h θ,g , g) = θ - θ 2 2t 2H0-1 (p -1) R×R d | F(g 2 )(λ, ξ)| 2 µ 0 (dλ)µ(dξ).

Thus an elementary computation reveals that

sup θ∈R φ t (h θ,g , g) = (p -1)t 2H0-1 2 R×R d | F(g 2 )(λ, ξ)| 2 µ(dλ)µ(dξ).
Plugging this information into (3.106) we get

sup h∈G0 sup g∈A d φ t (h, g) - 1 2 1 0 R d |∇ x g(s, x)| 2 dxds ≥ sup g∈A d (p -1)t 2H0-1 2 R×R d | F(g 2 )(λ, ξ)| 2 µ(dλ)µ(dξ) - 1 2 1 0 R d |∇ x g(s, x)| 2 dxds .
According to Notation 3.12 and to the denition of t 0 (p) in Theorem 3.14, it is clear that the above quantity is strictly positive as soon as t > t 0 (p). This concludes the proof.

Stratonovich case

In this section we analyze the moments of equation (1.1) interpreted in the Stratonovich sense, for a wide class of noises. We rst briey recall, in Section 4.1, the main wellposedness result of [START_REF] Chen | A K-rough path above the space-time fractional Brownian motion[END_REF] regarding the Stratonovich equation.

The moment analysis will then take place in Section 4.2.

Interpretation of the solution

The basic idea behind the Stratonovich interpretation of equation (1.1) can be roughly expressed as follows. We consider a sequence 

∂ t u n t (x) = 1 2 ∆u n t (x) + u n t (x) Ẇ n t (x), t ∈ R + , x ∈ R d , (4.1) 
understood in the classical Lebesgue sense. Then the Stratonovich solution of (1.1) is morally dened as the limit (if it exists) of the sequence u n . In some situations where Ẇ is not too rough, the above heuristic idea can be rigourously formulated within the so-called Young setting (see e.g. [START_REF] Hu | Stochastic Heat Equations with General Multiplicative Gaussian Noises: Hölder Continuity and Intermittency[END_REF]Section 5]). In order to extend these considerations to rougher noises (which overall corresponds to our objective in this study), more intricate machineries must come into the picture, as well as renormalization procedures.

Thus, in the companion paper [START_REF] Chen | A K-rough path above the space-time fractional Brownian motion[END_REF], we have relied on the sophisticated theory of regularity structures (as introduced by Hairer in [START_REF] Hairer | A theory of regularity structures[END_REF]) to provide a complete treatment of the Stratonovich model, i.e. to show existence and uniqueness of a global solution, in a rough regime. For the sake of conciseness, we will here skip the details of this analysis (which involve the exhibition of an abstract solution map and the construction of a related K-rough path), and will directly provide the resulting convergence statement for the approximated equation (4.1).

To this end, we shall need the following piece of notation. Notation 4.1. Let ρ be the weight given by ρ(s, x) := p 1 (s)p 1 (x) as considered in (3.6) and dene the approximated noise Ẇ n of Ẇ by Ẇ 0 := 0 and for n ≥ 1,

Ẇ n := ∂ t ∂ x1 • • • ∂ x d W n , (4.2)
where W n := ρ n * W and ρ n (s, x) := 2 n(d+2) ρ(2 2n s, 2 n x).

For any vector (H 0 , H) ∈ (0, 1) d+1 , we set from now on (4.4)

N H0,H (λ, ξ) := 1 |λ| 2H0-1 d i=1 1 |ξ i | 2Hi-1 ,
Finally, note that when 2H 0 + H < d + 1 (where the notation H has been introduced in (1.6)) it can be shown that the integral below is nite (see [START_REF] Chen | A K-rough path above the space-time fractional Brownian motion[END_REF]): Finally, let (c (n) ρ,H0,H ) n≥1 be the sequence dened for every n ≥ 1 as

c (n) ρ,H0,H := c 2 H0,H 2 2n(d+1-(2H0+H)) J ρ,H0,H if 2H 0 + H < d + 1 c 2 H0,H |λ|+|ξ| 2 ≥2 -2n |Fρ(λ, ξ)| 2 Fp(λ, ξ)N H0,H (λ, ξ) dλdξ if 2H 0 + H = d + 1 (4.7)
and consider the sequence (u n ) n≥1 of classical solutions of the equation

∂ t u n = 1 2 ∆u n + u n Ẇ n -c (n) ρ,H0,H u n , t ∈ [0, T ], x ∈ R d , u n 0 (x) = ψ(x) . (4.8) 
Then the sequence u n converges almost surely in L ∞ ([0, T ] × R d ). The limit u = lim u n is said to be the Stratonovich solution to the renormalized equation of (1.1).

