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Flow of shear-thinning fluids through porous media 

Christophe Airiau a, Alessandro Bottaro b,* 

• Institut de Mécanique des fluides de Toulouse (IMFI'), UniYersiti de Toulouse, CNRS, INPT, UPS, Toulouse, France 

• DfCCA, Scwla Politecnico, Universitd di Genova, >ia Montallegro 1, 16145 Genova, ltaly 

ABSTRACT 

Keyword.s: 
Porous media 
Homogeniz.adon 
Adjoint theory 
Carreau fluids 

Pseudo-plastic fluids exhibit a non-Jinear stress-strain relationship which can provoke large, localized viscosity 
gradients. For the flow of such fluids in porous media the consequence is a strong variability of the effective 
permeability with porœity, angle of the macroscopic pressure gradient, and meological parameters of the fluid. 
Such a variability is investigated on the basis of adjoint homogenization theory for a Carreau fluid in an idealized 
porous medium geometty, highlighting differences with respect to the Newtonian case. It is shown in particular 
that the more we depart from Newtonian conditions, the more the (often used) hypothesis of an effective viscosity 
in Darcy's law is a poor approximation, for the effective permeability tensor becomes strongly anisotropie. 
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. Introduction

Fluids whose apparent viscosity decrease; under shear strain are very

omrnon, and are often found in polymer and foam solutions; also corn 
lex fluids and suspensions like ketchup, paints and blood exhibit such a 
roperty which goes by the name of shear thinning or pseudo plasticity. 
he oldest model used to describe the rheological properties of pseudo 
lastic fluids is the empirical power law equation (Ostwald, W. (1925, 
929)) which relates the shear stress to the shear r ate elevated to a 
ertain power, say n, with n < 1, via a coefficient called the flow con 
istency index. For n = 1 the Newtonian behavior is recovered. The sim 
le power law behavior yields infinite effective viscosity as the applied 
tress vanishes, and this can cause numerical clifficulties in applications, 
hich is why more elaborate models have later been proposed, such as 

he Carreau, Carreau Y asuda, Cross or Powell Eyring models (Bird, R.B., 
rmstrong, R.C., Hassager, O. (1987); Tanner, R.I. (2000)). Ail of these 
odels are reasonably simple to implement (for example in a numerical 

ode), requiring no more than three empirical constants; they all yield 
ather good results, provided the fitting parameters are well chosen, as 
hown in Fig. 1 for a repre;entative engine oil in solution with viscosity 
ndex improver polymers (Marx, N., Fernândez, L, Barcel6, F., Spikes, 

. (2018). 
Several applications require knowledge of the behavior of pseudo

lastic fluids within permeable media. For example, enhanced oil recov 
ry processes in naturally fractured petroleum reservoirs can use poly 
er solutions in water flooding to increase the amount of recovered 

il (Green, D.W., Willhite, G.P. (2018)). Another application uses foam, 
• Corresponding author. 
E-mail address: alessandro.bottaro@unige.it (A. Bottaro). 
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hich appears to be the most promising blocking agent in fractured 
edia for underground energy recovery and waste disposal purposes 

Hou, M.Z., Xie, H. , Were, P., Eds. (2013)). In biological applications, 
on Newtonian fluids with shear thinning character, such as blood and 

nterstitial fluid, flow through the pores of bone tissue, transporting nu 
rients to, and carrying waste from, the bone cells. Understanding this 
irculation might provide insight into a number of clinical problems, as 
eviewed by Cowin, S.C., Cardoso, L. (2015). 

Several theoretical approaches might be employed to study flows 
hrough porous media, including multiscale homogenization and vol 

e averaging (nicely discussed and compared by Davit, Y., Bell, C.G, 
yrne, H.M., Chapman, LA.C., Kimpton, LS., Lang, G.E., Leonard, 
.H.L., Oliver, J.M., Pearson, N.C., Shipley, R.J., Waters, S.L., White 

ey, J.P., Wood, B.D., Quintard, M. (2013)), mixture theory (see, e.g., 
edford, A., Drumheller, O.S. (1983)), and pore network ("bundle of 
ubes") modeling (see, e.g., Balhoff, M.T., Thompson, KE. (2006).) 

Here we employ homogenization, in a form similar to that described 
y Mei, C.C., Vernescu, B. (2010) to assess the effect of regular pore 
cale structures upon a macroscopic flow. Efforts on non Newtonian 
heologies were initiated by Llons, J.L, Sanchez Palencia, E. (1981) and 
ourgeat, A, Mikelié, A. (1993), with focus on the plastic behavior of 
ingham fluids. Later, the theory was applied to power law and Car 

eau fluids by Bourgeat, A., Mikelié, A (1996) and Mikelié, A. (2000); 
il of these authors emphasized mathematical issues of uniqueness of 
olutions, bounds, and proofs of convergence, as the shear rate regimes 
aried. 

Filtration laws for non Newtonian fluids are, in general, non local, 
.e. microscale and macroscale variables do not decouple, which means
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Fig. 1. Rheogram of a shear-thinning fluid. Experimental points by Marx, N., 
Fernândez, L, Barcel6, F., Spikes, H. (2018) for the normalized, effective dy
namic viscœity jl (* symbols) are plotted together with the best fits provided 
by various empirical models. For the case of the power-law model the fit bas 
been done using only the points with r > 10' [s-1]. Notice the Newtonian be
havior of the fluid at very high and very low shear rates. For the definition of 
the axes' labels see later Eq. (5). 
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hat simple microscopie (also called auxiliary) problems capable to 
ield, upon averaging, an effective permeability tensor for a (macro 
copie) Darcy or Darcy like relation are not available, even when inertia 
s negligible Odris, Z., Orgéas, L., Geindreau, C., Bloch, J. F., Auriault,
. L (2004); Orgéas, L., Idris, Z., Geindreau, C., Bloch, J. F., Auriault, J. 
 (2006); Orgéas, L, Geindreau, C., Auriault, J. L, Bloch, J. F. (2007)).

or this reason, Gotz, T., Parhusip, H.A. (2005) opted to expand the 
arreau law in terms of the time constant À (see later Eq. (5)), assumed

mall, obtaining a hierarchy of Newtonian like auxiliary problems, capa
le to successively approximate the zero shear rate solution (for which
=A,= constant) With the expansion performed, the solutions decou 
ie and good agreement was found for some selected geometrie; be 

een the fields computed by direct numerical calculations and those
btained by the asymptotic expansion. We will show later that the limit 
f small À yields results which differ very little from the Newtonian case.

