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2D topology optimization MATLAB codes for piezoelectric actuators
and energy harvesters

Abbas Homayouni-Amlashi1,2 · Thomas Schlinquer2 · Abdenbi Mohand-Ousaid2 · Micky Rakotondrabe1

Abstract
In this paper, two separate topology optimization MATLAB codes are proposed for a piezoelectric plate in actuation and 
energy harvesting. The codes are written for one-layer piezoelectric plate based on 2D finite element modeling. As such, 
all forces and displacements are confined in the plane of the piezoelectric plate. For the material interpolation scheme, 
the extension of solid isotropic material with penalization approach known as PEMAP-P (piezoelectric material with 
penalization and polarization) which considers the density and polarization direction as optimization variables is employed. 
The optimality criteria and method of moving asymptotes (MMA) are utilized as optimization algorithms to update the 
optimization variables in each iteration. To reduce the numerical instabilities during optimization iterations, finite element 
equations are normalized. The efficiencies of the codes are illustrated numerically by illustrating some basic examples of 
actuation and energy harvesting. It is straightforward to extend the codes for various problem formulations in actuation, 
energy harvesting and sensing. The finite element modeling, problem formulation and MATLAB codes are explained in 
detail to make them appropriate for newcomers and researchers in the field of topology optimization of piezoelectric material.

Keywords Topology optimization · MATLAB code · Piezoelectric actuator · Piezoelectric energy harvester

1 Introduction

Topology optimization (TO) is a methodology to distribute
the material within a design domain in an optimal way
while there is no prior knowledge about the final layout
of the material (Bendsoe 2013). This main specification
of TO provides a great degree of freedom in terms
of designing innovative structures to satisfy predefined
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engineering goals. Historically, minimization of mechanical
deformation of a structure under application of different
loading conditions was a classical engineering goal (Schmit
1960). Aiming for this goal, the work of Bendsoe and
Kikuchi (1988) paves the way for a methodology known
today as topology optimization. The general idea of this
methodology is the combination of finite element method
and optimization to maximize or minimize an objective
function. In this regard, the design domain is discretized
by a finite number of elements and design variables for the
optimization problem are the variables attributed to each
of these elements. Different approaches are introduced in
the literature to implement the TO method (Sigmund and
Maute 2013). Among these approaches, homogenization
approach was proposed to optimize the porous elements as
unit cells or microstructures within the design domain to
obtain the final layout (Suzuki and Kikuchi 1991; Bendsøe
and Sigmund 1995). However, the number of optimization
variables is high in homogenization method which can
make the optimization cumbersome. The other famous and
popular approach is the SIMP approach which stands for
solid isotropic material with penalization. In this approach,
the elements in the design domain can have intermediate
densities (Bendsøe 1989; Bendsoe 2013). This will let the
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elements to be gray in addition to black (material) and
white (void). However, due to practical constraints, it is
desired that the optimization finally converges to a black and
white layout. To do so, a penalization factor is defined for
intermediate densities. One of the reasons for the popularity
of this approach is its simplicity of implementation
in comparison with other approaches. Similar to SIMP
approach, there is evolutionary structural optimization
(ESO) (Xie and Steven 1993) or the more general form
bi-directional evolutionary structural optimization (BESO)
(Xia et al. 2018) which is about removing or adding the
elements inside the design domain during optimization
iterations. In addition to the aforementioned approaches,
there are other approaches including level set method (van
Dijk et al. 2013; Andreasen et al. 2020) and method of
moving morphable components (MMC) (Guo et al. 2014;
Zhang et al. 2017) which is a geometrical approach. For a
detailed review and comparison between these approaches,
one can refer to the following review papers: Sigmund and
Maute (2013) and Deaton and Grandhi (2014).

Due to the success of TO methodology, several
implementation codes in different software are published in
the literature. Using the SIMP approach, Sigmund (2001)
published the 99 lines of MATLAB code for 2D topology
optimization of compliance problems. Andreassen et al.
(2011) published the 88 lines of MATLAB code which was
an improvement of Sigmund’s 99 lines of code while having
much faster speed in each iteration thanks to introducing the
connectivity matrix that facilitates the assembly procedure
of elemental matrices. Liu and Tovar (2014) published
the TOP3D MATLAB code by extension of the 88 lines
of code for topology optimization of 3D structures. Chen
et al. (2019) published 213 lines of MATLAB code
for 2D topology optimization of geometrically nonlinear
structures. There are other published codes using other
TO approaches like level set method (Challis 2010; Wei
et al. 2018; Yaghmaei et al. 2020), BESO (Xia et al.
2018), and projection method (Smith and Norato 2020).
These published codes facilitate the implementation of
TO methodology for various applications. For this reason,
the application of TO can be seen in solving different
problems including the compliance problems (Bendsoe
2013), compliant mechanism problems (Zhu et al. 2020),
heat conduction (Gersborg-Hansen et al. 2006), and smart
materials in particular the piezoelectric materials (Sigmund
and Torquato 1999).

Due to their electromechanical coupling effect, piezo-
electric materials have applications in actuation, sensing
and energy harvesting. Plenty of methods can be found
in the literature to analyze and improve the performance
of the piezoelectric structures, whether actuators, energy
harvesters or sensors such as geometrical and size opti-

mization (Schlinquer et al. 2017; Bafumba Liseli and
Agnus 2019; Homayouni-Amlashi et al. 2020a), shape
optimization (Muthalif and Nordin 2015), layers number
optimization (Rabenorosoa and et al 2015), or parame-
ters sub-optimization (Rakotondrabe and Khadraoui 2013;
Khadraoui et al. 2014) with interval techniques (Rakoton-
drabe 2011). After development of TO methodology, it is
extended to different physics (Alexandersen and Andreasen
2020; Deaton and Grandhi 2014) including the piezoelec-
tricity. Primarily, the homogenization approach is used
(Silva et al. 1997; Sigmund et al. 1998). Afterwards, other
approaches including SIMP (Kögl and Silva 2005), BESO
(de Almeida 2019) or level set method (Chen et al. 2010) are
also explored. By defining proper objective functions, TO
methodology is applied to piezoelectric actuators (Moretti
and Silva 2019; Gonċalves et al. 2018), sensors (Menuzzi
et al. 2018) and energy harvesters (Homayouni-Amlashi
et al. 2020b; Homayouni-Amlashi 2019; Townsend et al.
2019). The publications considered different types of sys-
tem modeling including the static (Zheng et al. 2009),
dynamic (Noh and Yoon 2012; Wein et al. 2009), modal
(Wang et al. 2017) and electrical circuit coupling (Salas
et al. 2018; Rupp et al. 2009). Different types of prob-
lem formulation can be found as well such as optimization
with stress constraints (Wein et al. 2013). Although the
application of TO methodology to piezoelectric materials is
well established in the literature, no implementation code is
published yet.

In this paper, 2D topology optimization codes are
proposed for actuation and energy harvester by using
the extension of SIMP approach known as PEMAP-P
(piezoelectric material with penalization and polarization).
The codes are written based on the 88 lines of MATLAB
code written by Andreassen et al. (2011), except the code
is extended and modified considerably to consider the
electromechanical coupling effect of piezoelectric material
and problem formulation. In Section 2, the finite element
modeling of one-layer piezoelectric plate is presented by
using the plane stress assumption. The finite element
equation is derived for both actuation and energy harvesting.
A normalization is applied to the finite element equation
which significantly reduces the numerical instabilities in
optimization iterations. Hence, the proposed codes in
this paper work smoothly in both actuation and energy
harvesting. In Section 3, first, the material interpolation
scheme for piezoelectric material is explained. Then, the
optimization problem is formulated for both actuation and
energy harvesters. The problem formulations are basic for
educational purposes. The sensitivity analysis is performed,
and finally, the optimization algorithms are explained. In
Section 4, the MATLAB codes are explained part by part
in detail. The explanations in this part help the readers to



extend and implement the codes for their own purposes. In
Section 5, different numerical examples are illustrated and
the modification to the original codes to implement those
numerical examples are expressed as well.

2 Finite element modeling

2.1 Constitutive equation

The general linearly coupled mechanical and electrical con-
stitutive equation of piezoelectric materials by neglecting
the thermal coupling can be written as (Lerch 1990)

T̄ = cES̄ − eĒ

D̄ = eT S̄ + εSĒ (1)

In (1), T̄ and S̄ are the vectors of mechanical stress and
strain while cE is the stiffness tensor in constant electrical
field. D̄ and Ē are the vectors of electrical displacement and
electrical field. e is the piezoelectric matrix, εS is the matrix
of permittivity in constant mechanical strain and T shows
the matrix transpose.

The 4-mm tetragonal crystal class piezoelectric material
(Piefort 2001) which has orthotropic anisotropy is consid-
ered to derive the corresponding model. This class includes
most of the piezoelectric material in particular the well-
known PZT (lead zirconate titanate) materials. By this
consideration, the mechanical stiffness tensor, piezoelectric
matrix and permittivity for full 3D modeling are

cE =

⎡
⎢⎢⎢⎢⎢⎢⎣

cE
11 cE

12 cE
13 0 0 0

cE
12 cE

11 cE
13 0 0 0

cE
13 cE

13 cE
33 0 0 0

0 0 0 cE
44 0 0

0 0 0 0 cE
44 0

0 0 0 0 0 cE
66

⎤
⎥⎥⎥⎥⎥⎥⎦

eT =
⎡
⎣

0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0

⎤
⎦

εS =
⎡
⎣

εS
11 0 0
0 εS

11 0
0 0 εS

33

⎤
⎦ (2)

Now, a piezoelectric plate sandwiched between two
electrodes as shown in Fig. 1 is considered. Without loss
of generality, several assumptions are considered for this
configuration.