Moments estimates for the Stratonovich equation

Similarly to the Skorohod situation (see Section 3), we now would like to show that the moments of the renormalized Stratonovich solution u (as introduced in Denition 4.2) are all nite in the subcritical regime (1.7). With this objective in mind, observe rst that Denition 4.2 only guarantees almost sure convergence of u n to u, and does not provide any estimate on the moments of u. In order to go further, our strategy will somehow consist in bounding the moments of the Stratonovich solution u in terms of those of the Skorohod solution u (at the level of their respective approximations), and then exploiting the estimates of Section 3 for the moments of u . For more clarity, and although both Proposition 3.8 and Denition 4.2 are valid for H 0 ≤ 1 2 (see [START_REF] Chen | Parabolic Anderson model with a fractional Gaussian noise that is rough in time[END_REF] for the Skorohod case), we will restrict our analysis to the case where H 0 > 1 2 in the sequel. Besides, for our comparison strategy to be possible, we of course need to focus on situations where both u and u are well dened. Therefore, for the remainder of the section, we will assume that both conditions (1.7) and (4.6) are met.

As mentioned above, the idea will be to compare u and u through the Feynman-Kac representations of their respective approximations. Just as in Section 3 (resp. Denition 4.2) we denote by u n, (resp. u n ) the approximation of imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 u (resp. u). Namely u n, is the solution of (3.12), while u n solves (4.8), for every xed n ≥ 1. Let us assume that both solutions start from an initial condition ψ ∈ L ∞ (R d ). At this point, let us recall that according to [25, Proposition 5.2] (and just as in Proposition 3.6), the Feynman-Kac representation of u n, is given by

u n, t (x) = E ψ(B x t ) exp V n,W t (B x ) - 1 2 β n,B t , (4.9) 
where B x is a standard d-dimensional Wiener process starting at x, independent of W , and where V n,W , β n t are given by

V n,W t (B x ) := t 0 du Ẇ n (u, B x t-u ), and β n,B t := E W |V n,W t (B x )| 2 .
On the other hand, it is clear that for every xed n ≥ 1, equation (4.8) is a standard linear parabolic equation, for which a classical Feynman-Kac formula can be applied. This yields the expression

u n t (x) = E ψ(B x t ) exp V n,W t (B x ) -c (n) ρ,H0,H t , (4.10) 
where c (n) ρ,H0,H stands for the renormalization constant in equation (4.8). Based on the two representations (4.9) and (4.10), we deduce that the desired comparison between u n, and u n morally reduces to a comparison between 

+ H = d + 1 separately. First case: 2H 0 + H < d + 1. Let us recall that in this situation, c (n) ρ,H0,H is de- ned as c (n) ρ,H0,H := c ρ,H0,H • 2 2n(d+1-(2H0+H)) = c 2 H0,H R d+1 dλdξ |Fρ n (λ, ξ)| 2 Fp(λ, ξ)N H0,H (λ, ξ) , (4.12) 
where N H0,H (λ, ξ) is the quantity dened in (4.3). Keeping this expression in mind, and using the covariance formula (2.3), we can recast the expression (3.10) for β n,B t as

β n,B t = E |V n,W t (B x )| 2 = c 2 H0,H R d+1 dλdξ |Fρ n (λ, ξ)| 2 N H0,H (λ, ξ) [0,t] 2 dudv e ı(λ(v-u)+ξ•(Bu-Bv)) .
imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020