One of the alternative upscaling techniques to obtain macro 
copie laws is the so called volume averaging approach, pioneered by 

hitaker, S. (1986); Quintard, M., Whitaker, S. (1993, 1994a, 1994b), 
nd applicable to both organized and disordered porous skeletons. For 
he case of power law fluids a generalized Darcy's law is available (cf. 

ang, X. H.,Jia, J. T., Llu, Z. F.,Jin, L D. (2014)), withan effective ten 
orial permeability which can be found from the solution of a problem

in a representative elementary volume only once the direction of the av 
age filtration velocity (which, in general, doe; not coincide with that 

f the imposed pressure gradient) is prescribed. This is an indication of
he strong microscopie macroscopie coupling; numerical results demon 
strate that the components of the effective permeability tensor depend
ignificantly on such a pre assigned direction. Direct calculations of the 

re scale creeping flow mode! for a power law fluid through macro 
copie porous media (Zami Pierre, F., de Loubens, R., Quintard, M.,
avit, Y. (2016, 2018)) show thata competition exists between the effect 
f the non Newtonian rheology and that related to the order/disorder of
he porous structure. In some cases a disordered porous structure might 
ominate over the non Newtonian non linearity, in such a way that the
irections of the filtration speed and of the macroscopie pre;sure gradi 
t are quasi aligned. 
In the simple case of isotropie geometry of the porous medium,

he modified Darcy's law which is usually adopted in the engineer 
ng community when non Newtonian fluids are being considered reads 
Sadowski, T.J., Bird, R.G. (1965); Christopher, R.H., Middleman, 
. (1965); McKinley, R.M., Jahns, H.O., Harris, W.W., Greenkorn,
.A. (1966); Hirasaki, G.J., Pope, G.A. (1974); Shahsavari, S., McKin

ey, G.H. (2015); Eberhard, U., Seybold, H.J., Floriancic, M, Bertsch, 
., Jiménez Martinez, J., Andrade J.S. Jr., Holzner, M. (2019))

(1) 

ith t the (scalar) Newtonian permeability and Perr an effective vis 

siry. The term on the left hand side of Eq. (1) is the average veloc 
ty through the porous medium, which is forced by the macroscopie 

e;sure gradient f/1p<0l. The crux of the matter is the determination of
he effective viscosity which is usually estimated from the rheological 
aw of the fluid for some effective value of the shear rate. Engineering 

actice usually models porous media as a bundle of capillary tubes, as 
 the approach initiated by Kozeny, J. (1927). When the fluid is non 

ewtonian, equating the flow rate of a Newtonian fluid in a straight 
ipe to that of (say) a power law fluid yields the power law viscosity 
orresponding to the Newtonian viscosity of a fluid which would have 

oduced the same pressure drop along a capillary. Inverting such a 
aw yields an effective shear rate; this is then corrected by the use of 

pirical parameters to account for the non uniformity of the medium 
rosity, the tortuosity of the capillary network, possibly of variable 

oss sectional areas, the clifferent orientations of the capillarie;, etc. 
Sadowski, T.J., Bird, R.G. (1965); Hirasaki, G.J., Pope, G.A. (1974); 
annella, W.J., Huh, C., Seright, R.S. (0000); Berg, S., van Wunnink,
. (2017)). Finally, an effective viscosity is computed from the given
onstitutive law. An alternative approach to estimate Perr for a Carreau 
luid has been recently proposed by Eberhard, U., Seybold, H.J., Flori 
ncic, M., Bertsch, P., Jiménez Martinez, J., Andrade J.S. Jr., Holzner,

 (2019); it is based on a direct solution for the viscosity profile inside
 single capillary of given radius, mimicking an average pore through 
hich the mean speed is simply the ratio between Darcy's velocity and 

he medium porosity. The effective viscosity is then taken to coincide 
ith the volume averaged viscosity, without the need to introduce and 
se an effective shear rate. Eberhard et al. also carried out experiments 
rcing a xanthan gum aqueous solution through a packed of monodis 
rse beads, finding good agreement between measurements and mode! 

esults, thus concluding that their direct effective viscosity mode! is a ro 
ust approach. Experiments with the same shear thinning fluid, of vary 

ng solute concentrations, have also been conducted by Rodriguez de 
astro, A., Radilla, G. (2017). They employed Eq. (1) to evaluate the ef 

ective viscosity for a Carreau fluid, including the case in which inertial 
ffects are present through the pores, and found a good fits of the data 

th both Forchheimer's and Ergun's mode! equations. 
De.pite its simplicity, Eq. (1) is not supported by either a multiscale 

or a volume averaging analysis; also, the equation assumes that the 
ectors (û<0l) and f!1p<0l are parallel, which has been shown to be not 
ecessarily true in several non Newtonian flow configurations Odris, Z., 
rgéas, L, Geindreau, C., Bloch, J. F., Auriault, J. L. (2004); Orgéas, L, 

dris, Z., Geindreau, C., Bloch, J. F., Auriault, J. L (2006); Wang, X. H.,
ia, J. T., Liu, Z. F., Jin, L. D. (2014)). We have thus decided to take 
 new look at the problem, fully accounting for the coupling between 
icroscopie and macroscopie variables. By using homogenization the 

ry, we will demonstrate that, in the limit of creeping flow through the 
res, a Darcy like equation rules the macroscopie behavior of a non 

ewtonian fluid in a porous medium, with an effective permeability 
ensor which is function of the microscopie motion. A detailed paramet 
ie study will highlight how the components of the effective permeabil 
ty and the tensor anisotropy are modified for the case of a Carreau, 
hear thinning fluid in a simple geometrical configuration, in response 
o variations of the medium porosity, of rheologieal and flow parame 
ers. 
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. Formulation of the problem at the pore scale

The equations describing the motion of an incompressible, shear 
hinning fluid which saturates the interstices of a porous material read:( 

𝜕 ̂𝐮 
𝜕 ̂𝑡 

+ ̂𝐮 ⋅ ∇̂ ̂𝐮
) 

= − ̂∇ ̂𝑝 + �̂� ⋅ [2 ̂𝜇( ̂�̇�) ̂𝐷 ( ̂𝐮 )] , �̂� ⋅ �̂� = 0 , (2)

ith �̂� and �̂� the dimensional velocity vector and pressure, function in
rinciple of spatial, ̂𝐱 , and temporal, ̂𝑡 , coordinates. Body forces are taken
o be conservative and are absorbed into the pressure gradient term.
he hat over a variable’s name is used to indicate that the variable is
imensional. The rate of deformation tensor is defined as 

̂
 ( ̂𝐮 ) = 

∇̂ ̂𝐮 + ∇̂ ̂𝐮 𝑇
2 

, (3)

superscript T denoting transpose) and its second invariant is 

̂̇ = 

√ 

2 ̂𝐷 ( ̂𝐮 ) ∶ �̂� ( ̂𝐮 ) , (4)

ith ̂�̇�2 proportional to the local rate of viscous dissipation of the kinetic
nergy. The Carreau model Carreau, 1972 , with the viscosity which de
ends on the second invariant of the rate of strain tensor, is chosen to
epresent the shear thinning behavior of the fluid for the following rea
ons: 

• It is widely used to describe the rheological behaviour of pseudo
plastic materials and several phenomenological data are available
in the literature;

• It has a sound theoretical basis, stemming from the molecular net
work theory developed by Lodge Lodge A.S. (1968) , and has proven
capable of modelling simultaneously simple shear, complex viscos
ity, stress growth and stress relaxation behaviors.