– the thickness to length ratio of the piezoelectric plate is
less than 1/10,

– the piezoelectric plate is confined to have planar
movement and it is subjected to loading only in the xy
plane,

– the thickness of the electrodes is negligible in compari-
son with thickness of piezoelectric plate,

– the electromechanical system is assumed to be linear,
– the electrodes are perfectly conductive,
– the polarization direction is perpendicular to the plate

in parallel to
→
z axis,

– the electrical field is uniform in the direction of
thickness aligned with the polling direction,

– the variation of the potential in the direction of the
thickness is linear,

The first two assumptions let us use the plane stress
assumption modeling for the piezoelectric plate (Hutton and
Wu 2004). In this case, any stress in the direction of z will
be zero. By considering transversely isotropic piezoelectric
material and considering plane stress assumption, the piezo-
electric plate has in-plane isotropic behavior. Furthermore,
by poling the piezoelectric material in the z direction, the
only non-zero electric field will be in the z direction. In
this case, the reduced (2D) form of piezoelectric constitutive
equation can be derived in the following form (Junior et al.
2009)

⎡
⎢⎢⎣

T1

T2

T3

D3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c∗
11 c∗

12 0 −e∗
31

c∗
12 c∗

11 0 −e∗
31

0 0 c∗
33 0

e∗
31 e∗

31 0 ε∗
33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

S1

S2

S3

E3

⎤
⎥⎥⎦ (3)

Fig. 1 Piezoelectric plate sandwiched between two electrodes. a
Isometric view. b Side view



The components of the reduced constitutive equation can
be written as (Junior et al. 2009)

c∗E
11 = cE

11 −
(
cE

13

)2

cE
33

, c∗
12 = cE

12 −
(
cE

13

)2

cE
33

, c∗
33 = c66

e∗
31 = e31 − e33

cE
13

cE
33

, ε∗
33 = εS

33 + e2
33

cE
33

(4)

The obtained constitutive equation in (3) will be used in
the finite element modeling of the piezoelectric plate which
will be discussed in the next section.

2.2 Piezoelectric finite elementmodel

In this section, to derive the finite element (FE) formulation,
the piezoelectric plate is discretized by rectangular elements
which are particular form of the more general 2D elements
called “bilinear quadrilateral element” (Hutton and Wu
2004; Kattan 2010). It should be noted that since the

thickness of electrodes is negligible in comparison with the
thickness of the piezoelectric plate, its structural effects are
neglected in the modeling. Hence, only the piezoelectric
plate is discretized by the finite number of elements. The
schematic form of this discretization is illustrated in Fig. 2a.
As can be seen in this figure, The piezoelectric plate is
discretized as 3 by 4 elements. It is clear that a finer
discretization will be used for the numerical optimization.
It can be seen in the figure that each rectangular element
has 4 nodes and each node has 2 in-plane mechanical
degrees of freedom regarding the displacement in x and y
directions. The rectangular element shown in Fig. 2b can
have arbitrary length le and width we. In fact, with the
method of finite element modeling which is used to write
the optimization code, the dimensions of plate and number
of elements can be defined separately. This freedom will
have two advantages: first, for a predefined geometry of
a piezoelectric plate, higher number of elements can be
defined to have better results in terms of having small detail.

Fig. 2 Finite element
discretization of design domain.
Panel (a) is the numbering
format inside the design domain.
Panel (b) is the numbering
format inside each element.
Panel (c) is the parent element in
the natural coordinates



Second, it is possible to define lower number of elements
when reducing the computation time is necessary. As it is
illustrated in Fig. 2c, the rectangular element is mapped to
a parent element which is a square element with natural
coordinates ξ and η. The displacement of every point within
the element will be expressed by the displacement of the
nodes through the interpolation functions in the following
format (Hutton and Wu 2004).

x = x1n1 + x2n2 + x3n3 + x4n4

y = y1n1 + y2n2 + y3n3 + y4n4 (5)

and the interpolation functions can be written based on the
natural coordinates

n1 = 1

4
(1 − ξ)(1 − η), n2 = 1

4
(1 + ξ)(1 − η)

n3 = 1

4
(1 + ξ)(1 + η), n4 = 1

4
(1 − ξ)(1 + η) (6)

where the matrix of interpolation function can be written as,

N =
[

n1 0 n2 0 n3 0 n4 0
0 n1 0 n2 0 n3 0 n4

]
(7)

So far, for each element, just mechanical degrees
of freedom are considered. However, in piezoelectric
material, the mechanical and electrical fields are coupled.
Therefore, the electrical degree of freedom should be
modeled as well. The general approach for this case is
to consider one electrical degree of freedom for each
node in addition to mechanical degrees of freedom as
explained in Lerch (1990). However, here by assuming
that conductive electrodes are placed on top and bottom of
the piezoelectric plates as shown in Fig. 1, the electrical
potential over each electrode is constant. This condition
is known as equipotential condition. Furthermore, by
considering the bottom electrode as ground electrode, the
whole piezoelectric plate will have one electrical degree of
freedom. On the other hand, for the purpose of elemental
sensitivity analysis which will be explained in Section 3, for
each element, one electrical degree of freedom is considered
as it is shown in yellow in Fig. 2. The global equipotential
condition will be imposed after assembling the global
matrices.

Now, the strain and electrical field of each element can be
expressed with the help of mechanical and electrical degrees
of freedom

S̄ = Buu, Ē = Bφφ (8)

In (8), u and φ are the vectors of mechanical displacement
and scalar value of electric potential respectively. Bu is

the strain displacement matrix which is written as follows
(Kattan 2010),

Bu = 1

|J |
[
B1 B2 B3 B4

]

Bi =
⎡
⎢⎣

a
∂ni

∂ξ
− b

∂ni

∂η
0

0 c
∂ni

∂η
− d

∂ni

∂ξ

c
∂ni

∂η
− d

∂ni

∂η
a

∂ni

∂ξ
− b

∂ni

∂η

⎤
⎥⎦ (9)

and the parameters a, b, c and d are given by Kattan (2010),

a = 1

4
[y1(ξ − 1) + y2(−1 − ξ) + y3(1 + ξ) + y4(1 − ξ)]

b = 1

4
[y1(η − 1) + y2(1 − η) + y3(1 + η) + y4(−1 − η)]

c = 1

4
[x1(η − 1) + x2(1 − η) + x3(1 + η) + x4(−1 − η)]

d = 1

4
[x1(ξ − 1) + x2(−1 − ξ) + x3(1 + ξ) + x4(1 − ξ)]

(10)

where xi and yi are the coordinates of the nodes in the
rectangular element before mapping.

The determinant of Jacobian matrix J , which transfers
the natural coordinates to the generalized coordinates, is

|J | = 1

8

[
x1 x2 x3 x4

]

×

⎡
⎢⎢⎣

0 1 − η η − ξ ξ − 1
η − 1 0 ξ + 1 −ξ − η

ξ − η −ξ − 1 0 η + 1
1 − ξ ξ + η −η − 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

y1

y2

y3

y4

⎤
⎥⎥⎦ (11)

By considering the last two assumptions, Bφ is (Junior
et al. 2009)

Bφ = 1/h (12)

where h is the thickness of the piezoelectric plate. Now by
using the Hamilton’s variational principle and neglecting
the damping effect, the linear differential equation for one
single element can be written in the following form (Lerch
1990)

[
m 0
0 0

] [
ü

φ̈

]
+

[
kuu kuφ

kφu −kφφ

] [
u

φ

]
=

[
f

q

]
(13)

in which m is the mass matrix, kuu is the mechanical
stiffness matrix, kuφ is the piezoelectric coupling matrix,
kφφ is the dielectric stiffness matrix, f is the external



mechanical force and q is the charge. These components of
linear differential equation are derived in the following form

kuu = h

∫
A

BT
u cEBu |J | dξdη

kuφ = h

∫
A

BT
u eT Bφ |J | dξdη

kφφ = h

∫
A

BT
φ εSBφ |J | dξdη

m = ρh

∫
A

NT N |J | dξdη (14)

where A is the top surface area of the element and ρ is the
density of the material. In fact, (14) illustrates the analytical
calculations of elemental matrices. However, for numerical
implementation in MATLAB, two-point Gauss quadrature
method (Hutton and Wu 2004) is utilized for calculation of
the elemental matrices numerically, which gives the exact
values. The implementation procedure is explained later in
Section 4.

To have the global FEM equation for a whole piezoelec-
tric plate, the elemental matrices in (13) should be assem-
bled, which is a general procedure in the FEM methodol-
ogy and which will also be explained in Section 4. After
assembling the elemental matrices, the global finite element
equation for the whole design domain can be written as
[

M 0
0 0

] [
Ü

Φ̈

]
+

[
Kuu Kuφ

Kφu −Kφφ

] [
U

Φ

]
=

[
F

Q

]
(15)

Now, for two cases of actuation and energy harvesting,
the global FEM (15) can be interpreted in different ways.
Here, we focus on static actuation so that the dynamics will
not be considered. Therefore, the global FEM equation for
the actuation can be written as

KuuU + KuφΦ = F (16)

This equation will be used to calculate the mechanical
displacement due to applied potential.

For the energy harvesting case, the external charge (Q)
is considered to be zero. In addition, the external force is
considered to be a harmonic excitation of frequency Ω . In
this case, by considering a linear electromechanical system,
the force and the response of the system can be stated as

F = f0e
iΩt

U = u0e
iΩt , Φ = φ0e

iΩt (17)

where f0, u0 and φ0 are the amplitude of harmonic force,
displacement and potential. By substituting the (17) in (15),
the global FEM equation for the energy harvesting case can
be written as

−Ω2
[

M 0
0 0

] [
U

Φ

]
+

[
Kuu Kuφ

Kφu −Kφφ

] [
U

Φ

]
=

[
F

0

]
(18)

Equation (18) can also be written in following form

[
Kuu − MΩ2 Kuφ

Kφu −Kφφ

] [
U

Φ

]
=

[
F

0

]
(19)

To solve the FEM (19), the mechanical boundary
condition and equipotential condition should be applied.
This will be explained in detail in Section 4.