Therefore invoking elementary symmetry and integration arguments, we get

1 2 E β n,B t = c 2 H0,H R d+1 dλdξ |Fρ n (λ, ξ)| 2 N H0,H (λ, ξ) t 0 du u 0 dv e -ıλ(u-v) e -|ξ| 2 2 (u-v) (4.13) = c 2 H0,H R d+1 dλdξ |Fρ n (λ, ξ)| 2 N H0,H (λ, ξ) t 0 dv (t -v)e -v( |ξ| 2 2 +ıλ) = c 2 H0,H R d+1 dλdξ |Fρ n (λ, ξ)| 2 N H0,H (λ, ξ) t |ξ| 2 2 + ıλ - 1 |ξ| 2 2 + ıλ t 0 dv e -v( |ξ| 2 2 +ıλ) . (4.14) 
Hence owing to the fact that the Fourier transform of the heat kernel p satises Fp(λ, ξ) = (|ξ| 2 /2 + ıλ) -1 , together with (4.12), we get

1 2 E β n,B t = c (n) ρ,H0,H t -r n t , (4.15) 
with a constant r n t dened by (4.17)

r n t := 2c 2 H0,H R d+1 dλdξ |Fρ n (λ, ξ)| 2 N H0,H (λ, ξ) |ξ| 2 + 2ıλ t 0 dv e -v(
In order to bound A t one must decompose the domain R d+1 into a centered ball and some unbounded domains.

Regarding integration over the ball {|λ| ≤ 1,

|ξ 1 | ≤ 1, . . . , |ξ d | ≤ 1}, one has, for all τ 0 , τ 1 , . . . , τ d ∈ [0, 1] such that d i=0 τ i = 1, {|λ|≤1,|ξ1|≤1,...,|ξ d |≤1} dλdξ N H0,H (λ, ξ) |ξ| 2 + 2ıλ t 0 dv e -v( |ξ| 2 2 +ıλ) (4.18) ≤ t {|λ|≤1,|ξ1|≤1,...,|ξ d |≤1} dλdξ |ξ| 2 + 2ıλ 1 |λ| 2H0-1 d i=1 1 |ξ i | 2Hi-1 ≤ t |λ|≤1 dλ |λ| 2H0+τ0-1 d i=1 |ξi|≤1 dξ i |ξ i | 2Hi+2τi-1 . (4.19)
At this point, note that due to the condition 2H 0 + H < d + 1, we can actually pick the τ i 's such that 2H 0 + τ 0 -1 < 1 and 2H i + 2τ i -1 < 1 for i = 1, . . . , d. Indeed, summing the latter constraints, we get 4H 0 + 2H + 2 d i=0 τ i < 6, imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 which, combined with the relation d i=0 τ i = 1, brings us back to the condition 2H 0 + H < d + 1. Choosing this set of parameters in (4. [START_REF] Dembo | Large deviations techniques and applications[END_REF], we can conclude that the integral in (4.18) is nite.

As for the integral on the remaining unbounded domains, we will only focus here on the region {|λ| ≥ 1, |ξ 1 | ≥ 1, . . . , |ξ d | ≥ 1} in the right hand side of (4.17). In this case, for all τ 0 , τ 1 , . . . , τ d ∈ [0, 1] such that d i=0 τ i = 1, and recalling again the expression (4.3) for N H0,H , we have We can now pick the τ i 's such that 2H 0 + 2τ 0 > 2 and 2H i + 4τ i > 2 for i = 1, . . . , d, due to the fact that we have

2(2H 0 + 2τ 0 ) + d i=1 (2H i + 4τ i ) = 2(2H 0 + H) + 4 > 4 + 2d ,
where the last inequality is ensured by (4.6). Choosing this set of parameters in (4.21), we obtain that the integral in (4.20) is nite.

The estimate of the integral on the other domains can then clearly be done along similar arguments, which achieves the proof of (4.17 Therefore, going back to the expression (4.13) of By the very denition of N H0,H , the rst integral in the latter bound is clearly nite. As for the second integral, its niteness can be easily derived from similar arguments to those used for (4.20), which achieves the proof of our assertion.