The dynamic viscosity of the Carreau model is

̂ = �̂�∞ +
(
�̂�0 − �̂�∞

)[ 
1 + 

(
�̂� ̂̇𝛾

)2 
] 𝑛 −1

2 
, (5)

ith �̂�∞ and �̂�0 , respectively, the infinite  and the zero shear rate
iscosity coefficients ( ̂𝜇∞ ≪ �̂�0 Bird, R.B., Armstrong, R.C., Hassager,
. (1987) ; Tanner, R.I. (2000) , so that the former can safely be discarded

n later analysis), n is the power law index, representing the degree of
hear thinning, and �̂� is the material relaxation time. The parameters in
he Carreau model are typically 0.2 ≤ n < 1 and  (10 −1 ) < 𝜆 <  (10 2 )
ird, R.B., Armstrong, R.C., Hassager, O. (1987) ( ̂𝜆 is made dimension

ess with characteristic length and velocity scales, 𝓁 and  in the fol
owing). Using Fig. 1 as a reference, when the shear rate is low ( ̂�̇� ≪ �̂�−1 )
he apparent viscosity is equal to �̂�0 ; conversely, it becomes negligible
hen the shear rate is very large. 

At this point the variables are normalized as: 

 = 

�̂� 
 

, 𝐱 = 

�̂� 
𝓁 
, 𝑝 = 

�̂� 𝓁 2 

�̂�0  𝐿 

, 𝑡 = 

𝑡  

𝓁 
. (6)

he speed  is the magnitude of the seepage velocity within the medium
nd the length 𝓁 is a characteristic microscopic dimension (e.g. the size
f the pores or of the solid inclusions); conversely, L is a (large) length
cale of the problem, i.e. the distance across which a macroscopic pres
ure gradient is imposed. It is further assumed that each dependent vari
ble is function of both a microscopic and a macroscopic length scale
the latter defined as 𝐗 = �̂� ∕ 𝐿 ), and can be expanded as a power series
n terms of the small parameter 𝜖 = 𝓁∕ 𝐿 as: 

 = 𝑓 (0) + 𝜖𝑓 (1) + 𝜖2 𝑓 (2) + … , (7)

ith 𝑓 = 𝑓 ( 𝐱, 𝐗 , 𝑡 ) a generic variable. A multiple scale analysis along the
ines of Mei, C.C., Vernescu, B. (2010) leads to finding that, for slow flow
hrough small pores, i.e. when the microscopic Reynolds number, 𝑅𝑒 =
 𝓁∕ ̂𝜇0 , is of order 𝜖 (or smaller), the leading order dimensionless

ystem reduces to 

 𝛁 𝑝 (1) + 𝛁 ⋅ [2 𝜇(0) 𝐷( 𝐮 (0) )] − ∇ 

′𝑝 (0) = 0 , 𝛁 ⋅ 𝐮 (0) = 0 , (8)
ith 

(0) = 𝜇( ̇𝛾 (0) ) =
[
1 + ( 𝜆�̇� (0) ) 2 

] 𝑛 −1
2 . (9)

ystem (8) is the same as that given by Orgéas, L., Geindreau,
., Auriault, J. L., Bloch, J. F. (2007) . The microscopic field ( u 

(0) ,
 

(1) ) is forced by the imposed, macroscopic pressure gradient, ∇ ′ p (0) .
n three dimensional cartesian coordinates the operator ∇ ′ is ∇ 

′ =
 𝜕 ∕ 𝜕 𝑋 , 𝜕 ∕ 𝜕 𝑌 , 𝜕 ∕ 𝜕 𝑍 ) . The pressure at leading order, also called pore pres

ure or mean interstitial pressure , does not depend on microscopic spatial
ariables. The pressure at order one, p (1) , is defined up to an integration
constant ” (which is function of only macroscopic spatial variables). In
 numerical resolution approach such a constant is set by fixing equal
o zero the mean value of p (1) in the fluid domain. The whole domain
oincides with the unit cell Mei, C.C., Vernescu, B. (2010) in most of
he calculations presented in the paper; we assume periodicity of the
ariables on opposing lateral boundaries of the cell and no slip at the
uid solid interface. An example of two dimensional unit cell is pro
ided in Fig. 2 , highlighting the finite element grid used in the compu
ations capable to yield grid resolved results, and displaying the sym
etric isolines of the u (0) and v (0) velocity components, obtained for

 𝜕 𝑝 (0) ∕ 𝜕 𝑋, 𝜕 𝑝 (0) ∕ 𝜕 𝑌 ) = (1 , 0) when the fluid is Newtonian ( 𝑛 = 1 ); the
hysical set up of Fig. 2 has a porosity equal to 𝜃 =  f luid ∕  tot = 0 . 90 ,
ith  f luid the volume occupied by the fluid and  tot the total volume
f the unit cell (fluid plus solid). 

. Adjoint homogenization: Darcy’s equation and the

on-Newtonian permeability

To derive the macroscopic equation ruling the motion of a non
ewtonian fluid in a porous medium formed by periodic repetitions of
nit cells we follow the adjoint homogenization approach outlined by
ottaro, A. (2019) , forming the dot product of system (8) with the test
ector ( u † , p † ), and integrating over the fluid domain. Integrations by
arts are then conducted, employing the periodicity conditions on the
uter boundaries of the domain and the no slip condition on the grain’s
oundary, to identify the adjoint system which holds in the unit cell: 

 𝛁 𝑝 † + 𝛁 ⋅ [2 𝜇(0) 𝐷( 𝐮 †)] = − 𝐆 , 𝛁 ⋅ 𝐮 † = 0 , (10)

ith the vector G defined below. Problem (10) must satisfy conditions
f periodicity for u † and p † on the lateral boundaries of the unit cell,
lus 𝐮 † = 𝟎 on the boundaries of the solid inclusions. For uniqueness of
he adjoint state we also impose the vanishing of the integral of p † over
 𝑓𝑙𝑢𝑖𝑑 . The coupling of direct and dual problems, via the fluid viscosity
(0) evaluated from the leading order velocity, is inevitably due to the
on linearity of the direct system (8) . 