2.3 Normalization

Here, the critical point is that the scale difference between
the piezoelectric matrices including the mechanical stiffness
matrices (kuu) and (kuφ) and the dielectric stiffness matrix
(kφφ) is huge. This huge scale difference can bring
numerical instabilities in form of singularities in solving the
final global FEM equation during the optimization loops. To
eliminate the scale difference, a normalization is suggested
(Homayouni-Amlashi 2019; Homayouni-Amlashi et al.
2020b) by factorizing the highest value of each elemental
matrix which can be expressed in the following format

k̃uu = kuu/k0, k̃uφ = kuφ/α0

k̃φφ = kφφ/β0, m̃ = m/m0 (20)

Starting by this normalization of elemental matrices, the
actuation FEM (16) can be rewritten as

K̃uuŨ + K̃uφΦ̃ = F̃ (21)

in which

F̃ = F/f0, Ũ = U/u0, Φ̃ = Φ/φ0

u0 = f0/k0, φ0 = f0/α0 (22)

The same normalization can be performed on the energy
harvesting FEM (19)

[
K̃uu − M̃Ω̃2 K̃uφ

K̃φu −γ K̃φφ

] [
Ũ

Φ̃

]
=

[
F̃

0

]
(23)

where

Ω̃2 = Ω2m0/k0, γ = k0β0/α
2
0 (24)

Here γ is a normalization factor which keeps the
solution of the system equal before and after applying
the normalization. This normalization factor is having the
scale of 101 and in this way the scale difference between
the piezoelectric matrices is eliminated. The proof of
normalization is provided in the Appendix.

Now, by having the FEM equations (21) and (23), it is
possible to enter the optimization phase. In the upcoming
sections, optimization of actuator and energy harvester is
separated.



3 Topology optimization

As explained before, topology optimization is about
distribution of the material within a design domain while
there is no prior knowledge of the final optimized layout of
the structures (Bendsoe 2013). There are several approaches
for topology optimization method (Maute and Sigmund
2013). However, the density-based approach is chosen for
this paper since its efficiency is already established in many
researches specially in the area of piezoelectric actuators
(Kögl and Silva 2005; Ruiz et al. 2017; Moretti and Silva
2019) or energy harvesters (Homayouni-Amlashi 2019;
Zheng et al. 2009; Noh and Yoon 2012).

3.1 Piezoelectric material interpolation scheme

One of the famous material interpolation schemes is
the density-based approach which has been introduced
to relax the optimization from the binary (void-material)
problem. In this approach, for a discretized design domain
by finite number of elements, the material properties of
each element are related to element’s density through a
power law interpolation function. For passive isotropic
material, this interpolation function is referred to as solid
isotropic material with penalization (SIMP) which relates
the element’s Young modulus of elasticity to its density. For
active non-isotropic piezoelectric material, the interpolation
function is the extension of SIMP scheme which can be
written as follows (Kögl and Silva 2005)

k̃uu(x) = (
Emin + xpuu(E0 − Emin)

)
k̃uu

k̃uφ(x, P ) = (emin + xpuφ (e0 − emin))(2P − 1)pP k̃uφ

k̃φφ(x) = (εmin + xpφφ (ε0 − εmin))k̃φφ

m̃(x) = xm̃ (25)

where Emin, emin and εmin are small numbers to define
the minimum values for stiffness, coupling and dielectric
matrices while E0, e0 and ε0 are equal to 1 to define the
maximum values of the respected matrices. The definition
of minimum values is provided to avoid the singularities
during the optimization iterations. x is the density ratio of
each element which has a value between 0 and 1. P is
the polarization variable which also has the value between
0 and 1 and determines the direction of polarization.
puu, puφ , pφφ and pP are penalization coefficients for
the stiffness, coupling, dielectric matrices and polarization
value respectively. It is obvious that in (25), the normalized
form of piezoelectric matrices is used. However, the
interpolation function is true for non-normalized matrices as
well.

The introduced material interpolation scheme is known
as PEMAP-P (piezoelectric material with penalization and

polarization) (Kögl and Silva 2005), which is the exten-
sion of the SIMP approach. Although some projections
are defined for SIMP to have a robust topology optimiza-
tion (Wang et al. 2011), there are alternative interpolation
functions like RAMP (rational approximation of material
properties) (Stolpe and Svanberg 2001), or newer interpola-
tion function introduced in Clausen et al. (2015). This latter
one is also used in topology optimization of piezoelectric
transducers (Donoso and Sigmund 2016). In fact, the study
on preference of these interpolation functions is not in the
scope of this paper. But, with the proposed MATLAB code,
it will be easy for implementation of other interpolation
functions.

After establishing the material interpolation scheme, the
rest of this section will be divided into two parts: actuation
and energy harvesting.

3.2 Actuation

3.2.1 Problem formulation

Following the classic approach for compliant mechanisms
reported in Bendsoe (2013), the optimization of a pla-
nar piezoelectric actuator can be defined simply as dis-
placement optimization or minimization of the following
objective function,

minimize Jact = −LT Ũ

Subject to V (x) =
NE∑
i=1

xivi ≤ V

0 < xi ≤ 1

0 ≤ Pi ≤ 1 (26)

where L is a vector with a value of 1 that corresponds to
the output displacement node and 0 otherwise. In addition,
a constraint is defined on the final volume of the optimized
design. V is the target volume which is a fraction of the
overall volume of the design domain while vi is the volume
of each element and NE is the total number of elements
while i is the number of each element.

3.2.2 Sensitivity analysis

For applying a gradient-based optimization, the sensitivity
of objective function with respect to the optimization
variables should be calculated. As such, the sensitivity of
objective function with respect to the xi can be derived as

∂J

∂xi

= ∂

∂xi

(
−LT Ũ + ΛT

(
K̃uuŨ + K̃uφΦ̃ − F̃

))

= ∂

∂xi

((
−LT + ΛT K̃uu

)
Ũ + ΛT K̃uφΦ̃ − ΛT F̃

)

(27)



Through using the procedure known as adjoint method,
Λ is introduced to avoid taking the derivative of displace-
ment with respect to design variable, i.e., ∂ũi

∂x
. Therefore, the

following adjoint equation should be solved

− LT + ΛT K̃uu = 0 (28)

where Λ is the global adjoint vector. By solving the adjoint
(28), the sensitivity values can be obtained as

∂J

∂xi

= λT
i

∂k̃uu

∂xi

ũi + λT
i

∂k̃uφ

∂xi

φ̃i (29)

where λi is the elemental format of global adjoint vector Λ.
By using the same procedure, sensitivity analysis with

respect to polarization P is derived in the following form as
well

∂J

∂Pi

= λT
i

∂k̃uφ

∂Pi

φ̃i (30)

where λi is the same adjoint vector which is already
calculated in (28).

Based on (29) and (30), the derivative of piezoelectric
stiffness and coupling matrices with respect to design
variables is required which can be derived with the help of
(25) as

∂k̃uu

∂xi

= puu(E0 − Emin)x
puu−1
i k̃uu

∂k̃uφ

∂xi

= puφ(e0 − emin)x
puφ−1
i (2Pi − 1)pP k̃uφ (31)

∂k̃uφ

∂Pi

= 2pP (e0 − emin)(2Pi − 1)pP −1x
puφ

i k̃uφ (32)

After performing the sensitivity analysis, and defining
the constraint, the optimization of variables should be done
by the optimization algorithms which will be discussed later
in this section.

3.3 Energy harvesting

3.3.1 Problem formulation

In the case of energy harvesting optimization, electri-
cal boundary condition should be applied in addition to
mechanical boundary condition. As mentioned previously,
by considering perfectly conductive electrodes, the equipo-
tential boundary condition can be applied by using the
Boolean matrix in the following form (Cook and et al 2007)

Φ = BVp (33)

in which Vp is the voltage of the top electrode while the
bottom electrode considered as ground. For a general case of
multi-layer piezoelectric plates, Boolean matrix B is having
the dimension of Ne ×NP where Ne is the number of nodes
and NP is the number of electrodes. However, in the case of

the one piezoelectric plate of this paper, B will be a vector
of ones.

It is worth to note that the equipotential condition given
in (33) will be applied only to the energy harvesting FEM
(19). For the case of actuation, the equipotential condition
will be applied automatically by defining equal applied
voltage for all of the elements.

By applying the equipotential condition in (33), the
energy harvesting FEM (19) can be rewritten as
[

Kuu Kuφ

Kφu −Kφφ

] [
Ũ

Vp

]
=

[
F̃

0

]
(34)

where

Kuu =
[
K̃uu − M̃Ω̃2

]
bc

Kuφ =
[
K̃uφB

]
bc

Kφφ = γBT K̃φφB (35)

in which ([ ]bc) shows the application of mechanical
boundary condition.

Now, the objective function for the energy harvesting
application should be defined. Generally, the energy con-
version ratio (Zheng et al. 2009; Noh and Yoon 2012) or
electromechanical coupling coefficient (de Almeida 2019)
which is equivalent mathematically is chosen as the objec-
tive function. However, this format of objective function
suffers from numerical instabilities during optimization iter-
ations where it is suggested to penalize the mechanical
energy as suggested in de Almeida (2019) and Salas et al.
(2018). Therefore, to avoid the numerical instabilities here,
a classical format of objective function is defined. The opti-
mization is defined as minimization of the weighted sum of
the mechanical and electrical energy of the system,

minimize JEH = wjΠ
S − (1 − wj)Π

E

Subject to V (x) =
NE∑
i=1

xivi ≤ V

0 < xi ≤ 1

0 ≤ Pi ≤ 1 (36)

ΠE and ΠS are electrical and mechanical energies
respectively which are defined in the following form (Noh
and Yoon 2012; Zheng et al. 2009)

ΠS =
(

1

2

)
ŨT KuuŨ, ΠE =

(
1

2

)
V T

p KφφVp (37)

In optimization of (36), wj is the weighing factor which
has the value between 0 and 1. Choosing the value of 1
for wj will make the optimization problem, a minimum
compliance problem in which the goal is to minimize the
mechanical deflection of the system under the applied force.
By decreasing the value of wj , more weight will be given to
maximize the output electrical energy. However, choosing



very small values for wj will result in mechanically unstable
layouts. Therefore, the value for wj will be found by using
trial and error approach. The basis for choosing this value
can be the maximum energy conversion factor of the plate
under the same force. For example, in Homayouni-Amlashi
et al. (2020b), the maximum energy conversion factor for
an optimized piezoelectric plate under planar excitation is
found to be 0.03 while in Noh and Yoon (2012) for a two-
layer optimized piezoelectric plate under the bending force
this ratio is 0.1. Therefore, the initial value of wj for the
trial error approach can be considered between 0.01 and
0.1. The final chosen value of wj depends on the maximum
stress and strain induced by the defined mechanical input to
the structure which can be revealed by the post processing
analysis. On the other hand, stress and strain constraints
can also be considered in the optimization problem as it is
investigated by Wein et al. (2013).