Based on relations (4.9), (4.10) and (4.11), the fact that one can transfer subcritical estimates from the Skorohod to the Stratonovich equation can be explained in the following way: under the subcritical condition (1.7), the uctuations of the random variable Y n t given by

Y n t := β n,B t -E β n,B t (4.22)
are much smaller than the uctuation of the random variable V n,W t (B) featuring in (4.9) and (4.10). This assertion is quantied in the following lemma. Lemma 4.4. Assume that H 0 > 1 2 and that the conditions (1.7) and (4.6) are both satised. For n ≥ 1, let Y n t be the random variables dened by (4.22). Then for all θ ≥ 0 and t ≥ 0, we have Proof. We rst x n ≥ 1. Our proof is inspired by the computations in [START_REF] Hu | Stochastic Heat Equations with General Multiplicative Gaussian Noises: Hölder Continuity and Intermittency[END_REF]Theorem 4.6], where the exponential integrability of a random variable similar to Y n t is investigated under more restrictive assumptions on H 1 , . . . , H d . As in [START_REF] Hu | Stochastic Heat Equations with General Multiplicative Gaussian Noises: Hölder Continuity and Intermittency[END_REF], our analysis will be based on Le Gall's decomposition for β n t . More specically, we start the following construction: for N ≥ 1 and k = 1, ..., 2 N -1 we set where B and B are two independent Brownian motions starting from the origin. It can be shown, exactly along the same lines as in [24, equation (4.13)], that the exponential integrability of Y n t amounts to the following estimate: for any arbitrarily small ε > 0 there exists a constant C ε > 0 such that for all m ≥ 1 we have

J N,k = (2k -2)t 2 N , ( 2k 
E[(a n N ) m ] ≤ C ε m! Cε 2 N αm , (4.25) 
with α > 1/2. In fact, we should point out that the exponential integrability in [START_REF] Hu | Stochastic Heat Equations with General Multiplicative Gaussian Noises: Hölder Continuity and Intermittency[END_REF] was obtained thanks to (4.25) with α = 1. However, by a closer examination of the proof in [START_REF] Hu | Stochastic Heat Equations with General Multiplicative Gaussian Noises: Hölder Continuity and Intermittency[END_REF], it is clear that the exponential integrability (4.23) follows as long as α > 1/2 in (4.25). The remainder of our proof is thus devoted to justify (4.25).

Recall from (3.7) that µ n 0 and µ n are dominated by µ 0 and µ respectively, where µ 0 and µ are introduced in (1.5). Therefore for any τ > 0 we have where C > 0 is a constant independent of τ > 0. Now combining (4.24), (4.26) and (4.27), together with the trivial relation that γ 0 (t + s) ≤ γ 0 (t -s), we have for all m ≥ 1,

E [0,τ ]
E[a n N ] m ≤ C m (m!) d-H t 2 N (2H0+H-d)m
.

Note that the above control of moments of a n N is uniform in n. Moreover, under our assumption d -H < 1, we can conclude that for any > 0 the above becomes We are nally in a position to prove the main result of this section, that is the fact that the Stratonovich solution admits nite moments of any order. Proposition 4.5. Assume that H 0 > 1 2 and that the conditions (1.7) and (4.6) are both satised. Let u be the solution of the Stratonovich equation as given by Denition (4.2), with initial condition ψ ≡ 1. Then for all t ≥ 0 and p ≥ 1 we have Without loss of generality, we assume that p is an integer in the rest of the proof. We also write β n t (B x ) for β n,B t in order to keep our notation visible enough. We therefore get

E [|u t (x)| p ] = c p,t < ∞.
u n t (x) = E e V n,W t (B x )-1 2 β n t (B x ) • e 1 2 (β n t (B x )-E[β n t (B x )]) • e 1 2 E[β n t (B x )]-c (n) 
ρ,H 0 ,H t .

(4.28)

Taking expectation in (4.28), we end up with The rest of the proof then follows from Proposition 3.9, Proposition 4.3, Lemma 4.4 and a simple application of Fatou's lemma and Hölder's inequality.
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(3. 27 )

 27 With this formal expression in mind, we consider b > 0 and set σ = b t s, ρ = b t r in expression (3.25). Invoking the usual Brownian scaling and the fact that d j=1 (H j -1) = -1 under our critical assumption (1.8), we let the patient reader check that
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  ) and notice that Z b = Z δ b + Zδ b . We will treat Z δ b and Zδ b separately in (3.32). imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020

( 3 .

