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Pseudo-plastic fluids exhibit a non-Jinear stress-strain relationship which can provoke large, localized viscosity gradients. For the fl ow of such fl uids in porous media the consequence is a strong varia b ility of the effective permeability with poroeity, angle of the macroscopic pressure gradien t, and meological parameters of the fluid. Such a variability is investigated on the basis of ad j oint homogenization theory for a Carreau fluid in an idealized porous medium geometty, highlighting differences with respect to the Newtonian case. It is shown in particular that the more we de part from Newtonian conditions, the more the (often used) hypothesis of an effective viscosity in Darc y' s law is a poor approximation, for the effective permeability tensor becomes strongly anisotropie.

Introduction

Fluids whose apparent viscosity

decrease; under shear strain are very comrnon, and are often found in polymer and foam solutions; also corn plex fluids and suspensions like ketchup, paints and blood exhibit such a property which goes by the name of shear thinning or pseudo plasticity. The oldest model used to describe the rheological properties of pseudo plastic fluids is the empirical power law equation (Ostwald, W. (1925, 1929)) which relates the shear stress to the shear rate elevated to a certain power, say n, with n < 1, via a coefficient called the flow con sistency index. For n = 1 the Newtonian behavior is recovered. The sim ple power law behavior yields infinite effective viscosi ty as the applied stress vanishes, and this can cause numerical clifficulties in applications, which is why more elaborate models have later been proposed, such as the Carreau, Carreau Y asuda, Cross or Powell Eyring models (Bird, R.B., Armstrong, R.C., Hassager, O. (1987); Tanner, R.I. (2000)). Ail of these models are reasonably simple to implement (for example in a numerical code), requiring no more than three empirical constants; they all yield rather good results, provided the fitting parameters are well chosen, as shown in Fig. 1 for a repre;entative engine oil in solution with viscosity index improver polymers (Marx, N., Fernândez, L, Barcel6, F., Spikes, H. (2018). Several applications require knowledge of the behavior of pseudo plastic fluids within permeable media. For example, enhanced oil recov ery processes in naturally fractured petroleum reservoirs can use poly mer solutions in water flooding to increase the amount of recovered oil (Green, D.W., Willhite, G.P. (2018)). Another application uses foam,

that simple microscopie (also called auxiliary) problems capable to yield, upon averaging, an effective permeability tensor for a (macro scopie) Darcy or Darcy like relation are not available, even when inertia is negligible Odris, Z., Orgéas, L., Geindreau, C., Bloch, J. F., Auriault, J. L (2004); Orgéas, L., Idris, Z., Geindreau, C., Bloch, J. F., Auriault, J. L (2006); Orgéas, L, Geindreau, C., Auriault, J. L, Bloch, J. F. ( 2007)). For this reason, Gotz, T., Parhusip, H.A. (2005) opted to expand the Carreau law in terms of the time constant À (see later Eq. ( 5)), assumed small, obtaining a hierarchy of Newtonian like auxiliary problems, capa ble to successively approximate the zero shear rate solution (for which µ=A,= constant) With the expansion performed, the solutions decou pie and good agreement was found for some selected geometrie; be tween the fields computed by direct numerical calculations and those obtained by the asymptotic expansion. We will show later that the limit of small À yields results which differ very little from the Newtonian case.

One of the alternative upscaling techniques to obtain macro scopie laws is the so called volume averaging approach, pioneered by Whitaker, S. (1986); Quintard, M., [START_REF] Whitaker | Transport in ordered and disordered porous media: volume-averaged equations, closure problems, and comparison with experiment[END_REF]Whitaker, S. ( , 1994aWhitaker, S. ( , 1994b)), and applicable to both organized and disordered porous skeletons. For the case of power law fluids a generalized Darcy's law is available (cf.