In fact, the advantage of the objective function defined
here is that the optimization algorithm converges very
smoothly to the final result. However, the drawback of this
objective function is that the obtained result can be sub-
optimal depending on the chosen value for the wj . On the
other hand, the problem of sub-optimal results exists in
other formats of the objective function. For example, Noh
and Yoon (2012) showed that by considering the energy
conversion factor (ΠE/ΠS) as objective function, different
values of penalization factors can produce different results.

Eventually, we believe that the chosen objective function
suits the educational purpose of this paper. Indeed, with
the help of provided MATLAB code, the readers can easily
change the code to implement other objective functions.

3.3.2 Sensitivity analysis

Similar to the actuation case, the next step after defining
the objective function is sensitivity analysis. Since the
objective function in (36) consists of mechanical and
electrical energies, the sensitivity of each energy with
respect to density ratio x can be found as (Zheng et al. 2009;
Homayouni-Amlashi 2019; Homayouni-Amlashi et al.
2020b)

∂ΠS

∂xi

=
(

1

2
ũT

i + λT
1,i

)
∂(k̃uu − m̃Ω̃2)

∂xi

ũi

+λT
1,i

∂k̃uφ

∂xi

φ̃i + μT
1,i

∂k̃φu

∂xi

ũi − μT
1,i

γ ∂k̃φφ

∂xi

φ̃i (38)

∂ΠE

∂xi

= 1

2
φ̃T

i

γ ∂k̃φφ

∂xi

φ̃i − μT
2,i

γ ∂k̃φφ

∂xi

φ̃i

+λT
2,i

∂(k̃uu − m̃Ω̃2)

∂xi

ui + λT
2,i

∂k̃uφ

∂xi

φ̃i + μT
2,i

∂k̃φu

∂xi

ũi

(39)

in which μ and λ are the elemental adjoint vectors which
are calculated by the following global coupled system
[

Kuu Kuφ

Kφu −Kφφ

] [
Λ1

Υ1

]
=

[ −KuuŨ

0

]

[
Kuu Kuφ

Kφu −Kφφ

] [
Λ2

Υ2

]
=

[
0

−KφφVp

]
(40)

where Λ and Υ are the global adjoint vectors which need to
be disassembled to form the elemental adjoint vectors

[λ1]bc = Λ1, [λ2]bc = Λ2, [μ1] = BΥ1, [μ2] = BΥ2 (41)

Now, the sensitivities with respect to polarization (P )
are calculated as well (Homayouni-Amlashi et al. 2020b;
Homayouni-Amlashi 2019)

∂ΠS

∂Pi

= λT
1,i

∂k̃uφ

∂Pi

φ̃i + μT
1,i

∂k̃φu

∂Pi

ũi

∂ΠE

∂Pi

= λT
2,i

∂k̃uφ

∂Pi

φ̃i + μT
2,i

∂k̃φu

∂Pi

ũi (42)

Based on sensitivity equations in (39) and (42), the
derivative of all piezoelectric matrices with respect to the
design variables is required. The derivative of stiffness
and coupling matrices is found in (31) and (32). Here,
the derivative of dielectric matrix and mass matrix is also
required which are

∂k̃φφ

∂xi

= pφφ(ε0 − εmin)x
pφφ−1
i k̃φφ

∂m̃

∂xi

= m̃i (43)

In addition to derivative of piezoelectric matrices with
respect to density, derivation of the piezoelectric coupling
matrix with respect to polarization variable is also required

∂k̃uφ

∂Pi

= 2pP (2Pi − 1)pP −1x
puφ

i k̃uφ (44)

After calculation of sensitivities, the optimization vari-
ables can be updated in each iteration of optimization with
the help of optimization algorithm which is the subject of
the next section.

3.4 Optimization algorithms

For solving the optimization problem, there are several
optimization algorithm like sequential linear programming
(SLP), sequential quadratic programming (SQP), method
of moving asymptotes (MMA) or the optimality criteria
(OC) method. This latter one is more historical than the
other methods and its application is more simple. However,
MMA is more powerful in terms of solving multi-variable
and multi-constraint optimization problems. In addition, the



convergence in MMA is more assured due to consideration
of two past successive iterations during optimization.

Therefore, in this paper to solve the actuation problem,
the OC method is implemented so the proposed code is
self-working. However, the OC method has convergence
problem in energy harvesting code due to coupling effect
of piezoelectric material. In the upcoming two sections, the
OC method and MMA and their implementation codes will
be explained.

3.4.1 Optimality criteria method

Optimality criteria is a heuristic method to update the
design variables in each element of design domain during
each iteration of optimization. Here, there are two design
variables for each element including the density and
polarization. It is common for structural optimization with
optimality criteria that the mutual influence of the design
variables on each other and from element to element can
be ignored (Hassani and Hinton 1998). Therefore, they can
be updated separately from each other in each iteration of
optimization. In fact, this is similar to the case of topology
optimization by homogenization method where the length,
width and rotation angle of the hole in a microstructure are
optimized by OC separately in each iteration of optimization
(Suzuki and Kikuchi 1991).

Here, the densities should be chosen such a way to
respect the volume constraints. In this case, the following
Karush–Kuhn–Tucker (KKT) condition for intermediate
densities (0 < xi < 1) should be satisfied to guarantee the
convergence

∂J

∂xi

+ λ̄
∂V

∂xi

= 0 (45)

in which λ̄ is the Lagrange multiplier to augment the volume
constraint in the optimization. To solve the optimization
problem mentioned in KKT (45), the OC algorithm given by
Bendsøe and Sigmund (1995) and Bendsoe (2013) is used
here which can be written as

xnew
i =⎧⎨

⎩
max(0, xi − move)

min(1, xi + move)

xiβ
η
i

if xiβ
η
i ≤ max(0, xi − move)

if xiβ
η
i ≥ min(1, xi − move)

otherwise
(46)

where move parameter is the maximum amount of density
change in each iteration of optimization, η is a numerical
damping coefficient and

βi = − ∂J

∂xi

(
λ̄

∂V

∂xi

)−1

(47)

Similar to the classical compliant problems of passive
material (Bendsoe 2013), the values of move and η are
considered to be 0.2 and 0.3 respectively.

For optimization of polarization there is no volume
constraint. In fact, since the polarization of each element
will be optimized separately, it is not necessary to force
the optimization algorithm to push the polarization value to
zero for the elements with low density values. Therefore, the
optimization problem can be simply defined as follows

∂J

∂Pi

= 0 (48)

The algorithm for this simple optimization can be
obtained by modifying the OC algorithm given in (46) in the
following form

P new
i =

{
max(0, Pi − move)

min(1, Pi + move)

if ∂J
∂Pi

≥ 0

if ∂J
∂Pi

< 0
(49)

By defining the optimization algorithm for polarization
based on (49), the polarity value (Pi) for all of the elements
will be steered to −1 or +1 even for the elements with very
low density. However, this will not affect the optimization
results since based on (25) and with maximum value of
polarization (P ), low density (x) will push the coupling
matrix to its minimum value.

3.4.2 The method of moving asymptotes

The method of moving asymptotes (MMA) is a structural
optimization method proposed by Svanberg (1987). The
problem formulation of this methodology is as follows
(Svanberg 2007)

minimize f0(χ) + a0z +
mc∑
i=1

(
ciyi

+ 1

2
diy

2
i

)

subject to fi(χ) − aiz − y
i
≤ 0 i = 1, ..., mc

χ ∈ X, y
i
≥ 0, z ≥ 0 (50)

in which X = {
χ ∈ �nvar |χmin

i ≤ 0 ≤ χmax
i

}
, while nvar is

the number of design variables, χ is the vector of all design
variables, y

i
and z are the artificial optimization variables,

f0(χ) is the cost function to be minimized, mc is the
number of constraints and a0, ai, ci , di are the coefficients
which have to be determined to match the optimization
problem mentioned in (50) to different types of optimization
problems.

For the optimization problem of this paper, there is only
one constraint defined on the maximum volume of the
optimized design. Therefore, based on the description given
in Svanberg (2007), by considering a0 = 1 and ai = 0 for
all i, then z = 0 in any optimal solution, and by considering
di = 0 and ci = “a large number,” then the variables yi = 0



for all i and the optimization problem mentioned in (50) will
be matched to the optimization problem of this paper.

Finally, the OC and MMA optimization algorithms
can update the optimization variables in each iteration of
optimization. To do so, the implementation code for both of
OC and MMA will be given in Section 4.

3.5 Filtering

Like other problems in structural optimization, topology
optimization of piezoelectric materials also suffers from
numerical instabilities such as checker board problem or
mesh dependency. To remedy, the solutions need to be
filtered in each iteration of optimization. So far, many
filtering methods are suggested in the literature (Sigmund
2007). Among the proposed filtering methods, sensitivity
filter and density filter proved their success in overcoming
the aforementioned numerical instabilities. The sensitivity
filter is used in the 99 lines of topology optimization code
written by Sigmund (2001) and density filter is used as an
alternative option in the 88 lines of topology optimization
code written by Andreassen et al. (2011). As such, in
this paper, the density and sensitivity filters are used as
two available options. To implement these filters, the same
lines of codes written in 88 lines of code by Andreassen
et al. (2011) are employed. Therefore, the concepts behind
these filters will not be explained here since the related
explanations can be found in the mentioned references.