 3 37) In addition the families {η b (λ k , ξ k ); k ≤ n} and {η b (λ k , ξ k ); k ≤ n} above are i.i.d, due to denition (3.29) and the fact that B, B are two independent Brownian motion. Hence relation (3.37) can be written as

( 3 .

 3 40) imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 Next we notice that the right-hand side of (3.40) is upper bounded in [9, relation (3.1)]. Indeed, with the correspondence Ĥ0 ≡ 2 -1 (2-α0 ) and with relation (1.8) in mind, we choose α0 > α 0 such that 4(1 -Ĥ0 ) + (d * -2H * ) < 2. Then a direct application of [9, relation (3.1)] yields

2 ,

 2 from which (3.35) is easily deduced by picking a small enough δ. Taking the decomposition Z b = Z δ b + Zδ b given by (3.34), our objective (3.32) is thus reduced to show the following bound for all u, δ > 0 (see e.g. [19, Lemma 1.2.15] for a general result yielding a proper identication of exponentially negligible terms), lim sup b→∞ 1 b log P |Z δ b | 1/2 ≥ ub ≤ -u 2 κ 4 .

) where M ≥ 1 ,

 1 is an additional parameter and Z δ,M b M,M ] d η b (λ, ξ)η b (λ, ξ)µ δ 0 (dλ)µ(dξ), (3.45) imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 and Zδ,M b = R×([-M,M ] d ) c η b (λ, ξ)η b (λ, ξ)µ δ 0 (dλ)µ(dξ).

Bs ds b 0 e

 0 -iξ• Bs ds µ(dξ).
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 41 Expression in terms of the moments of Z δ,M b . Thanks to a standard use of Chebyshev's inequality, relation (3.56) is achieved as long as we can prove the following Gaussian type bound for |Z δ,M b ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 which should be valid for all θ ≥ 0. In order to separate the variables η b and ηb in the denition (3.45) of Z δ,M b we rst apply Cauchy-Schwarz inequality and then the elementary inequality 2 √ ab ≤ a + b for all a, b ≥ 0. We get

  imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 Trivially bounding the oscillating exponential terms by 1 in the denition (3.29) of η b (λ, ξ), we obtain | Xδ,M,N b | ≤ b 2 µ δ 0 ([-N, N ] c )µ([-M, M ] d ).

( 3 .

 3 68)Therefore thanks to the fact that δ > 0, the right-hand side of (3.68) can be made as small as desired by picking N large enough. Similarly to what has been done in Step 2, one can thus prove an inequality of the same form as (3.35) for Xδ,M,N b . We are now reduced to show that (3.66) holds true with X δ,M b replaced by X δ,M,N b .

  on the right-hand side is now taken with respect to a R d -valued Brownian motion B. imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020
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  (i) The function ht,b dened by (3.89) can be computed thanks to an elementary change of variable. Owing to an additional Brownian scaling argument, we get t 0 ht,b (s, B s )ds

  (3.99) Therefore plugging (3.98) and (3.99) into (3.88), we get that ξ)| 2 µ 0 (dλ)µ(ds) .

  sup h∈G0 φ t (h, g) = sup h∈G0 φ t (h, g).imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020

( 4 . 3 )

 43 namely c 0 c H N H0,H is the density of the measure µ 0 ⊗ µ introduced in (1.5). Let us also setc H0,H = d i=0 α Hi -1/2 with α Hi := R dξ |e ıξ -1| 2 |ξ| 2Hi+1 .

J

  ρ,H0,H := R d+1 |Fρ(λ, ξ)| 2 Fp(λ, ξ)N H0,H (λ, ξ) dλdξ.

(4. 5 )+ 2 3 <

 53 With this notation in hand, we are ready to recall the main result of[START_REF] Chen | A K-rough path above the space-time fractional Brownian motion[END_REF] about the approximated equation.imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 Denition 4.2. Let (H 0 , H) ∈ (0, 1) d+1 be a vector of Hurst parameters such thatd 2H 0 + H ≤ d + 1 .