Wang, X. H.,Jia, J. T., Llu, Z. F.,Jin, L D. ( 2014)), withan effective ten sorial permeability which can be found from the solution of a problem in a representative elementary volume only once the direction of the av erage filtration velocity (which, in general, doe; not coincide with that of the imposed pressure gradient) is prescribed. This is an indication of the strong microscopie macroscopie coupling; numerical results demon strate that the components of the effective permeability tensor depend significantly on such a pre assigned direction. Direct calculations of the pore scale creeping flow mode! for a power law fluid through macro scopie porous media (Zami Pierre, F., de Loubens, R., Quintard, M., Davit, Y. (2016, 2018)) show thata competition exists between the effect of the non Newtonian rheology and that related to the order/disorder of the porous structure. In some cases a disordered porous structure might dominate over the non Newtonian non linearity, in such a way that the directions of the filtration speed and of the macroscopie pre;sure gradi ent are quasi aligned.

In the simple case of isotropie geometry of the porous medium, the modified Darcy's law which is usually adopted in the engineer ing community when non Newtonian fluids are being considered reads De.pite its simplicity, Eq. ( 1) is not supported by either a multiscale nor a volume averaging analysis; also, the equation assumes that the vectors (û< 0 l) and f! 1 p< 0 l are parallel, which has been shown to be not necessarily true in several non Newtonian flow configurations Odris, Z., Orgéas, L, Geindreau, C., Bloch, J. F., Auriault, J. L. (2004); Orgéas, L, Idris, Z., Geindreau, C., Bloch, J. F., Auriault, J. L (2006); Wang, X. H., Jia, J. T., Liu, Z. F., Jin, L. D. ( 2014)). We have thus decided to take a new look at the problem, fully accounting for the coupling between microscopie and macroscopie variables. By using homogenization the ory, we will demonstrate that, in the limit of creeping flow through the pores, a Darcy like equation rules the macroscopie behavior of a non Newtonian fluid in a porous medium, with an effective permeability tensor which is function of the microscopie motion. A detailed paramet rie study will highlight how the components of the effective permeabil ity and the tensor anisotropy are modified for the case of a Carreau, shear thinning fluid in a simple geometrical configuration, in response to variations of the medium porosity, of rheologieal and flow parame ters.

Formulation of the problem at the pore scale

The equations describing the motion of an incompressible, shear thinning fluid which saturates the interstices of a porous material read:

𝜌 ( 𝜕 û 𝜕 t + û ⋅ ∇ û) = -∇ p + ∇ ⋅ [2 μ( ̂̇𝛾) D ( û )] , ∇ ⋅ û = 0 , (2)
with û and p the dimensional velocity vector and pressure, function in principle of spatial, x , and temporal, t , coordinates. Body forces are taken to be conservative and are absorbed into the pressure gradient term.

The hat over a variable's name is used to indicate that the variable is dimensional. The rate of deformation tensor is defined as

D ( û ) = ∇ û + ∇ û 𝑇 2 , ( 3 
)
(superscript T denoting transpose) and its second invariant is

̂̇𝛾 = √ 2 D ( û ) ∶ D ( û ) , ( 4 
)
with ̂̇𝛾 2 proportional to the local rate of viscous dissipation of the kinetic energy. The Carreau model [START_REF] Carreau | Rheological equations from molecular network theories[END_REF] , with the viscosity which de pends on the second invariant of the rate of strain tensor, is chosen to represent the shear thinning behavior of the fluid for the following rea sons:

• It is widely used to describe the rheological behaviour of pseudo plastic materials and several phenomenological data are available in the literature; • It has a sound theoretical basis, stemming from the molecular net work theory developed by [START_REF] Lodge | Constitutive equations from molecular network theories for polymer solutions[END_REF] , and has proven capable of modelling simultaneously simple shear, complex viscos ity, stress growth and stress relaxation behaviors.