The important point here is that the density filter shows
more promising performance in comparison with sensitivity
filter specially in the case of energy harvesting problem with
using the MMA as the optimization algorithm.

Finally, the filters will be applied only to the densities
and filtering of the polarization variable is not necessary.

3.6 Choosing proper penalization factors

After preparing the ingredients of topology optimization
algorithm, the important question would be how to tune
the parameters of optimization? in addition to parameters
which are the same for optimization of passive and active
materials like radius of filtering and volume fraction, there
are other parameters which belong to multiphysics nature
of piezoelectric topology optimization like penalization
coefficients of the piezoelectric matrices, i.e., puφ , pφφ and
pP . In fact by choosing the penalization coefficients, we
are pursuing two goals: (1) guaranteeing the convergence
to perfect void-material in the final obtained layout, (2)
avoiding local optima. For choosing puu, it is already proven
that the value of 3 is the best choice (Bendsoe 2013) to reach
a perfect void/material in the final layout.

There are several studies which focused on defining
the criteria for choosing other penalization coefficients,
i.e., puφ , pφφ and pP (Kim and Shin 2013; Noh and
Yoon 2012; Kim et al. 2010). In particular, Noh and
Yoon (2012) chose the penalization factors randomly and
obtained different density layouts. The final conclusion
was that the penalization factors have extreme effect on
the final topology. But, no criteria or rule is presented in
this study about the method of choosing the penalization
factors. On the other hand, a detailed study is presented
by Kim et al. (2010) for choosing the penalization factors.
Based on this study, necessary condition for choosing the
penalization factors is that the electromechanical coupling
coefficient (EMCC) should be increased when the density
(x) increases and vice versa. Based on this condition, the
following intrinsic condition which is independent from
objective function is proposed for choosing the penalization
factors (Kim et al. 2010)

2puφ − (
puu + pφφ

)
> 0 (51)

In addition to this condition, Kim et al. (2010) proposed
other objective dependent criteria for the actuation and
energy harvesting application. In particular, for the actuation
objective function in (26), the following condition is
proposed (Kim et al. 2010),

puφ − puu > 0 (52)

and for energy harvesting approach, when the objective
function is energy conversion factor then the following
conditions should be satisfied (Kim et al. 2010),

puφ − puu > 0

pφφ − puu > 0 (53)

It should be noted that these conditions are proposed to
guarantee the convergence of the final topology and yet
there is no study on the methods to define these penalization
factors to avoid the local optima.

For polarization penalization, the value of 1 seems the
best choice as it is suggested by Kögl and Silva (2005).
Indeed, it is not necessary to penalize the polarization.

4MATLAB implementation codes

In this section, the goal is to establish the MATLAB code for
the piezoelectric optimization methodology explained in the
previous section. Two MATLAB codes are mentioned in the
Appendix of the paper. The first code is for actuation and the
second code is for energy harvesting. Each MATLAB code
is partitioned so the readers can have a perception of the goal
of each part. The important lines of codes are also labeled



to provide a connection between the line and the analytical
calculation. Again, the rest of this section will be divided for
actuation and energy harvesting codes and in each section
different parts of the codes will be explained more in detail.

4.1 Actuation

4.1.1 General definition

The first part of the code is GENERAL DEFINITION. This
part consists of geometrical dimensions of the piezoelectric
plate, the resolution of the mesh, i.e., the number of

elements in the
→
x and

→
y axes, the penalization factors,

the type of filter, the filter radius and maximum number of
iterations and the stiffness of the attached spring are defined.
It should be noted that two stopping criteria are defined
by the codes. The classical criteria is the density change
between two last successive iterations. The other criteria
is the maximum number of iterations. Satisfying either of
these will stop the optimization. The reason behind adding
the second criteria is that in contrast to pure mechanical
problems, here we have different types of material and
different types of objective functions. As such, the density
change will not stop the optimization generally or it needs
very high number of iterations while there are no significant
oscillations in the objective function’s value.

4.1.2 Material properties

The second part of the code is MATERIAL PROPERTIES.
In this part of the code, the properties of the chosen
piezoelectric material are given. These properties are the
density, e∗

31 coupling coefficient, ε∗
33 permittivity coefficient

and the elements of the stiffness tensor all after applying
the plane stress assumption as mentioned in (4). The chosen
material for the code is the PZT 4 which is popular in the
literature. There are PZT materials with lower and higher
coupling coefficients. If one wants to investigate the results
of other piezoelectric materials, the values of this part can
be changed.

It should be noted that choosing different PZT materials
in this section will not affect the final layout obtained by
optimization algorithm. In fact the resulted layout of the
optimization is independent from Piezoelectric coefficients.

4.1.3 Finite element model

In the section called PREPARE FINITE ELEMENT
ANALYSIS, the proposed code for the finite element model
of the piezoelectric plate is the extension of the MATLAB
code provided by Kattan (2010) for the bilinear quadrilateral
elements of the passive materials. However, instead of using

analytical calculations, elemental matrices are calculated by
using the two-point Gauss quadrature method. To do so, first
the geometrical sizes of each element are calculated based
on the defined geometry of the design domain and desired
resolution of mesh. Then, Gauss quadrature points are
defined in matrix GP. Afterwards, the elemental matrices
are found inside a loop with the help of Gauss points as
follows,

In this method of elemental matrix calculation, there is no
analytical integration, the calculation time is very fast and
at the same time the code is flexible in terms of different
geometrical dimensions and mesh resolution and aspect
ratios.

After calculating the elemental matrices, normalization is
applied based on (20) and normalization factors are obtained
with the following lines of code

It should be noted that for simplicity, the non-normalized
matrices are replaced by normalized matrices. Since the
normalization factors are saved, it is easy to find the real
values after the calculation of the final results.

So far, the elemental matrices are calculated, normalized
and the normalization factors are derived. For assembling
the elemental matrices, the element connectivity matrix
known as edofMat (Andreassen et al. 2011) is built
with the help of the numbering format shown in Fig. 2.
In this figure, the coarse discretization is shown with
the numbering of elements, nodes and mechanical and
electrical degrees of freedom. This numbering format is
similar to the one presented in 99 (Sigmund 2001) and
88 (Andreassen et al. 2011) lines of MATLAB codes for
structural problems. The numberings of the nodes and
mechanical degrees of freedom are from top to bottom
and from left to right. It should be noted that inside
each element, the numbering order is different as it is
shown in Fig. 2b. The numbering inside each element is
counterclockwise and it starts from bottom left and the
sequence of numbers in each row of edofMat matrix
is following this numbering order. Furthermore, since the
system here is having additional degree of freedom as
potential, a vector of potential connectivity is defined as
edofMatPZT. In fact, by considering one potential degree
of freedom for each node, potential connectivity would be a



matrix with rows containing the node IDs. However, due to
equipotential condition, one potential degree of freedom is
considered for each element and the potential connectivity
is a vector. At last, the connectivity matrix edofMat and the
potential connectivity vector edofMatPZT is defined as

The implementation lines to create the edofMat matrix
and edofMatPZT vector with the help of nodeIDs are

where nele is the number of elements, nodenrs is the matrix
of node numbers and edofVec is the vector of nodeIDs
containing the first nodeID of each element. Now, with
the edofMat and edofMatPZT, it is possible to assemble
the elemental matrices and build the global matrices with
following lines of code

The matrices iK and jK corresponds to (i, j) entry of
stiffness matrix for each element. With the same strategy,
iKup and jKup are written for the ith and jth entry of Kuφ

matrix. To avoid redundancy, there is no iKpp and jKpp. In
fact, these latter are just equal to the edofMatPZT.

The material interpolation scheme mentioned in (25),
is applied in sKuu and sKup matrices. xPhys(:) and
pol(:) are the vectorized physical density and polarization
matrices respectively which will be updated in each iteration
of optimization.

4.1.4 Boundary condition

The mechanical boundary conditions are defined in the
part DEFINITION OF BOUNDARY CONDITION. In
this part, fixeddofs and freedofs are defined to contain
the fixed degrees of freedom and the free degrees of
freedom respectively. They are defined by using the method
reported in 88 lines (Andreassen et al. 2011) and 99
lines (Sigmund 2001) of code. Therefore, for applying the
clamped boundary condition on the left side of the design
domain, the following lines of code can be used,

By considering that for the coarse mesh in Fig. 2, nelx
= 4 and nely = 3, fixeddofs in the aforementioned
implementation line produce the numbers from 1 to 8 which
are the mechanical degrees of freedom in the left side of the
design domain.

4.1.5 Output displacement definition

In this part of the code for actuation, the goal is to
define the particular point of the design domain where the
maximization of displacement in a particular direction is
desired. To do so, the desired mechanical degree of freedom
should be defined. The variable DMDOF which is the
abbreviation of desired mechanical degree of freedom is
defined for this purpose. Thereafter, the vector L is created.
This vector will be used later in the objective function and
sensitivity analysis for optimization.

A spring is attached at DMDOF which simulates the
reaction force exerted by an imaginary object. The modeled
spring will modify the piezoelectric stiffness matrix with
this line of code

where Ks is the stiffness of the modeled spring. Actually,
by changing the stiffness of the modeled spring, it is
possible to determine whether more force is desired or
more displacement. Indeed, since the stiffness matrix is
normalized, the stiffness of the modeled spring can be
determined with respect to the stiffness of the piezoelectric
plate. For example, by putting the stiffness of the spring



equal to 1, the stiffness will be equal to the highest
value of the piezoelectric stiffness matrix. In this case,
the piezoelectric layout will be optimized to produce
maximum possible of force. However, by defining very
low values of stiffness for the spring (i.e., 0.01), then
the piezoelectric layout will be optimized for maximum
possible of deflection.