With systems (8) and (10) (and respective boundary conditions)
osed as above, the Lagrange Green identity readily yields: 

 f luid
(
𝐆 ⋅ 𝐮 (0) + 𝐮 † ⋅ ∇ 

′𝑝 (0) 
)
d  = 0 . (11)

e now divide Eq. (11) by the total volume of the unit cell, to obtain 

𝐆 ⋅ 𝐮 (0) ⟩ = − ⟨𝐮 †⟩ ⋅ ∇ 

′𝑝 (0) . (12)

here 

𝑎 ⟩ = 

1
 tot ∫ f luid 𝑎 d  (13)

enotes the phase , or superficial, average of the generic quantity a . For
implicity of notation, we switch to two dimensional cartesian coordi
ates, and set up the two auxiliary problems which follow: 

• Problem 1 Set 𝐆 = (1 , 0) and solve system (10) . Eq. (12) then yields
the horizontal component of the seepage velocity:

⟨𝑢 (0) ⟩ = −  

𝐶 
𝑥𝑥 

𝜕𝑝 (0) 

𝜕𝑋
−  

𝐶 
𝑥𝑦 

𝜕𝑝 (0) 

𝜕𝑌
, (14)

with  

𝐶 
𝑥𝑥 = ⟨𝑢 †(1) ⟩ and  

𝐶 
𝑥𝑦 = ⟨𝑣 †(1) ⟩. Superscript (1) (or (2)) next to

the dagger in the name of the adjoint variables is used to indicate
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the solution of problem 1 (or 2). Eq. (14) defines two components of
the effective permeability tensor 10. 

• Problem 2 Set G = (0, 1) for Eq. (12) to yield the vertical component
of the seepage velocity:

co> - - ...c ap<o> 
- ...c ap<o> 

(v > - A;.vx ax A;YY aY · 
(15)

with the two other permeability components �x = (ut<2>) and �
Y

= 
(vt<2>). 

lt needs to be stressed that the four components of the tensor 10 are 
vailable after solving the linear system (10) twice in the microscopie 
nit cell. The extension to three dimensions is trivial and will not be 
ursued here, the present contribution being limited to illustrating two 
imensional results. 

The dimensionless Darcy's law is thus recovered, and in compact 
form it reads 

(16) 

is equation relates the Darcy's velocity of a pseudo plastic fluid in a 
rous medium to the macroscopie gradient of the pore pressure via a 

arreau permeability tensor, 10, also called the effective mobility tensor

hahsavari, S., McKinley, G.H. (2015), which depends on the direct flow
state through ;,<0>, so that macroscopie and microscopie state variables 
o not decouple. The vector Eq. (16) must be solved together with the 
ass conservation constraint which, by virtue of the spatial averaging 

heorem Mei, C.C., Vernescu, B. (2010), is simply V' · (u<0>) = O. 
In dimensional form, the effective Darcy's Eq. (16) reads: 

û<O>) = _ .J-Kc . �' po>,
l'o 

(17) 

ith � = Kc t'2
• Using the Newtonian (or intrinsie) permeability K, 

q. (17) ta.kes the alternative form 

(fi(O)} = - .J-cJ> .1( . �1 p-O), (18) 
l'o 

ith cJ> = 1(C. 1(-1, whose dimensionless version is simply 

u<0>) = - cJ> · K · V1 p<O). (19) 

q. (18) is the extended version of Eq. (1) in which cJ>/ µ0 plays the
ole of a ftui.dity tensorMcCain Jr., W.D. (1990). The simplest possi 
le form of this tensor is, in principle, cJ> / Po = ,f> 1/ Po (1 being the 
dentity matrix), with the effective viscosity which would thus become 
,rr = Perr/ Po= 1/</! (cf. Eq. (1)). For the isotropie geometry displayed 

n Fig. 2 it is K = .CI, so that cJ> coincides with the Carreau permeability 
p to the multiplicative constant .c-1• However, even for the elemen 
ary isotropie arrangement of solid inclusions under consideration here, 
 does not ta.ke the simple form cJ> = ,t, I (and, likewise, we cannot write 

 = .CC I), so that, aside from limiting cases in which deviations from 
he Newtonian behavior are minimal, it is not formally correct to in 
troduce an effective viscosity and use Darcy's law together with a scalar, 

ewtonian permeability. This conclusion, to be supported shortly by 
umerical results, is a major departure from standard engineering prac 
ce. We also oœerve that Eq. (18) has beenpostulatedrecently by Zami 
ierre, F., de Loubens, Il, Quintard, M., Davit, Y. (2018), and cJ> was 

nterpreted as the product of a rotation tensor, to capture changes in 
he direction of the average velocity with respect to the Newtonian case, 
mes a scalar factor capable to account for variations in velocity mag 
itude because of non Newtonian effects. 

The aim of this paper is to assess and discuss, for the geometry of 
ig. 2, variations of the Carreau permeability with the fluid properties, 
 and n, with the porosity of the medium, B, and with the orientation 
f the macroscopie, forcing pressure gradient. The norm of V'p(O) will, 
om now on, be ta.ken unitary, and the pressure gradient parameterized 
 the angle a e [O', 90'], i.e. 

ap(O) 
ax 

=-cosa, ap(O) 
aY 

= -sma. (20) 

he limiting cases a = 0° and a = 90° correspond to pressure gradient 
long X and Y, respectively, with the fluid being forced from left to right 
n the first case and from bottom to top in the second, with reference to 
he axes in Fig. 2. Results for other macroscopic forcing directions can 
asily be recovered by rotation. 

. Numerical method, validation and sample results

The incompressible two dimensional creeping flow Eq. (8) are solved 
ith a finite element method using the FreeFEM open source code 
echt, F. (2012). The approach is based on a wea.k formulation of the 
uations, which means introducing two regular test functions q and v, 

nd solving the integral 

( (-2µ(;,<0>)Du\Ol. Vv+qV-u(O) +p(J>V-v-V'p(O) ·V) dV =0 (21)
vnu.i 

r the direct variablesp(1l and u<0l, approximated by triangular P1 - P2 

aylor Hood elements Brezzi, F., Falk, Il (1991); Chen, L. (2014). The 
on linearity present in the viscosity law is treated by the use of the 
ewton method, and a few iterations (typically between four and ten) 

re needed to obtain a converged solution for the direct flow state. A 
inlilar approach in wea.k form is also employed for the u<O) dependent 
djoint problem. 

The mesh, ns x n,,, is defined by the number of points ri,, equi 
istributed along each side of the square computational box, and the 
umber of points n,,, equi distributed on the boundary of the circular 
olid inclusion. Numerical results have been obtained with three grids: 
0 x 120, 120 x 180 and 200 x 360. For B = 0.9 these yield, respec 
vely, 10808, 36378 and 111516 triangles. The results obtained with 

he fine mesh (mesh 3) are used as a reference against which to measure 
he results obtained with the coarser grids. In particular, a percentage 

ror sensor on the permeability (whether intrinsie or non Newtonian) 
an be defined, as 

 (.CC)= I
(�). - (A::;)31 

' = (.C
l=l and 2, (22)
;)3 



K.fJK. (b) K.';,,/K. Fig. 3. (a) Intrinsic permeability against porœity for a 
regular arrangement of circulardisks. (b) Components 
of the apparent permeability tensor of a Carreau fluid 
(normalized by X: = 0.0403) foc varying directions of the 
mean pressure gradient (0 = 0.9, n = 0.5, À= 5). 
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Table 1 
Mesh convergence analysis foc Newtonian and Carreau fluid in terms of the 
components of the permeability tensor (in the Carreau case we have selected 
n = 0.5 and À= 5, while in the Newtonian case it is simply n = 1). The ma
truc pocosity is O = 0.9 and the driving pressure gradient is parallel to the 
x-axis (i.e. a= 0°). Foc such a forcing condition it is �, = �. = 0 foc both 
meologies. 