The dynamic viscosity of the Carreau model is

μ = μ∞ + ( μ0 -μ∞ ) [ 1 + ( λ γ) 2 ] 𝑛 -1 2 , ( 5 
)
with μ∞ and μ0 , respectively, the infinite and the zero shear rate viscosity coefficients ( μ∞ ≪ μ0 Bird, R.B., Armstrong, R.C., [START_REF] Birdr | Dynamics of polymeric liquids[END_REF] ; Tanner, R.I. (2000) , so that the former can safely be discarded in later analysis), n is the power law index, representing the degree of shear thinning, and λ is the material relaxation time. The parameters in the Carreau model are typically 0.2 ≤ n < 1 and  (10 -1 ) < 𝜆 <  (10 2 ) Bird, R.B., Armstrong, R.C., Hassager, O. (1987) ( λ is made dimension less with characteristic length and velocity scales, 𝓁 and  in the fol lowing). Using Fig. 1 as a reference, when the shear rate is low ( ̂̇𝛾 ≪ λ-1 ) the apparent viscosity is equal to μ0 ; conversely, it becomes negligible when the shear rate is very large. At this point the variables are normalized as:

𝐮 = û  , 𝐱 = x 𝓁 , 𝑝 = p 𝓁 2 μ0  𝐿 , 𝑡 = t  𝓁 . ( 6 
)
The speed  is the magnitude of the seepage velocity within the medium and the length 𝓁 is a characteristic microscopic dimension (e.g. the size of the pores or of the solid inclusions); conversely, L is a (large) length scale of the problem, i.e. the distance across which a macroscopic pres sure gradient is imposed. It is further assumed that each dependent vari able is function of both a microscopic and a macroscopic length scale (the latter defined as 𝐗 = x ∕ 𝐿 ), and can be expanded as a power series in terms of the small parameter 𝜖 = 𝓁∕ 𝐿 as:

𝑓 = 𝑓 (0) + 𝜖𝑓 (1) + 𝜖 2 𝑓 (2) + … , ( 7 
)
with 𝑓 = 𝑓 ( 𝐱, 𝐗 , 𝑡 ) a generic variable. A multiple scale analysis along the lines of Mei, C.C., Vernescu, B. (2010) leads to finding that, for slow flow through small pores, i.e. when the microscopic Reynolds number, 𝑅𝑒 = 𝜌  𝓁∕ μ0 , is of order 𝜖 (or smaller), the leading order dimensionless system reduces to

-𝛁 𝑝 (1) + 𝛁 ⋅ [2 𝜇 (0) 𝐷( 𝐮 (0) )] -∇ ′ 𝑝 (0) = 0 , 𝛁 ⋅ 𝐮 (0) = 0 , ( 8 
)
with

𝜇 (0) = 𝜇( ̇𝛾(0) ) = [ 1 + ( 𝜆 γ(0) ) 2 ] 𝑛 -1 2 . (9)
System ( 8) is the same as that given by Orgéas, L., Geindreau, C., Auriault, J. L., Bloch, J. F. (2007) . The microscopic field ( u (0) , p (1) ) is forced by the imposed, macroscopic pressure gradient, ∇ ′ p (0) . In three dimensional cartesian coordinates the operator ∇ ′ is ∇ ′ = ( 𝜕 ∕ 𝜕 𝑋 , 𝜕 ∕ 𝜕 𝑌 , 𝜕 ∕ 𝜕 𝑍 ) . The pressure at leading order, also called pore pres sure or mean interstitial pressure , does not depend on microscopic spatial variables. The pressure at order one, p (1) , is defined up to an integration "constant " (which is function of only macroscopic spatial variables). In a numerical resolution approach such a constant is set by fixing equal to zero the mean value of p (1) in the fluid domain. The whole domain coincides with the unit cell Mei, C.C., [START_REF] Meic | Homogenization methods for multiscale mechanics[END_REF] in most of the calculations presented in the paper; we assume periodicity of the variables on opposing lateral boundaries of the cell and no slip at the fluid solid interface. An example of two dimensional unit cell is pro vided in Fig. 2 , highlighting the finite element grid used in the compu tations capable to yield grid resolved results, and displaying the sym metric isolines of the u (0) and v (0) velocity components, obtained for ( 𝜕 𝑝 (0) ∕ 𝜕 𝑋, 𝜕 𝑝 (0) ∕ 𝜕 𝑌 ) = (1 , 0) when the fluid is Newtonian ( 𝑛 = 1 ); the physical set up of Fig. 2 has a porosity equal to 𝜃 =  f luid ∕  tot = 0 . 90 , with  f luid the volume occupied by the fluid and  tot the total volume of the unit cell (fluid plus solid).