4.1.6 Objective function

Calculation of objective function for actuator is a routine
procedure to calculate the desired displacement in each
iteration. To do so, first the mechanical displacement due to
applied voltage should be calculated. Therefore, based on
(21), the mechanical displacement vector is calculated by
the following line of code

then based on (36), the objective function can be calculated
by

4.1.7 Sensitivity analysis

For sensitivity analysis, the first step is the calculation of
adjoint vectors. It is calculated based on (28),

then the calculation of sensitivities based on (29) and (30)
starts afterwards

where dc and dp are the sensitivities of the objective
function with respect to x and P and dv is the sensitivities
of the volume constraint with respect to x. It is obvious from

(26) that the sensitivity of volume constraint with respect to
P is zero.

As can be seen in the aforementioned lines of the code,
the sensitivities containing the stiffness (kuu) and coupling
matrix (kup) are calculated separately. This will help us to
define different penalization coefficients for each of these
matrices.

4.1.8 Optimization algorithm

The implementation lines of code for the OC update of
densities are the same as what is mentioned in 88 lines
of code (Andreassen et al. 2011). In addition to densities,
for updating the polarization based on algorithm (49), there
is no need for the bi-sectioning loop and just one line
of code can optimize the polarization in each iteration of
optimization as follows

4.1.9 Plot densities and polarization

In part (PLOT DENSITIES & POLARIZATION), the
densities and polarization will be plotted in two figures
separately. As it is common, in the density figure, white area
means no material while the black area means material.

Different color spectrum is chosen for polarization
profile in which the red and blue color shows opposite
direction of optimization while the green color shows the
neutral material with no polarization. The important point
here is that the OC will steer the polarization value to 0 or 1
even for the elements with lower density. Therefore, here to
eliminate the confusion, the matrix of densities is multiplied
to the polarization. In this way, for element with minimum
density (no material), the polarization turns to green as well.

4.1.10 Filtering

The density filtering lines of code are similar to 88 lines
of code (Andreassen et al. 2011). Two types of density and
sensitivity filter can be chosen. In general, the density filter
is more recommended. However, since the code is written
for both of these filters, the best choice will be up to readers.

4.2 Energy harvesting

4.2.1 General definition

In general definition part of the energy harvesting code,
in addition to what is mentioned for the actuation code,



the objective function’s weighing factor (wj) and excitation
frequency (omega) are defined.

4.2.2 Material properties

This part of the energy harvesting code is similar to the
actuation code. However, the results of actuation are free
from the PZT coefficients while in the case of energy
harvesting for different materials and different piezoelectric
coefficients, the results will be changed. PZT materials with
higher coupling coefficients produce more electrical energy
in comparison with ones with lower coupling coefficients.
At the same time, PZT materials with higher coupling
coefficients have more coupling effect which affect the
optimization during the iteration and can change the final
layout. Similar to actuation code, PZT 4 is chosen for the
code.

4.2.3 Finite element model

In comparison with FE model presented in the actuation
code, the FEM part of the energy harvesting is the same with
some additional calculations. Indeed, the elemental matrices
for mass and dielectric matrices are calculated as well in the
following lines of code,

For assembling the global mass matrix M , the same
matrices of iK and jK as described in the actuation code can
be used. The assembling lines of mass matrix and dielectric
matrix K̃φφ can be found in energy harvesting code as

where the related material interpolation scheme is applied
in sM and sKpp.

Furthermore, the stiffness matrix is modified by the
dynamic matrix -omega*M which represents (−M̃Ω̃2) in

(23). This modification is done by the following line of
code

After building the global piezoelectric matrices, the
equipotential condition is applied with the following line of
code

where KupEqui and KppEqui are the piezoelectric cou-
pling and dielectric matrices after applying the mechanical
and equipotential condition which represent Kuφ and Kφφ .

4.2.4 Objective function

To find the value of objective function, the mechanical
displacement and resulted potential due to applied force
should be calculated based on (23). But, first a total
matrix is built based on the left-hand side of (23).
The symmetry is guaranteed afterward, and finally, the
mechanical displacements and potential are calculated

After calculation of mechanical displacement and poten-
tial, for calculation of objective function, Wm and We are
defined for mechanical and electrical energies respectively.

It is important to note that in the written code,
the mechanical and electrical energies are calculated by
summing the energies in each element. That is why
the mechanical displacement and electrical potentials are
multiplied to elemental stiffness matrix kuu and elemental
dielectric matrix kpp. Then, the objective function for the
energy harvester is the weighted sum of the energies while
considering the weighting factor (wj).



4.2.5 Sensitivity analysis

Sensitivity analysis starts by calculating adjoint vectors with
the help of (40)

Here, B is the Boolean matrix as defined in (41). In fact,
mu1 and mu2 are vectors of equal values for all of the elements
in the design domain due to equipotential condition.
For sensitivity analysis, the adjoint vectors related to
mechanical and electrical states should be separated. For
this reason, ADJ resolved to lambda and mu.

After calculation of adjoint vectors, the sensitivity
analysis is performed by the following lines of code

The code is written in a general form to consider
nf number of load cases. Therefore, for each number
of load cases the mechanical displacement, potential and
adjoint vectors are separated by defining the Uu i, Up i,
lambda1 i, lambda2 i, mu1 i and mu2 i. In addition,
mechanical displacement, potential and adjoint vectors are
calculated in global format while the sensitivity analysis
should be performed on the elemental scale. To do so,
edofMat is utilized to convert the vector of mechanical
displacement to the matrix Uu i(edofMat) in which
each row is related to one element while the columns
represent the mechanical displacement of that element.
The same idea is also applied to the adjoint vectors, i.e.,
lambda1 i(edofMat) and lambda2 i(edofMat). On the other
hand, due to equipotential condition, it is obvious that the
potential of each element is equal to Up, and as mentioned
before, values of mu1 and mu2 are equal for all elements.

Similar to the actuation code, here the sensitivities con-
taining each piezoelectric matrix are calculated separately
to facilitate the definition of different penalization factors.

4.2.6 Optimization algorithm

In the energy harvesting code, the MMA optimization
algorithm is used. However, this code cannot be executed
without having the external MMA code. The MMA
implementation MATLAB code can be obtained by
contacting Prof. Krister Svanberg. In this way, the interested
readers will obtain two MATLAB codes to implement the
MMA optimization code which includes mmasub.m and
subsolv.m. The version 2007 of these codes is used in this
paper. Supposing that these two MATLAB codes are already
available, to implement the MMA, first initial parameters
are defined in MMA Preparation part based on what is
mentioned in Section 3.4.2. Then, optimization of variables
will be done in MMA OPTIMIZATION OF DESIGN
VARIABLES part. The important point in this part is that,
due to the scale difference between the density sensitivities
and polarization sensitivity, it is suggested here to normalize
the polarization sensitivity with the following line of code

Then, the main lines of MMA optimization implementa-
tion are

The output xmmaa is the vector of all optimization
variables. Therefore, the upper half of this vector is the
updated density and lower half is the polarization values.



Fig. 3 Topology optimization of a piezoelectric actuator (pusher) for
different stiffness of the modeled spring. Panel a presents the spec-
ification for a practical use and panel b is the mechanical model
for implementation in the finite element software. Panels c, e, g, i

and d, f, h, j respectively present the density and polarization pro-
file of the design for the specified output stiffness after convergence.
For the polarization profile, blue, red and green represent respectively
negative, positive and null polarization

After updating the optimization variables and plotting the
results, this iteration of optimization will be finished and the
optimization will be started from the beginning of the loop
for the next iteration.

5 Numerical examples

In this section, the goal is to investigate the performances
of the codes in different application cases of actuation
and energy harvesting with different configurations. First,
different examples of actuation will be investigated.
Thereafter, different configurations of energy harvesting are
explored.

5.1 Actuation

5.1.1 Pusher

The first example in the actuation part is a simple pusher
as can be seen in Fig. 3a. The gray area shows the
design domain which can be optimized by the optimization
algorithm. The actuation optimization code which is
mentioned in the Appendix is written for this example. As it
can be seen from the code, the aspect ratio of the elements in
the x and y directions is following the aspect ratio between
the length and width of the plate which produces square
elements for discretization of the design domain. This is not
mandatory, but it is known that increasing the aspect ratio of

width and length of each element increases the inaccuracy
of the finite element model (Logan 2000). Therefore, it
is recommended to follow the aspect ratio of the plate in
defining the number of elements in x and y directions.

The chosen penalization factors are puu = 3 and puφ =
4, which satisfy the conditions mentioned in (52). These
penalization factors are the same for all of the actuation
examples.

For having a completely symmetrical response with
respect to the horizontal dotted line in Fig. 3a and to
decrease the number of elements in the design domain, the
defined design domain in the code is the upper half of the
piezoelectric plate. Therefore, in the symmetry line of the
design domain, the roller mechanical boundary condition is
applied with the following line of code,

With this mechanical boundary condition, the nodes
connected to the symmetry line can have displacement in
the x direction but not in the y direction.

As can be seen in Fig. 3, the results of topology
optimization for different spring stiffness are plotted. The
upper row of the figure shows the density layout while the
lower row shows the polarization profile. By mirroring the
obtained result with respect to the symmetry line, the results
are illustrated for whole piezoelectric plate.

The numerical results for different spring stiffness are
also reported in Table 1. The numerical results show the



Table 1 Displacement amplification ratio of optimized actuators with
respect to full plate

Pusher Gripper

ks Amplification ks Amplification

ratio ratio

CASE (1) 1 0.76 1 3.95

CASE (2) 0.1 0.99 0.1 11.42

CASE (3) 0.01 1.54 0.01 34.04

CASE (4) 0.005 2.75 0.003 60.11

amplification ratio of the optimized design with respect to
the full plate under application of same value of voltage. The
objective value which is reported by the code is not showing
this amplification ratio. To calculate the amplification ratio,
the final value of the objective function after finishing the
optimization should be divided by the objective function
value of the full plate. To find the objective function of the
full plate, it is possible to define the initial values of density
equal to 1. To do so, the following line of code

put 1 instead of volfrac, then stop the code after the
calculation of objective function. In this case, the value of
objective function for the full plate is obtained.