(4. 6 )Fix α ∈ R such that - 4 3

 63 < α < -(d + 2) + 2H 0 + H , as well as an arbitrary time horizon T > 0 and an initial condition ψ ∈ L ∞ (R d ).

  ).Second case: 2H 0 + H = d + 1. In this situation, c(n) ρ,H0,H is dened asc (n) ρ,H0,H := c 2 H0,H |λ|+|ξ| 2 ≥2 -2n |Fρ(λ, ξ)| 2 Fp(λ, ξ)N H0,H (λ, ξ) dλdξwhich, thanks to the relation 2H 0 + H = d + 1, can also be written asc (n) ρ,H0,H = c 2 H0,H |λ|+|ξ| 2 ≥1dλdξ |Fρ n (λ, ξ)| 2 Fp(λ, ξ)N H0,H (λ, ξ) .

  and A N,k = J N,k × I N,k . Then we can decompose β n,-s)γ n (B x r -B x s )drds,where γ n 0 (resp. γ n ) is the inverse Fourier transform of the measure µ n0 := µ 2 -4n 0 (resp. µ n := µ 2 -2n) dened by(3.7). Furthermore, owing to the shape of A N,k 's combined with the independence of the Brownian increments, one can write s)γ n (B r -Bs )dsdr, (4.24) imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020
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 2 

2 ≤ 2 =E[ 0 ,τ ] 2 γ 0 .( 4 . 26 )

 22020426 γ n 0 (t + s)γ n (B r -Bs )dsdr m = (R d+1 ) m µ n 0 (dλ)µ n (dξ) λ k s k +ξ k •Bs k ) ds λ k s k +ξ k •Bs k ) ds (t + s)γ(B r -Bs )dsdr mOn the other hand, by [9, Inequality (3.1)], we haveE [0,τ ] 2 γ 0 (t -s)γ(B r -Bs )dsdr m ≤ C m (m!) d-H τ (2H0+H-d)m ,(4.27) 

, 2 by ( 4 . 6 )

 246 imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 when m is large enough. Finally, observe that we assume 2H 0 + H -d > 1 . Condition (4.25) is therefore satised, and the integrability of Y n t (uniformly in n) follows. This nishes the proof of (4.23).

Remark 4 . 6 .(

 46 The extension of Proposition 4.5 to a general initial condition ψ ∈ L ∞ (R d ) is straightforward. Details are omitted here for sake of clarity. Proof of Proposition 4.5. Recall from (4.9) and (4.10) thatu n t (x) = E exp V n,W t (B x )-c (n)ρ,H0,H t , and u n, t (x) = E exp V n,W t

  2 .For any integer n ≥ 0 we denote by H n the nth Wiener chaos of W . We recall that H 0 is simply R and for n ≥ 1, H n is the closed linear subspace of L 2 (Ω) generated by the random variables {H n (W (h)); h ∈ H, h H = 1}, where H n is the nth Hermite polynomial. For any n ≥ 1, we denote by H ⊗n (resp. H n ) the nth tensor product (resp. the nth symmetric tensor product) of H. Then, the mapping I n (h ⊗n ) = H n (W (h)) can be extended to a linear isometry between H n (equipped with the modied norm √ n! • H ⊗n ) and H n . Consider now a random variable F ∈ L 2 (Ω) which is measurable with respect to the σ-eld F W generated by W . This random variable can be expressed as
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  If p ≥ 2 and t < t 0 (p), then we can take limits in equation (3.12) and show that the limit {u t (x); t ≥ 0, x ∈ R d } still solves the Skorohod equation (3.3). We have not provided details for the sake of conciseness.(b) Whenever p ∈ (1, ∞) and t > t 0 (p) one can not take limits in equation(3.3), even if one resorts to the extended Skorohod setting of Denition 2.1. However, item (iii) in Theorem 3.14 asserts that if we could give a meaning to equation (3.3) by a regularization procedure, then its solution u t (x) would not belong toL p (Ω).(c) Our current techniques do not allow to assert the L p -convergence of u when p ∈ (1, 2) and t < t 0 (p). Neither are we able to prove the existence of a L p -solution of (3.3) for p < 2, even if we invoke the extended Skorohod setting. On the other hand, the denition of t 0 (p) in Theorem 3.14 clearly allows p to be less than 2. It is therefore reasonable to conjecture that when p ∈ (1, 2) and t < t 0 (p), u converges in L p to the unique solution of equation(3.3) in the extended Skorohod setting. Provided this can be achieved, Proposition 3.5 establishes the uniqueness of the aforementioned extended solution.The proof of Theorem 3.14 is split in the sections below.