Adjoint homogenization: Darcy's equation and the non-Newtonian permeability

To derive the macroscopic equation ruling the motion of a non Newtonian fluid in a porous medium formed by periodic repetitions of unit cells we follow the adjoint homogenization approach outlined by Bottaro, A. ( 2019) , forming the dot product of system (8) with the test vector ( u † , p † ), and integrating over the fluid domain. Integrations by parts are then conducted, employing the periodicity conditions on the outer boundaries of the domain and the no slip condition on the grain's boundary, to identify the adjoint system which holds in the unit cell:

-𝛁 𝑝 † + 𝛁 ⋅ [2 𝜇 (0) 𝐷( 𝐮 † )] = -𝐆 , 𝛁 ⋅ 𝐮 † = 0 , ( 10 
)
with the vector G defined below. Problem (10) must satisfy conditions of periodicity for u † and p † on the lateral boundaries of the unit cell, plus 𝐮 † = 𝟎 on the boundaries of the solid inclusions. For uniqueness of the adjoint state we also impose the vanishing of the integral of p † over  𝑓 𝑙𝑢𝑖𝑑 . The coupling of direct and dual problems, via the fluid viscosity 𝜇 (0) evaluated from the leading order velocity, is inevitably due to the non linearity of the direct system (8) .

With systems ( 8) and (10) (and respective boundary conditions) posed as above, the Lagrange Green identity readily yields:

∫  f luid ( 𝐆 ⋅ 𝐮 (0) + 𝐮 † ⋅ ∇ ′ 𝑝 (0) ) d  = 0 . ( 11 
)
We now divide Eq. ( 11) by the total volume of the unit cell, to obtain

⟨𝐆 ⋅ 𝐮 (0) ⟩ = -⟨𝐮 † ⟩ ⋅ ∇ ′ 𝑝 (0) . ( 12 
)
where

⟨𝑎 ⟩ = 1  tot ∫  f luid 𝑎 d  (13)
denotes the phase , or superficial, average of the generic quantity a . For simplicity of notation, we switch to two dimensional cartesian coordi nates, and set up the two auxiliary problems which follow:

• Problem 1 Set 𝐆 = (1 , 0) and solve system (10) . Eq. ( 12) then yields the horizontal component of the seepage velocity: In dimensional form, the effective Darcy's Eq. ( 16) reads:

⟨𝑢 (0) ⟩ = - 𝐶 𝑥𝑥 𝜕𝑝 (0) 𝜕𝑋 - 𝐶 𝑥𝑦 𝜕𝑝 (0) 𝜕𝑌 , ( 14 
)
with  𝐶 𝑥𝑥 = ⟨𝑢 †(1) ⟩ and  𝐶 𝑥𝑦 = ⟨𝑣 †(1) ⟩. Superscript (1) (or ( 2 
( û< O>) = _ .J-K c . � ' p o >, l'o (17) 
with � = K c t' 2 • Using the Newtonian (or intrinsie) permeability K , Eq. ( 17) ta.kes the alternative form

(fi(O)} = -.J-cJ> .1( . �1 p-O), (18) l'o with cJ> = 1(C. 1(-1 , whose dimensionless version is simply (u <0> ) = -cJ> • K • V 1 p<O). ( 19 
)
Eq. ( 18 3(a).

For the same non Newtonian parameters as used in Table 1, it is in structive to study how the effective permeability components change with the variation of the angle a of the forcing pressure gradient. These results are reported in Fig. 3 

It is also instructive to focus on microscopie results in a non

Newtonian case, to try and assess how the viscosity varies within the unit cell, via its coupling with the strain, and to evaluate whether an effea:ive viscosity can be introduced. 2019)) the conclusion is the same and is readily apparent through inspection of the numbers in Table 2. An effective viscosity method is incapable of accounting for anisotropie effects and underestimates the perrneability to be used in Eq. ( 16). This is also clear after evaluating the eigenvalues of K c wh ich, in this case, are equal to À max = 0.1164 and À min = 0.0832; the anisotropy factor, defined as ( 25)

is appreciably larger than one (o = 1.399) and the mean perrneability, ge ometric average of the principal perrneabilities, is .C mean = ..,/ À max À min = 0.0984, exceeding by 14% the largest value of .C/ µeff in Table 2.