Newronian 
Carreau 

0.0403 
0.0632 

0.0403 0.030% 
0.0543 0.040% 

0.030% 0.010% 
0.040% 0.015% 

0.010% 
0.015% 
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Table 2 
Effective, anisotropie components of the permeabil
ity foc the case of Fig. 4, against the single perme
ability component which arises when introducing 
an effective viscosity. 

0.1034 0.0962 0.0162 
0.5315 
0.4505 

0.0758 
0.0894 
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nd likewise for A::;y· The suhicript 1, 2 or 3 next to the perrneability 
omponent indicates that the component is evaluated on the basis of grid 
, 2 or 3 (1 being the coarsest). Thus, for example, e 1(-C;.) represents 
he percentage clifference between the values of the streamwise perme 
bility component obtained with grids 1 and 3. Representative results 
or both the Newtonian and a Carreau rheology are reported in Table 1 
nd are very reassuring in terms of the accuracy of the numerical proce 
ure; for example, grid 1 yields values of .c;', and .c;'Y which are always 
ithin 0.0400/4 of those obtained with the (very fine) grid 3. Additional 

nformation on the grid convergence of the results is provided in Ap 
endix A. ln the following, ail results reported are obtained using grid
, which perrnits a faster and accurate exploration of parameter space. 

For a Newtonian fluid, the results obtained with grid 1 coincide to
raphical accuracy with those reported previously by  Zampogna, G., 
ottaro, A. (2016), as shown in Fig. 3(a). 

For the same non Newtonian parameters as used in Table 1, it is in 
tructive to study how the effective permeability components change 
ith the variation of the angle a of the forcing pressure gradient. 
hese results are reported in Fig. 3(b) and highlight the symmetry of
he problem; in particular, -C;.(a) = K'.;/90° - a), -C;/a) = -C;/9Cl° - a)
nd -C;y = A::;,· The off diagonal components of the permeability are 
ypically one order of magnitude smaller that the diagonal components, 
ut cannot be neglected. Their maximum values are found when the 
ressure gradient is oriented at 45' with respect to the horizontal (or at 
35'). For these two angles, it is also .c;'. = A::;Y as clearly imposed by 
ymmetry. 

It is also instructive to focus on microscopie results in a non 
ewtonian case, to try and assess how the viscosity varies within the 
nit cell, via its coupling with the strain, and to  evaluate whether an 
ffea:ive viscosity can be introduced. Fig. 4 displays direct microscopie 
olutions computed for a Carreau fluid with n = 0.5 and ..t = 10, with 
he porosity of the regular arrangement of disks maintained at 0 = 0.9,
nd the macroscopic pressure gradient oriented at a= 30° . In Fig. 4(a) 
he focus is on the second invariant of the rate of deformation tensor; 
he image demonstrates the presence of strongly deformed, localized re 
ions of the flow, sitting next to other regions characterized by very low
alues of y<0l. 
This behavior reflects directly onto the distribution of viscosity, 
hown in Fig. 4(b). A large apparent viscosity is present in areas where 
�l is low, and viceversa. From these results it is easy to extract, via 

ntrinsic averaging, the mean viscosity and the mean strain. In particular, 
enoting the intrinsinc averaging operation Whitaker, S. (1986) with 
 · Ywe have:

µ�l)f = _J_ ( µ<O)dV = .!.(µ(O)) = 0.5315, 
Vnuid /vnuid 9 

;,(Oljl = _l _ ( y<O) dV = 0.4825.
Vrluid / Vnuid 

(23) 

(24) 

he latter averaged value can be introduced into the viscosity law 
9) to yield another estimate of the dimensionless effective viscosity, 

eff = 0.4505. Whether one uses 0.4505 (as suggested, for example, by 
hahsavari & McKinley Shahsavari, S., McKinley, G.H. (2015)) or avoids 
oing through the strain rate and uses directly the intrinsic average 
alue 0.5315 (as suggested by Eberhard, U., Seybold, H.J., Florian 
ic, M., Bertsch, P., Jiménez Martinez, J., Andrade J.S. Jr., Holzner, 
. (2019)) the conclusion is the same and is readily apparent through

nspection of the numbers in Table 2. An effective viscosity method is 

ncapable of accounting for anisotropie effects and underestimates the
eability to be used in Eq. (16). This is also clear after evaluating

he eigenvalues of Kc which, in this case, are equal to Àmax = 0.1164 and
min = 0.0832; the anisotropy factor, defined as

(25) 

s appreciably larger than one (o = 1.399) and the mean perrneability, ge 
metric average of the principal perrneabilities, is .Cmean = ..,/ Àmax Àmin = 
.0984, exceeding by 14% the largest value of .C/ µeff in Table 2. 

The components of the effective mobility tensor, A{, in Table 2 are 
btained by phase averaging adjoint "velocities", as defined right after 
qs. (14) and (15). Such microscopie adjoint fields, for the geometry 
nd the fluid being discussed here, are shown in Fig. 5. Whereas the 
wo fields vt (l) and utC2> are the same, aside from a 90' rotation plus 
eflection operation, the two fields which yield the diagonal components 
f 10, after rotation and reflection, still display some differences (and, 
n fact, .c;', is about 7% larger than .c;.) 



(a) (b) 

r: 
- 1 

- o.s 

- 0.6 

r4 
• 0.2 

0

Fig. 4. (a) Second invariant of the rate of strain tensor, yt!l>, and (b) viscosity 
,/..0J. The macrœcopic pressure gradient within the unit œll is inclined at a= 30° 
with respect to the direction of the x-axis. 

-0,01 

-0.02 

-0.03 

(c) (d) 
vf(2) 

0.2 
0.18 

0.16 

0.1'1 

- 0.12 

- 0.1 - o.os 

0.06 
0.04 
0.02 

0 

Fig. 5. Adjoint fields for the microscopie problems defined, respectively, by 
G = (1, 0) (superscript (1)) and G = (0, 1) (superscript (2)) for the same Carreau
fluid as in Fig. 4. 
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. Parametric analysis

The main output of the parametric study is the apparent permeability 
ensor, with its three independent components, J!;x, _c;Y and l!;y; an 
ther interesting output is the anisotropy factor, o, which stems directly
om the mobility tensor. Four input variables are present; one of them,
, is related to the orientation of the macroscopic pressure gradient, an
ther is the porosity 0 of the medium, and the last two, n and À, are
elated to rheological properties of the fluid. The space of parameters 
s thus formidable and here we aim to provide a reasonably complete 
nd accurate synthesis of the results, based on over 3 300 direct adjoint 
umerical simulations.