	H t =	ν(dξ)
	R d	
		p ∈ [1, 2) the notion of solution to
	equation (3.1) or (3.3) is not as clear as in Section 3.2. However, let us mention
	the following facts:	

imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 (a) 3.5. Proof of the L p -convergence in Theorem 3.14

In this section we work under the critical assumption (1.8). Before we proceed to the proof of the relation E [|u t (x)| p ] < ∞ for t small enough, we rst state a general sub-additivity result which is useful for our next computations. It is borrowed from

[START_REF] Chen | Parabolic Anderson model with rough or critical Gaussian noise[END_REF] Theorem 6

.1]. Lemma 3.16. Let ν(dξ) be a measure on R d , and consider two R d -valued independent Brownian motions B and B. For t ≥ 0 we introduce the random variable H t dened by t 0 e iξ•Bs ds t 0 e -iξ• Bs ds .

  { Ẇ n ; n ≥ 1} of smooth approximations of Ẇ , which can be thought of as the mollication considered imsart-generic ver. 2014/10/16 file: Moments-paper-submitted-version.tex date: December 1, 2020 in (3.6) with = 1/n. With this approximation in hand, let {u n ; n ≥ 1} be the sequence of classical solutions associated with Ẇ n , that is u n is the solution of

  , we have to treat the cases 2H 0 + H < d + 1 and 2H 0

						1 2 β n,B t
	and c (n) ρ,H0,H t. The following uniform estimate will thus be an important step in the procedure:
	Proposition 4.3. Assume that H 0 > 1 2 and that the condition (4.6) is satised. Then for every xed t ≥ 0, it holds that
	sup n≥1	c (n) ρ,H0,H t -	1 2	E β n,B t	< ∞.	(4.11)
	Proof. Following the denition (4.7) of c (n) ρ,H0,H		

  ,H t ,(4.29) where {B k,x ; k = 1, . . . , p} is a family of independent Brownian motions which is also independent from the noise W . Moreover, a standard application of Fubini's theorem in (4.29) yields = E e 1≤j 1 <j 2 ≤p α j 1 j 2 ;n On the other hand, invoking similar considerations as for (4.26), we get that for any λ > 0 E exp λα j1j2;n

	p									
	E	e V n,W t	(B k,x )-1 2 β n t (B k,x ) = exp		α j1j2;n t	 ,	(4.31)
	k=1								1≤j1<j2≤p
	where α j1,j2;n t γ n , γ n 0 . Plugging (4.31) into (4.30), we have is dened the same way as in (3.19) but with γ, γ 0 replaced by
	E (u n t (x))				t	p	e	1 2 (β n t (B k,x )-E[β n t (B k,x )])	p	e	1 2 E[β n t (B k,x )]-c	(n) ρ,H 0 ,H t .
						k=1				k=1
					p					p
					e V n,W t	(B k,x )-1 2 β n t (B k,x ) •	e	1 2 (β n t (B k,x )-E[β n t (B k,x )])
					k=1					k=1
	× ρ,H 0 E (u n p k=1 e 1 2 E[β n (n) t (B k,x )]-c p t (x)) p = E E e V n,W t (B k,x )-1 2 β n t (B k,x )
					k=1				
		×	p	e	1 2 (β n t (B k,x )-E[β n t (B k,x )])		p	e	1 2 E[β n t (B k,x )]-c	(n) ρ,H 0 ,H t . (4.30)
			k=1						k=1
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