The components of the effective mobility tensor, A{, in Table 2 are obtained by phase averaging adjoint "velocities", as defined right after Eqs. ( 14) and (15). Such microscopie adjoint fields, for the geometry and the fluid being discussed here, are shown in Fig. 5. Whereas the two fields v t (l) and u t C2> are the same, aside from a 90' rotation plus reflection operation, the two fields which yield the diagonal components of 1 0 , after rotation and reflection, still display some differences (and, in fact, .c;', is about 7% larger than .c;.) 

Parametric analysis

The main output of the parametric study is the apparent permeability tensor, with its three independent components, J!;x, _c; Y and l!;y; an other interesting output is the anisotropy factor, o, which stems directly from the mobility tensor. Four input variables are present; one of them, a, is related to the orientation of the macroscopic pressure gradient, an other is the porosity 0 of the medium, and the last two, n and À, are related to rheological properties of the fluid. The space of parameters is thus formidable and here we aim to provide a reasonably complete and accurate synthesis of the results, based on over 3 300 direct adjoint numerical simulations.

Trend of the viscosity with carreau parameters

First, it is instructive to assess how the viscosity changes with the Carreau parameters n and À, since the more the fluid's behavior cliffers from Newtonian, the more anisotropie we expect the permeability ten sor to be. We have thus fixed the value of the second invariant of the rate of strain tensor to a (reasonable) constant value, i.e. y< 0 l = 0.5 (cf. The ohiervations just made reflect onto the components of the Car reau permability. ln particular, we will verify that the norrnalized corn ponents of the effective mobility tensor, i:.= = �/ JC and i:. YY = _c; / JC (thus, scaled by the intrinsic perrneability JC, evaluated at the same value of the porosity, 0) tend to 1 in the limit of À going to O or n to 1. We will further show that the off diagonal, norrnalize perrneability terrn, K:. xy = JC;/ JC, approaches zero in the sarne limits. Finally, when À be cornes very large, the Carreau viscosity rnodel reverts to the simpler power law equation.

The nonnalizedpenneability

Because ofthe property �(45 ° -t.a) = _c;/45 ° + t.a) (cf. Fig. 3(b)) only the behavior of the first cornponent of the norrnalized rnobility tensor will be described, with a ranging frorn 0' to 90'. Values of K:. YY are irnrnediately available by symrnetry. To analyze the behavior of i:.= we first evaluate it against the relaxation tirne, À (cf. Fig. 7) and then against the porosity, 0 (cf. Fig. 8). Isotropicity is rnaintained until À remains below an order one threshold value, function of the other (flow and rheological) parameters. As the tirne constant in the Carreau law exceeds the threshold, the permeability grows rnonotonically, and the more so for increasing porosity, and decreasing power law index and forcing angle. The behavior of the first rnobility coefficient against À (Fig. 7) is remarkably sirnilar to that of µCO) sketched in Fig. 6(a (1 +1J..lq)iii

with coefficients, A and B, and exponents, p, ij and fil, functions of the other parameters; in particular, ij is close to m and p is quasi constant and equal to 2 in this situation (n = 0.5, 0 = 0.9). The results obtained attest to the strong non linear footprint of Car reau's rheology on the fluid flow and on the effective quantities appear ing in Darcy's equation.

The anisotro p y factor

A concise way to sum up the results of the parametric study is al lowed by focusing on the anisotropy factor. Fig. 10 displays 8 as func tion of the dimensionless relaxation time ..!. The immediate observation is that the permeability is a scalar quantity (isotropie conditions) at low ..l's (as already seen before, when À is less than about 1, Newtonian con <lition s are recovered). The anisotropy factor then rises monotonically in some range of ..!, range wh ich stretches with the increase of a and the decrease of 0. Conversely, the interval of values of À over wh ich 8 grows appears to be independent of the power law index, n. 