.1. Trend of the viscosity with carreau parameters 

First, it is instructive to assess how the viscosity changes with the 
eau parameters n and À, since the more the fluid's behavior cliffers 

om Newtonian, the more anisotropie we expect the permeability ten
or to be. We have thus fixed the value of the second invariant of the

rate of strain tensor to a (reasonable) constant value, i.e. y<0l = 0.5 (cf.
ig. 4(a)); a different choice of the value of y<0l does not change the
ualitative trend of µCO) which can be observed in Fig. 6. For small À the
luid acts as Newtonian (in the case being consider the upper threshold
s about À= 1); the behavior of µCO) with n in the limit À;,(0l ..... O is

<O)
"' 1 +!!.=.l.[À y(O)J2+ (n-l)(n-3)[À y(O)J4 (26). 
2 8 
ith the increase of À (above a few units) the typical Ostwald de Waele 
stwald, W. (1929) power law relationship ensues, of the form 

(27) 

ith À
n- 1 the dimensionless flow consistency index. The trends ex

essed by Eqs. (26) and (27) are represented in Fig. 6(a). The variation 
f the viscosity with n is more clearly displayed in frame (b) of the same
gure. When n = 1 the fluid is Newtonian for any À, and µCO) = 1; a mild
eviation from n = 1 yields

<0) "' 1- l ;n ln {I + [À;,C0l]2}. (28) 

As n is reduced further the fluid becomes more shear thinning and 
hen n -> 0 the asymptotic behavior is 

<O)"' { 1 + Ï ln[)+ (ÀyCOl)2] }{) + [ÀyCO)J2 r ½, (29)

ith µ<O) which decreases more rapidly with the increase of ÀyC0l. 
The ohiervations just made reflect onto the components of the Car

eau permability. ln particular, we will verify that the norrnalized corn
nents of the effective mobility tensor, i:.= = �/ JC and i:.YY = _c;/ JC thus, scaled by the intrinsic perrneability JC, evaluated at the same value

f the porosity, 0) tend to 1 in the limit of À going to O or n to 1. We
 further show that the off diagonal, norrnalized perrneability terrn,

xy 
= JC;/ JC, approaches zero in the sarne limits. Finally, when À be

ornes very large, the Carreau viscosity rnodel reverts to the simpler 
wer law equation.

.2. The nonnalizedpenneability 

Because ofthe property �(45° -t.a) = _c;/45° + t.a) (cf. Fig. 3(b))
nly the behavior of the first cornponent of the norrnalized rnobility
ensor will be described, with a ranging frorn 0' to 90'. Values of K:.

YY 
are

rnediately available by symrnetry. To analyze the behavior of i:.= we
rst evaluate it against the relaxation tirne, À (cf. Fig. 7) and then against

he porosity, 0 (cf. Fig. 8). Isotropicity is rnaintained until À remains
low an order one threshold value, function of the other (flow and

heological) parameters. As the tirne constant in the Carreau law exceeds
he threshold, the permeability grows rnonotonically, and the more so 
or increasing porosity, and decreasing power law index and forcing 
ngle. The behavior of the first rnobility coefficient against À (Fig. 7) is
emarkably sirnilar to that of µCO) sketched in Fig. 6(a) (where ;,CO) had 

en set, for sirnplicity, to a constant value), and can be expressed by
he following law:

(30)

ith m andp positive, real numbers. At each fixed n, it is m = p. ln gen
al, the coefficients A, m and p depend non trivially on the parameters 

f the problem and can be identified by regression analysis.
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When looking at the results in a i:.= versus 0 plot, the trends are
lso monotonie and the role of the parameters cliscussed on the basis of 
ig. 7 is confirmed, cf. Fig. 8. In particular, the shape of ail curves is 
ell fit by an expression of the form 

- A
1
0

nl 

 ,,, __ _ 
XX () - 0)1". (31) 

nterestingly, Eq. (31) has the same form of Kozeny equation 
ozeny, J. (1927), aside from the fact that the regression parameters 
', m' and p' depend on the constant in the viscosity law and on the 
irection of the forcing pressure gradient. lt is also found that the expo 
ential increase of K:.xx with n is well correlated by

A"(l-n)P'' 
n i:,xx "' _....;..._,,.,-, ....;..._ 

n 
(32) 

or any À, 0 and a. As before, the regression coefficients in Eq. (32) de 
end non linearly on ail other parameters. We have unfortunately been 
nable to sort out a single equation, i:.xx = /(0, a, À, n), capable to inde 
endently account for the variation of each variable. 

The off diagonal component of the Carreau permeability is symmet 
ie about a= 45° (cf. Fig. 3(b)), which is why in this case the paramet
ie plots cover only the interval of angles from o• to 45'. The results in 
ig. 9 show how K:.xy changes with a upon variation of the other param
ters. The off diagonal component of Kc rises monotonically from zero
t a = 0° to a maximum at a = 45° , reaching non negligible magnitudes 
hen compared to those of the diagonal components. Large values of 

he porosity, 0, and of the time constant, ..!, as well as a low power law
ndex, n, yield increasing i:.xy• just as it occurs for the diagonal compo 
ent i:.xx· Analysis of the plots in Fig. 9 further reveals that as long as a 
oes not exceed about 25', i:.xy depends linearly on a, i.e.

xy "' C(0, n, À) a, (33) 

ith the slope coefficient a non trivial function of the other parameters. 
urthermore, by considering a figure analogous to Fig. 9(b), but with 
 in abscissa and a as a parameter, an accurate power law regression 
ields an expression of the form: 

A..!P 
xy "' 

J ' 

(1 +1J..lq)iii 
(34) 

ith coefficients, A and B, and exponents, p, ij and fil, functions of the
ther parameters; in particular, ij is close to m and p is quasi constant
nd equal to 2 in this situation (n = 0.5, 0 = 0.9). 

The results obtained attest to the strong non linear footprint of Car 
eau's rheology on the fluid flow and on the effective quantities appear 
ng in Darcy's equation. 