From the plots in Fig. 3c and d, it is clear that when
the spring stiffness is one, the optimal layout is a very
simple lumped design with uniform polarization profile.
Based on Table 1, for this case, the full plate is having
more displacement. On the other hand, by considering very
low stiffness (Ks = 0.005) and then based on Fig. 3i and
j, the density layout is more complicated and polarization
profile is not uniform anymore. In fact, it is obvious that the
blue region in the polarization profile will have extension
while the red part will have compression (shrinkage). The
combination of this extension and compression will produce
an amplification ratio with respect to full plate equal to 2.75
as reported in Table 1.

5.1.2 Gripper

The second example of piezoelectric actuation is a gripper,
which is similar to the case discussed in Ruiz et al. (2017).
The goal is to design a gripper to grab an object as it is
shown in Fig. 4a and b. To do so, some modifications should

be done to the actuation code in the Appendix. First of all,
the OUTPUT DISPLACEMENT DEFINITION part should
be completely changed by replacing the following lines

where L grip and W grip are the length and width of the
empty box in the piezoelectric plate as shown in Fig. 4a
and b.

Next, to enforce zero material in the desired box of the
design domain, the passive elements should be defined. The
strategy is the same as in 99 lines (Sigmund 2001) and in 88
lines (Andreassen et al. 2011) of code. The following part
should be added after the part INITIALIZE ITERATION
and before the part START ITERATION

Then to apply the passive material in each iteration, the
following line should be added after the OC update line

Now by executing the code, the results of Fig. 4 for
different spring stiffness will be obtained and the numerical
results are reported in Table 1. It is interesting to note that
for the gripper, the amplification ratios in optimized designs
are much higher than the amplification ratios for optimized
pushers. Indeed, the polarization optimization plays a major
role in designing the gripper. That is why for any chosen
values of Ks, the polarization profile is not uniform and the



Fig. 4 Topology optimization of a piezoelectric gripper for different stiffness of the modeled spring. The panels follow the same presentation as
Fig.3

gripper needs the combination of expansion and retraction
for increasing the amplification ratio.

5.2 Energy harvesting

5.2.1 Lateral force

The first example of the energy harvesting code is a plate
under a lateral force excitation as it is shown in Fig. 5.
The code in the Appendix is written for this case. Here,
the goal is to maximize the output electrical energy while
minimizing the mechanical energy of the system. For this
case, the problem is static and the excitation frequency
is considered to be zero. The chosen penalization factors

for the energy harvesting code in contrast to actuation
part are not the same for all cases. As such in Table 2,
the penalization factors are reported for each case. But,
for all cases, the chosen penalization factors are satisfying
the conditions mentioned in (51) and (52). The reason for
different penalization factors for each case is that the energy
harvesting optimization is more complicated than actuation
due to existence of the coupling effect. This coupling effect
is highly affected by the chosen penalization factors in
particular puφ and pφφ . By choosing proper penalization
factors, it is possible to avoid the nonsymmetric results or to
improve the convergence.

The results of optimization for different values of the
weighting factor (wj ) are illustrated in Fig. 5. For the first

Fig. 5 Topology optimization of a piezoelectric energy harvester under
application of a lateral static force for different values of wj . Panel a
presents the specification for a practical use and panel b is the result
that can be obtained through classical compliance optimization. Panels

c, e, g, and d, f, h respectively present the density and polarization pro-
file of the obtained design. For the polarization profile, blue, red and
green represent respectively negative, positive and null polarization



Table 2 Output energies of the optimized designs for different weighting factors

wj ΠS ΠE puu puφ pφφ pP Ω x{0} MMA move

Lateral force

Compliance 1 116.66 0.00 3 6 4 0 0 volfrac 1

CASE (1) 1 99.90 1.25 3 6 4 1 0 volfrac 1

CASE (2) 0.01 152.87 1.70 3 4 4 1 0 volfrac 1

CASE (3) 0.005 741.09 7.77 3 4 4 1 0 volfrac 1

CASE (4) 1 106.04 1.38 3 6 6 1 1 kHz volfrac 1

CASE (5) 0.01 123.15 1.43 3 6 6 1 1 kHz volfrac 0.1

CASE (6) 0.02 240.50 2.63 3 6 4 1 3.5 kHz volfrac 0.1

2 load case

Compliance 1 106 0.03 3 6 6 0 0 1 1

CASE (1) 0.005 168.54 1.20 3 6 6 1 0 1 1

CASE (2) 1 107.88 0.86 3 6 6 1 1 kHz 1 0.1

CASE (3) 0.005 163.43 1.04 3 6 4 1 1 kHz 1 0.1

CASE (4) 0.05 120.06 0.95 3 6 6 1 1.5 kHz 1 0.1

case, the weighting (wj ) is equal to 1. As such, the problem
is now a compliance problem in which minimization of
deflection is the target. In this case, the optimization is
done without polarization optimization. To do optimization
without polarization, it is possible to simply put the
penalization factor for the polarization equal to 0, i.e.,
penalPol = 0 in GENERAL DEFINITIONS part of the
code. As can be seen in Fig. 5b, the obtained density
layout for this case is similar to the results of the topology
optimization of passive materials as reported by 99 lines
(Sigmund 2001) or 88 lines (Andreassen et al. 2011) of
MATLAB code. This was expected since the PZT materials
have the plane isotropic behavior. The numerical results of
the optimizations are given in Table 2. It is reported for the
aforementioned case that the output electrical energy is zero
which is due to the charge cancellation. In fact, lateral force
induces tension and compression in different parts of the
piezoelectric plate which produces voltages with opposite
sign on the surface of the electrode. The opposite signs of
voltages nullify each other.

For the next case, polarization is also optimized by
putting penalPol = 1. In Fig. 5c and d, it is obvious
that the density layout did not change and the polarization
profile is not uniform anymore. By this polarization
optimization, based on Table 2, not only the mechanical
energy of the piezoelectric plate is reduced in comparison
with the first case, but also the problem of charge
cancellation is suppressed and we have a non-zero electrical
energy.

In the next case, the goal is to increase the electrical
energy due to the same amount of force. To do so, the
weighting factor is decreased to 0.01. As can be seen
in Fig. 5e and f, the density layout is changed and
the polarization profile is changed accordingly as well.
By observing the obtained numerical results in Table 2,
the electrical energy is increased in comparison with the
previous cases with the cost of increasing the mechanical
energy as well. By further increasing the weighting factor,
the results of Fig. 5g and h will be obtained in which a
jump in both mechanical energy and electrical energy of the
design can be seen in Table 2.

It can be noticed that in the optimized polarization profiles,
there are areas with null polarity (green color) while there
are materials (non-void). This null polarity is mostly at
places where there is a transition between the polarization
direction. It is possible to take these null polarity areas into
consideration in the optimization problem formulation as
discussed in Donoso and Sigmund (2016).

In the next example, the piezoelectric plate with the
same configuration of boundary and load condition is
considered while the force is considered to be harmonic. In
Fig. 6, the results of topology optimization under harmonic
force can be seen. The related numerical results are also
reported in Table 2. In this figure, the excitation frequency
is primarily considered to be 1 kHz. At this frequency,
the optimization converges to the final layout for different
values of wj . However, by increasing the frequency of
excitation, convergence problems begin. The problems are



Fig. 6 Topology optimization of a piezoelectric energy harvester under
application of a lateral harmonic force for different values of wj . Panel
a presents the specification for a practical use and panels b, d, f,

and c, e, g respectively present the density and polarization profile of
the obtained design. For the polarization profile, blue, red and green
represent respectively negative, positive and null polarization.

parasitic effects of the material layout and the force will be
disjointed from the material. These problems are due to the
fact that the excitation frequency is close to the resonance
and antiresonance frequency of the piezoelectric plate. The
resonances are the natural frequencies when the electrodes
are short-circuited and antiresonances are the ones when
the electrodes are in open-circuit condition (Lerch 1990).
During the optimization, these frequencies are changing in
each iteration. Therefore, it is possible that the excitation
frequency comes close to the resonance frequency during
the optimization which will introduce singularity in the
FEM (23) and the amplitude of the displacement vector
reaches to infinity. Even by defining the damping, still the
jump in the displacement vector will result in numerical
instabilities and disjoint problem in which the force will
be disconnected from material as it is reported by Noh
and Yoon (2012). One solution to reduce the numerical
instabilities is to restrict the move limit of the MMA
code. Indeed, the move limit of the MMA optimization
code is by default set to 1 which means the density of
material can jump from 0 (void) to 1 (material) in a single
iteration. To modify this move limit, in the mmasub.m,
one needs to change the value of move from 1 to 0.1.
With this restriction on the move limit, convergence to
a black and white final layout is achieved for 3.5 kHz
excitation frequencies as it is shown in Fig. 6f and g.
However, by reducing the MMA move limit, the final result
can be trapped in the local optima. This is the maximum
excitation frequency that the convergence can be achieved.
After this frequency, again the force will be disjointed
from the material and the convergence problem can be
seen. To overcome the challenges of dynamic topology
optimization of mechanical structures, several methods
can be found in the literature. For example, Olhoff and
Du (2005) suggest that the excitation frequency can be

increased gradually during the optimization iterations. Liu
et al. (2015) and Jensen (2007) modeled the damping in the
dynamic system and optimized the structure for an interval
of frequencies including the resonance ones. For mechanical
structures, the goal is to reduce the displacement or stored
mechanical energy in the system. For piezoelectric energy
harvesters in which the maximization of electrical output
regarding the mechanical input is desired, Noh and Yoon
(2012) solved the disjoint problem of force and material
in dynamic topology optimization by defining a constraint
on the mechanical energy of the piezoelectric structure and
they defined the objective function as maximization of the
electrical output of the system.