Flow angles

Another aspect linked to the anisotropicity of this system is the angle between the directions of the mean flow velocity vector, (u (O) }, and of the macroscopie pressure gradient, V'p(O)_ Such an angle is defined in Fig. 12, as the difference between panda. The deviation angle varies with the parameters of the problem as displayed in Fig. 13.

Coherently with the indications of the previous section, Pa, hence the system's anisotropy, is enhanced by increasing values of À, with a saturation observed for À exceeding a value of about 25, and decreasing values of n; not unexpectedly, the behavior with 11 is not monotonie. On the positive side, the deviation angle remains always limited to a few degrees and this bodes well for the development of simplified models. 3, and compared to the Newtonian case (for which À = 0). The grid employed is less dense in the 10 x 10 cases than in the sin gle unit cell computations for reasons of available computer memory; nonetheless, the results permit to draw a few interesting considerations for both weakly nonlinear (WNL, À= 5) and strongly nonlinear (SNL, À= 50) fluids. The first is that, even for a 10 x 10 RVE, the components of � coincide with those found by using a single unit cell, in the or dered configuration. The possible exception appears to be the SNL case of the porous medium with large interstital spaces (0 = 0.9), which dis plays a large permeability. In this configuration, however, the difference with respect to the reference 1 x 1 case is less than 1 % for both compo nents of the effective permeability; we believe that it should be ascribed to the relative inaccuracy in capturing large velocity gradients in the interstices of the medium, and thus the effective viscosity of the direct state. The same 1 % error bar can be expected in the corresponding dis ordered case (À= 50, 0 = 0.9). Regardless, it is clear that when the 100 grains are positioned randomly in the RVE (cf. Fig. 14 Appendix A. Numerical convergence

Effects of ftow domain

The grid convergence analysis has been performed with the GCI ap proach introduced by Roache (1998) , also employed in our previous recent study Luminari, N., Airiau, C., Bottaro, A. (2018) . The method is based upon a grid refinement error estimator derived from the theory of generalized Richardson extrapolation. It measures the ratio between the computed value of a quantity over the asymptotic numerical value, thus indicating how far the solution is from the asymptotic ( "exact ") value. The procedure is simple and provides a method to estimate the order of the spatial convergence, based on two or three different grid sizes. Four steps must be followed, outlined below.

1. Estimate the order of convergence of the procedure, defined as p = ln 𝑓 3 -𝑓 2 𝑓 2 -𝑓 1 ln 𝑟 , where r is the grid refinement ratio between each grid (it is computed as the ratio between the number of elements of two consecutive grids; the approach imposes that r should re main quasi constant between any couple of consecutive grids and be larger than 1.1). For the present study the quantity f i is given by the  𝐶 𝑥𝑥 component; the subscripts are: 𝑖 = 1 for the coarse grid, 𝑖 = 2 for the medium grid, and 𝑖 = 3 for the fine grid. The number of elements of each one of these grids is given in section 4.

2. Compute the relative error between grid i and j : |𝜖| 𝑖𝑗 = 𝑓 𝑗 -𝑓 𝑖 𝑓 𝑖 , for ( i, j ) ∈ {(1, 2), (2, 3)}.

3. Compute 𝐺𝐶𝐼 𝑖𝑗 = 𝐹 𝑠 |𝜖| 𝑖𝑗 𝑟 p -1 , with F s a factor which can be taken equal to 1.25 when three grids are used, according to Roache's prescription [START_REF] Roache | Verification and validation in computational science and engineering[END_REF] . 4. Check whether each grid level yields a solution that is in the asymptotic range of convergence; this means that the coefficient

𝐴𝐶 = 𝐺𝐶𝐼 23 𝐺𝐶𝐼 12
1 𝑟 p should be as close as possible to one.

The results for the case of a Newtonian fluid are reported in Table A1 . It is clear that the coarser mesh, employed throughout this paper for the unit cell case, is more than adequate for our purposes. The same convergence analysis conducted for the case of Carreau fluids, varying the model parameters, yields the same conclusion on the adequacy of the grid employed.