.3. The anisotropy factor 

A concise way to sum up the results of the parametric study is al 
owed by focusing on the anisotropy factor. Fig. 10 displays 8 as func 
ion of the dimensionless relaxation time ..!. The immediate observation 
s that the permeability is a scalar quantity (isotropie conditions) at low 
's (as already seen before, when À is less than about 1, Newtonian con 
itions are recovered). The anisotropy factor then rises monotonically 

n some range of ..!, range which stretches with the increase of a and 
he decrease of 0. Conversely, the interval of values of À over which 8 

rows appears to be independent of the power law index, n. After this
egion of growth, the anisotropy factor saturates. Larger values of 8 are 

mverza
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bserved for a= 45°, when the porosity is small and for low n's. ln the 
it of very small n, the viscosity is ruled by Eq. (29) and µCO) tends 

o zero when ..t;,<0> --> +oo. Thus, as ..t increases and n decreases, the per
eability tensor become; more anisotropie and, as anticipated, this is 

ssociated to a reduced value of the fluid's dynamic viscosity. 
Fig. 10 seems to suggest that the anisotropy factor can only grow 
onotonically with ..t, and more so for larger a's, but this is the case
nly when the porosity is large (11 = 0.9 in Fig. l0(b).) An alternative 
anner to observe the system's behavior is displayed in Fig. 11, where 

 is plotted against the porosity. 
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The figure indicates clearly that o does not behave monotonically 
ith 0. ln particular, the system is more anisotropie for 0 in a range 

round O. 7 when a and À are fixed as in frame (a); the maximum value 
f o shifts to lower porosities as the relaxation time À grows (frame b). 
rame (c) of Fig. 11 illustrates the behavior of o with the angle of the 
mposed pressure gradient At low a's (until about 15' for the chosen 
 and n) there is a peak at an intermediate value of porosity; when a

xceeds an angle of about 20' the most anisotropie configurations are 
ound when the porosity tends to its upper limit value (11--> 1), i.e. for 
olid grains of small size. ln other words, when the pores are small the 
argest anisotropy occurs at a= O; when the pores become sufficiently 
arge the maximum o occurs when the angle between the axes and the 
ressure gradient is 45'. This behavior highlights the non trivial influ 
nce of porosity and inclination of the pressure forcing on the strain 
eld and, as a consequence, on the system's anisotropie response. 

.4. Flow angles 

Another aspect linked to the anisotropicity of this system is the angle 
etween the directions of the mean flow velocity vector, (u(O) }, and of
he macroscopie pressure gradient, V'p(O)_ Such an angle is defined in 
ig. 12, as the difference between panda. The deviation angle varies 
ith the parameters of the problem as displayed in Fig. 13. 

Coherently with the indications of the previous section, P - a, hence 
he system's anisotropy, is enhanced by increasing values of À, with a 
aturation observed for À exceeding a value of about 25, and decreasing 
alues of n; not unexpectedly, the behavior with 11 is not monotonie. On 
he positive side, the deviation angle remains always limited to a few 
egrees and this bodes well for the development of simplified models. 

.5. Effects of ftow domain's size and grains' randomnes.s 

The final point which deserves scrutiny is the effect of the domain's 
ize. Until now ail results have concerned the case of a single unit cell. 
owever, the nonlinearity of the direct problem suggests asking (and 

rying to answer) the question: is the single unit cell a sufficient do 
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(c)

10
ain for this analysis? A related question which ensues is the following: 
hen considering dozens of grains what is the effect of spatiaily sta 

ionary, irregularly positioned grains? Is the fluid's nonlinear behavior 
nhanced or damped by a disordered placements of identical disks? ln 
 previous study on ordered and disordered porous media Lasseux, O., 
bbasian Arani, AA., Ahmadi, A. (2011) the same question was ad 
ressed for the case of weak and strong inertial effects, for a Newtonian 

luid. Here the question can be posed when nonlinearities are induced 
y the viscosity law, focussing on the variation of the Darcy's effective 
ermeability coefficients. 

To answer the questions above we start by examining the case of a 
arreau fluid with n = 0.5 and À= 5, for a medium of porosity 11 = 0.9, 
ith a driving pressure gradient inclined by a = 45°. Three clifferent 
oubly periodic RVE's (representative volume elements) are used: 1 x 1, 
 x 2, and 3 x 3, with respectively, one, four and nine regularly arranged 
ircular inclusions within the domain. ln ail cases the same results are 
ound, i.e. � = .c;'Y = 0.0594 and �Y = � = 0.0070. 

Another test concerns the case of a RVE of dimensions 10 x 10, with 
00 identical circular inclusions, arranged in either an orderly or a dis 
rderly fashion. Two different fluids, with the same value of n = 0.5, are
onsidered: one with À = 5 and a second with À = 50, to assess the effect 
f spatial disorder on both the case of weak and strong nonlinearities. 
lso, two values of the porosity 11 are considered, while a is kept fixed 
t the value of zero degrees. The results are summarized in Table 3, and 
ompared to the Newtonian case (for which À = 0). 

The grid employed is less dense in the 10 x 10 cases than in the sin 
le unit cell computations for reasons of available computer memory; 
onetheless, the results permit to draw a few interesting considerations 
or both weakly nonlinear (WNL, À= 5) and strongly nonlinear (SNL, 
= 50) fluids. The first is that, even for a 10 x 10 RVE, the components 
f � coincide with those found by using a single unit cell, in the or 
ered configuration. The possible exception appears to be the SNL case 
f the porous medium with large interstital spaces (0 = 0.9), which dis 
lays a large permeability. In this configuration, however, the difference 
ith respect to the reference 1 x 1 case is less than 1 % for both compo 

ents of the effective permeability; we believe that it should be ascribed 
o the relative inaccuracy in capturing large velocity gradients in the 
nterstices of the medium, and thus the effective viscosity of the direct 
tate. The same 1 % error bar can be expected in the corresponding dis 
rdered case (À= 50, 0 = 0.9). Regardless, it is clear that when the 100 
rains are positioned randomly in the RVE (cf. Fig. 14) channeling of 
luid through less resistive flow paths occurs, resulting in larger values 
f the permeability when the porosity is large. Such an excess is typi 
aily of order 100/4 for both WNL and SNL fluids. Conversely, when the 
orosity is 11 = 0.6, differences with respect to the reference, single cell 
ase are modest. 
8 = 0.9, >. = 10

 

0.3 

20 30 

o(o) 

Fig. 13. Deviation angle P - a in degrees. 
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Table 3 
Effective permeability components (�.�,)foc a single unit cell, and for the case of one hundred, ordered 
or disordered, cells. The off-diagonal components either vanish oc are very small foc a motion with a= O". 
The last two lines of the table provide the grid resolution for the two values of O and for each configuration 
studied. The numbers in parentheses are (n., n,), respectively the number of points along each side of the 
RVE, and the number of points on the boundary of each circular grain. The numbers in italics after the 
round brackets are the numbers of triangles used in each case. 