Reducing the weighting factor wj brings the resonance
frequency closer to the excitation frequency to some
extent. However, a very low weighing factor can introduce
convergence problems as well. On the other hand, for
piezoelectric energy harvesters, matching the resonance
frequency and excitation frequency is favorable. To do so,
the problem formulation should be changed. For example,
Kim and Shin (2013) did eigenfrequency optimization to
increase the electromechanical coupling coefficient of the
design and to match the resonance frequency and the
excitation frequency. Wang et al. (2017) and Nakasone
and Silva (2010) formulated the optimization problem to
optimize the eigenmodes in addition to optimization of
the eigenfrequency. It is worth mentioning that for these
problem formulations, alternative material interpolation
functions should be used to avoid the artificial local modes
in the low-density regions (Pedersen 2000). The alternative
material interpolation functions can be the one introduced
by Huang et al. (2010) for the stiffness matrix or the RAMP
interpolation function which is used by Nakasone and Silva
(2010) in combination with the PEMAP-P interpolation
function.



Fig. 7 Topology optimization of a piezoelectric energy harvester under
application of 2 load cases for different values of wj and Ω . Panel a
presents the specification for a practical use and panel b is the result
that can be obtained through classical compliance optimization. Panels

c, e, g, i and d, f, h, j respectively present the density and polar-
ization profile of the obtained design. For the polarization profile,
blue, red and green represent respectively negative, positive and null
polarization

5.2.2 Two loads case

In this example, the goal is to optimize piezoelectric energy
harvesters for two loads case as shown in Fig. 7a. In fact,
the piezoelectric plate will be optimized for in-plane forces
that can come from different directions as it is discussed in
Homayouni-Amlashi et al. (2020b) since any in-plane force
can be decomposed to the load cases shown in Fig. 7a. The
mechanical boundary condition of this figure is proposed to
make the harvested energy symmetric with respect to the
forces in each direction as it is possible.

To implement the two loads case, the following changes
should be made to the energy harvesting code mentioned
in the Appendix. The parameters in the GENERAL
DEFINITIONS part should be changed by putting Lp
= 3e−2, Wp = 3e−2, nelx = 100, and nely = 100.
To define the boundary condition, the DEFINITION
OF BOUNDARY CONDITION part will be changed
completely as follows

BCTratio is the ratio of the clamped part to the total
length of the edge. To define the two load case the part
FORCE DEFINITION will be changed with the following
lines:

In contrast to previous case, the initial values for the
densities (x{0}) are not equal to volume fraction (volfrac).
It is observed that by changing the initial values to one,
the obtained results are more symmetric. Therefore, the
following line of energy harvesting code is updated,

The results for the defined load and boundary condition
are illustrated in Fig. 7. Figure 7b shows the compliance
result due to static force without polarization optimization.
In Fig. 7c and d the excitation frequency is zero, wj

is decreased and polarization is also optimized. Other
cases are optimized for different excitation frequencies and
weighting factors. The numerical results are reported in
Table 2. For defined geometry, load and boundary condition
of this example, the highest frequency that the convergence
to black and white is achieved is 1.5 kHz. This is due to the



fact that with the defined geometry and boundary condition,
the first resonance frequency is lower than the previous
example of Fig. 6.

6 Discussion

In the actuation code, the optimization algorithm is OC.
However, it is very simple to apply the MMA to the
actuation code. One has just to copy the MMA Preparation
part from the energy harvesting code and paste it after the
INITIALIZE ITERATION part of the actuation code. Then,
one has to remove the OPTIMALITY CRITERIA UPDATE
OF DESIGN VARIABLES part and substitute the MMA
OPTIMIZATION OF DESIGN VARIABLES part from the
energy harvesting code. It will be observed that the obtained
result remains the same.

It is possible to implement the OC in the energy
harvesting code as well. This can be simply done by
substituting the MMA OPTIMIZATION OF DESIGN
VARIABLES part with the OPTIMALITY CRITERIA
UPDATE OF DESIGN VARIABLES part of the actuation
code. However, due to coupling effect, sometimes the
convergence problem appears.

It should be noted that the results presented in this
paper are not the best results that can be obtained from the
codes. In fact by changing the penalization factors, volume
fraction, filter radius and initial values, different results can
be obtained. However, finding the best results or performing
the parameters analysis on the final results is not the subject
of this educational paper.

There are similar aspects between the proposed codes
here and the 88 lines of MATLAB code (Andreassen
et al. 2011), such as the use of different filtering methods,
different boundary conditions, and different load cases.
These aspects are not discussed here since the procedures of
implementation are similar.

Extension of the codes for different goals such as
different objective functions, multi-material optimization,
and 3D finite element modeling is straightforward. For
example, the 169 lines of code for 3D topology optimization
(Liu and Tovar 2014) of passive material are the extension
of the 88 lines of code. The same strategy can be used for the
proposed code here to extend the code for 3D finite elements
to consider multi-layer piezoelectric plates and out of plane
forces.

7 Conclusion

Two MATLAB codes are proposed for topology optimiza-
tion of piezoelectric actuators and energy harvesters. The

codes are developed based on the finite element modeling
of piezoelectric materials. The PEMAP-P as an extension of
SIMP approaches is used for material interpolation scheme.
Optimality criteria and method of moving asymptotes are
used for optimization of element’s density and polariza-
tion direction. Different parts of the codes are explained
in detail to make the implementation and extension of the
codes straightforward. Some basic and general examples are
chosen to show the effectiveness of the codes. The aim of
the codes is to help the students and newcomers in the field
of topology optimization of smart materials in particular
the piezoelectric material. While the codes have been and
can be used for energy harvesting and actuation applica-
tions, perspective works include their application to opti-
mization of piezoelectric sensors as well as piezoelectric
sensors-actuators, also named as self-sensing (Bafumba
Liseli and Agnus 2019; Rakotondrabe 2013; Aljanaideh
et al. 2018).
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Appendix: Proof of normalization

Here the goal is to prove the normalization which is
proposed by authors in Homayouni-Amlashi (2019) and
Homayouni-Amlashi et al. (2020b). To normalize the global
FEM equation of the piezoelectric plate

[
Kuu − MΩ2 Kuφ

Kφu −Kφφ

] [
U

Φ

]
=

[
F

0

]
(A.1)

the first step of normalization is to factorize the values
defined in (20) and (22)

Kuu = k0K̃uu, M = m0M̃, Kuφ = α0K̃uφ,

Kφφ = β0K̃φφ, U = u0Ũ , Φ = φ0Φ̃, F = f0F̃

(A.2)



It should be noted that since the responses of the system,
i.e., U and Φ are unknown, their factorization values will be
defined later.

With the help of factorization defined in (A.2), (A.1) can
be rewritten as follows,

[
k0K̃uu − m0M̃Ω2 α0K̃uφ

α0K̃φu −β0K̃φφ

] [
u0Ũ

φ0Φ̃

]
=

[
f0F̃

0

]
(A.3)

This is two linearly coupled equations. The second
equation can be written as

α0u0K̃φuŨ − β0φ0K̃φφΦ̃ = 0 (A.4)

Then, the Φ̃ will be

Φ̃ = α0u0

β0φ0
K̃−1

φφ K̃φuŨ (A.5)

The first linear equation from (A.3) can be written as

(k0K̃uu − m0M̃Ω2)u0Ũ + α0φ0K̃uφΦ̃ = f0F̃ (A.6)

By substituting (A.5) to (A.6) and dividing the resulted
equation by k0u0, one will have

(
K̃uu − m0

k0
M̃Ω2

)
Ũ + α0φ0

u0k0

α0u0

β0φ0
K̃uφK̃−1

φφ K̃φuŨ

= f0

k0u0
F̃ (A.7)

Now, it is possible to define,

Ω̃2 = m0

k0
Ω2, u0 = f0

k0
(A.8)

By substituting (A.8) to (A.7)

(K̃uu − M̃Ω̃2)Ũ + α2
0

β0k0
K̃uφK̃−1

φφ K̃φuŨ = F̃ (A.9)

Now, the normalization factor can be defined as

β0k0

α2
0

= γ (A.10)

Again, the (A.9) can be written as,

(K̃uu − M̃Ω̃2)Ũ + 1

γ
K̃uφK̃−1

φφ K̃φuŨ = F̃ (A.11)

Now, it can be considered that

1

γ
K̃−1

φφ K̃φuŨ = Φ̃ (A.12)

If one write (A.12) as

K̃φuŨ − γ K̃φφΦ̃ = 0 (A.13)

then the following linearly coupled equation can be
written with the help of (A.11) and (A.13)

[
K̃uu − M̃Ω̃2 K̃uφ

K̃φu −γ K̃φφ

] [
Ũ

Φ̃

]
=

[
F̃

0

]
(A.14)

which is the same as (23) of the paper.
However, right now we have two equations for Φ̃ in

(A.12) and (A.5). By equating these two equations results in

Φ̃ = α0u0

β0φ0
K̃−1

φφ K̃φuŨ = 1

γ
K̃−1

φφ K̃φuŨ (A.15)

We can then simplify both sides and replace the γ

coefficient

α0u0

β0φ0
= α2

0

β0k0
(A.16)

We will find the following equation for φ0,

φ0 = u0k0

α0
(A.17)

But from (A.8) u0 can be replaced and the final value for
φ0 will be

φ0 = f0

α0
(A.18)

Now, by finding the values of γ , u0 and φ0, the normal-
ization of global FEM equations of piezoelectric material
is finished. Actuation is the sub problem for the aforemen-
tioned normalization. Only (16) should be normalized. This
equation with the help of the normalization factors defined
in (20) and (24) can be written as

k0K̃uuu0Ũ + α0K̃uφφ0Φ̃ = f0F̃ (A.19)

By dividing each side of equation by f0,

k0

f0
K̃uuu0Ũ + α0

f0
K̃uφφ0Φ̃ = F̃ (A.20)

Now by considering u0 and φ0 equal to values in (A.8)
and (A.18), the normalized (21) will be obtained.

K̃uuŨ + K̃uφΦ̃ = F̃ (A.21)
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