Fig. 1 .

 1 Fig. 1. Rheogram of a shear-thinning fluid. Experimental points by Marx, N., Fernândez, L, Barcel6, F., Spikes, H. (2018) for the normalized, effective dy namic viscoeity jl (* symbols) are plotted together with the best fits provided by various empirical models. For the case of the power-law model the fit bas been done using only the points with r > 10' [s-1 ]. Notice the Newtonian be havior of the fluid at very high and very low shear rates. For the definition of the axes' labels see later Eq. (5).

(

  with t the (scalar) Newtonian permeability and Perr an effective vis c.osiry. The term on the left hand side of Eq. (1) is the average veloc ity through the porous medium, which is forced by the macroscopie pre;sure gradient f/ 1 p< 0l. The crux of the matter is the determination of the effective viscosity which is usually estimated from the rheological law of the fluid for some effective value of the shear rate. Engineering practice usually models porous media as a bundle of capillary tubes, as by the approach initiated by Kozeny, J. (1927). When the fluid is non Newtonian, equating the flow rate of a Newtonian fluid in a straight pipe to that of (say) a power law fluid yields the power law viscosity corresponding to the Newtonian viscosity of a fluid which would have produced the same pressure drop along a capillary. Inverting such a law yields an effective shear rate; this is then corrected by the use of empirical parameters to account for the non uniformity of the medium porosity, the tortuosity of the capillary network, possibly of variable cross sectional areas, the clifferent orientations of the capillarie;, an effective viscosity is computed from the given constitutive law. An alternative approach to estimate Perr for a Carreau fluid has been recently proposed by Eberhard, U., Seybold, H.J., Flori ancic, M., Bertsch, P., Jiménez Martinez, J., Andrade J.S. Jr., Holzner, M (2019); it is based on a direct solution for the viscosity profile inside a single capillary of given radius, mimicking an average pore through which the mean speed is simply the ratio between Darcy's velocity and the medium porosity. The effective viscosity is then taken to coincide with the volume averaged viscosity, without the need to introduce and use an effective shear rate. Eberhard et al. also carried out experiments forcing a xanthan gum aqueous solution through a packed of monodis perse beads, finding good agreement between measurements and mode! results, thus concluding that their direct effective viscosity mode! is a ro bust approach. Experiments with the same shear thinning fluid, of vary ing solute concentrations, have also been conducted by Rodriguez de Castro, A., Radilla, G. (2017). They employed Eq. (1) to evaluate the ef fective viscosity for a Carreau fluid, including the case in which inertial effects are present through the pores, and found a good fits of the data with both Forchheimer's and Ergun's mode! equations.

  )) next to the dagger in the name of the adjoint variables is used to indicate the solution of problem 1 (or 2). Eq. (14) defines two components of the effective permeability tensor 1 0 . • Problem 2 Set G = (0 , 1) for Eq. (12) to yield the vertical component of the seepage velocity: c o > --...c ap < o> -...c ap <o> ( v > -A;.vx ax A;YY aY • (15) with the two other permeability components �x = (u t<2> ) and � Y = ( v t<2> ). lt needs to be stressed that the four components of the tensor 10 are available after solving the linear system (10) twice in the microscopie unit cell. The extension to three dimensions is trivial and will not be pursued here, the present contribution being limited to illustrating two dimensional the Darcy's velocity of a pseudo plastic fluid in a porous medium to the macroscopie gradient of the pore pressure via a Carreau permeability tensor, 1 0 , also called the effective mobility tensor Shahs avari, S., McKinley, G.H. (2015), which depends on the direct flow state through ;, <0> , so that macroscopie and microscopie state variables do not decouple. The vector Eq. (16) must be solved together with the mass conservation constraint which, by virtue of the spatial averaging theorem Mei, C.C., Vernescu, B. (2010), is simply V' • (u <0> ) = O.