À 8 Reference (1 x 1) Ordered (10 x 10) Disordered (10 x 10) 

0.9 
0 0.6 

0.9 
5 0.6 

0.9 
50 0.6 

0.9 
0.6 

(0.0403, 0.0403) 
(0.0046, 0.0046) 
(0.0632, 0.0543) 
(0.0055, 0.0046) 
(0.5437, 0.4266) 
(0.0313, 0.0072) 
(240, 120), 66 544 
(240, 120), 54 662

(0.0405, 0.0405) 
(0.0046, 0.0046) 
(0.0636, 0.0546) 
(0.0055, 0.0047) 
(0.5469, 0.4304) 
(0.0314, 0.0072) 
(120, 30), 131 554 
(240, 60), 94 954 

(0.0433, 0.0449) 
(0.0046, 0.0045) 
(0.0720, 0.0624) 
(0.0055, 0.0048) 
(0.6318, 0.4886) 
(0.0303, 0.0166) 
(240, 30), 141 762 
(240, 60), 94 892 

(a.), 0 = 0.9 (b), 0 = 0.6 Fig. 14. Isolines of u(OJ in a random 10 x 10 porous 
medium with O = 0.9 (a) and 0.6 (b), foc a Carreau 
fluid with À= 50 and n = 0.5. The pressure gradient is 
aligned with the horiz.ontal axis in both cases. 
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. Conclusions

Multi scale homogenization has been used to study the creeping flow
f a shear thinning fluid, modelled through the Carreau viscosity law, in 
 porous medium. The leading order approximation of the direct, micro 
copie flow problem is non linear because of the fluid rheology. By em 
loying an "adjoint" approach, initiated by Bottaro Bottaro, A (2019), 
e can easily address such a nonlinearity to find that, also for the case 
f non Newtonian fluids, the macroscopie flow is ruled by Darcy's equa 
on, as postulated by Zami Pierre et al Zami Pierre, F., de Loubens, 
., Quintard, M., Davit, Y. (2018). The important parameter in Darcy's 
uation is the effective permeability tensor, also denoted Carreau mo 

bility or permeability. This is available by phase averaging the fields 
f an auxiliary (adjoint) problem in the unit cell. Because of the de 
ndence of viscosity on the behavior of the fluid a strongly coupled 

olution must be pursued, and this coupling has a direct consequence 
n the anisotropy of the Carreau permeability, even for simple isotropie 

rous microstructures. 
To highlight such an effect, consideration has been limited to the 

case of an elementary, two dimensional porous geometry. Probably the 
main result of the work is that, except in limiting cases where the viscos 
ty is close to Newtonian, the permeability cannot be reduced to a scalar 
uantity (despite the isotropicity of the geometrical configuration exam 
ned), so that the introduction of an effective (scalar) viscosity and the 
se of Eq. (1) leads to errors. 

An extensive parametric analysis has been carried out to assess how 
he components of 10 vary with the rheological parameters À and n, 

with the porosity of the material, 0, and with the direction of the macro 
copie pressure gradient forcing the flow, expre;sed via the angle a. Low 
alues of the power law index n and large value; of the time constant 

À have the effect of significantly increasing the streamwise and trans 
erse permeability components, as compared to their intrinsie counter 
rt. The off diagonal component is also biased in an analogous manner 
nd can grow to comparable magnitude, rendering the system strongly 
nisotropie. Anisotropicity can be asse;sed on the basis of a single scalar 
rameter, the anisotropy factor c5; whereas the variation of this factor 

s monotonie with respect to the two rheological constants, the behavior 
s non trivial when analyzecl with respect to the geometry of the porous 

edium (expressed via 0) and the inclination angle of the pressure gra 
ient, a. This appears to represent an obstacle to the development of 
implified models of the flow of shear thinning fluids in porous media. 
owever, the deviation of the mean flow with respect to the macro 

copie pressure gradient is consistently limited to a few degree; for a 
ide range of parameters, so that approximating it to zero should con 

titute an acceptable approximation. 
Finally, when a large representative volume element is considered, with 

ains positioned randomly within the available space, differences of the 
rder of about 10%, in the values of the apparent permeability compo 
ents occur primarily when the porosity is very large, when comparing 

o the corre;ponding single cell values. For intermediate and low poros 
ty values the disordered arrangement of the solid inclusions seems to 
ield a negligible effect. This issue deserves to be investigated further, 

rticularly for three dimensional configurations. 
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Table A1

Convergence analysis for a Newtonian fluid in a medium of poros- 
ity 𝜃 = 0 . 9 . Left: first component of the tensor  

𝐶 for the three dif- 
ferent grids tested. Right: grid convergence metrics ( ̂𝑝 ≈ 3 . 215 ). 

mesh mesh 100 × 

𝐶 
𝑥𝑥

metric value
index identifier

3 fine 4.02728 GCI 23 0.040%

2 medium 4.02777 GCI 12 0.060%

1 coarse 4.02857 𝐴𝐶 − 1 2 . 4 × 10 −4 
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ppendix A. Numerical convergence 

The grid convergence analysis has been performed with the GCI ap
roach introduced by Roache (1998) , also employed in our previous
ecent study Luminari, N., Airiau, C., Bottaro, A. (2018) . The method is
ased upon a grid refinement error estimator derived from the theory of
eneralized Richardson extrapolation. It measures the ratio between the
omputed value of a quantity over the asymptotic numerical value, thus
ndicating how far the solution is from the asymptotic ( “exact ”) value.
he procedure is simple and provides a method to estimate the order of
he spatial convergence, based on two or three different grid sizes. Four
teps must be followed, outlined below. 

1. Estimate the order of convergence of the procedure, defined as

�̂� = 

ln 
𝑓 3 − 𝑓 2
𝑓 2 − 𝑓 1 
ln 𝑟 , where r is the grid refinement ratio between each

grid (it is computed as the ratio between the number of elements
of two consecutive grids; the approach imposes that r should re
main quasi constant between any couple of consecutive grids and
be larger than 1.1). For the present study the quantity f i is given
by the  

𝐶 
𝑥𝑥 component; the subscripts are: 𝑖 = 1 for the coarse

grid, 𝑖 = 2 for the medium grid, and 𝑖 = 3 for the fine grid. The
number of elements of each one of these grids is given in section
4. 

2. Compute the relative error between grid i and j : |𝜖|𝑖𝑗 = 

𝑓 𝑗 − 𝑓 𝑖

𝑓 𝑖 
,

for ( i, j ) ∈ {(1, 2), (2, 3)}. 

3. Compute 𝐺𝐶𝐼 𝑖𝑗 = 

𝐹 𝑠 |𝜖|𝑖𝑗 
𝑟 ̂𝑝 − 1 

, with F s a factor which can be taken

equal to 1.25 when three grids are used, according to Roache’s
prescription Roache (1998) . 

4. Check whether each grid level yields a solution that is in the
asymptotic range of convergence; this means that the coefficient

𝐴𝐶 = 

𝐺𝐶𝐼 23 
𝐺𝐶𝐼 12 

1 
𝑟 ̂𝑝 

should be as close as possible to one. 

The results for the case of a Newtonian fluid are reported in Table A1 .
t is clear that the coarser mesh, employed throughout this paper for
he unit cell case, is more than adequate for our purposes. The same
onvergence analysis conducted for the case of Carreau fluids, varying
he model parameters, yields the same conclusion on the adequacy of
he grid employed. 

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.advwatres.2020.103658 . 
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