  Fig. 2. Two-dimensional, periodic unit cell with the solid, circular inclusion shown in white color. The image labelled (a) shows the grid used for the computations, composed by 10 808 triangles; New tonian results for F = (1, 0) are displayed in frames (b) and (c), via isolines of, respectively, horizontal (x-aligned) and vertical (y-ali gn ed) velocity com ponents.

  (b) and highlight the symmetry of the problem; in particular, -C;.(a) = K'.;/90 °a), -C;/a) = -C;/9Cl °a) and -C; y = A::;,• The off diagonal components of the permeability are typically one order of magnitude smaller that the diagonal components, but cannot be neglected. Their maximum values are found when the pressure gradient is oriented at 45' with respect to the horizontal (or at 135'). For these two angles, it is also .c;'. = A::;Y as clearly imposed by symmetry.

  Fig. 4 displays direct microscopie solutions computed for a Carreau fluid with n = 0.5 and ..t = 10, with the porosity of the regular arrangement of disks maintained at 0 = 0.9, and the macroscopic pressure gradient oriented at a= 30 °. In Fig. 4(a) the focus is on the second invariant of the rate of deformation tensor; the image demonstrates the presence of strongly deformed, localized re gions of the flow, sitting next to other regions characterized by very low values directly onto the distribution of viscosity, shown in Fig. 4(b). A large apparent viscosity is present in areas where y�l is low, and viceversa. From these results it is easy to extract, via intrinsic averaging, the mean viscosity and the mean strain. In particular, denoting the intrinsinc averaging operation Whitaker, value can be introduced into the viscosity law (9) to yield another estimate of the dimensionless effective viscosity, µe ff = 0.4505. Whether one uses 0.4505 (as suggested, for example, by Shahsavari & McKinley Shahsavari, S., McKinl ey , G.H. (2015)) or avoids going through the strain rate and uses directly the intrinsic average value 0.5315 (as suggested by Eberhard, U., Seybold, H.J., Florian cic, M., Bertsch, P., Jiménez Martinez, J., Andrade J.S. Jr., Holzner, M. (

  Fig. 4. (a) Second invariant of the rate of strain tensor, yt!l>, and (b) viscosity ,/.. 0 J. The macroecopic pressure gradient within the unit oell is inclined at a= 30 ° with respect to the direction of the x-axis.

Fig. 6 .

 6 Fig. 6. Carreau viscosity µ<0J for y< 0 J fixed at O.S. Variation of µ< 0 J versus ,t (a) and versus n (b). Arrows indicate increasing values of the parameters n (in frame a) and À (b).

  ) (where ;,CO) had been set, for sirnplicity, to a constant value), and can be expressed by the following law: (30) with m andp posit ive, real numbers. At each fixed n, it is m = p. ln gen eral, the coefficients A, m and p depend non trivially on the parameters of the problem and can be identified by regression analysis.

Fig. 7 .Fig. 8 .

 78 Fig. 7. Variation of i,. with). In frame (a) 9 and a are loept constant, equal to the values indicated above the fi gure, and the different cutves are pa rameterized by n, with n increasing in the direction of the arrow. In frame (b) the curves are parame terized by 0, with n and a constant, while in frame ( c) the parameter.; kept at a fixed value are 9 and n, with different lines drawn by varying the angle a.

Fig. 9 .

 9 Fig. 9. Parametric variation of i:.,, as function of a (expressed in degrees).

Fig. 11 .

 11 Fig. 11. Variation of anisotropy factor with 8.

Fig. 10 Fig. 12 .

 1012 Fig.10seems to suggest that the anisotropy factor can only grow mo notonically with ..t, and more so for larger a's, but this is the case only when the porosity is large (11 = 0.9 in Fig.l0(b).) An alternative manner to observe the system's behavior is displayed in Fig.11, where r, is plotted against the porosity.

  's size and grains' randomnes.s The final point which deserves scrutiny is the effect of the domain's size. Until now ail results have concerned the case of a single unit cell. However, the nonlinearity of the direct problem suggests asking (and trying to answer) the question: is the single unit cell a sufficient do analysis? A related question which ensues is the following: when considering dozens of grains what is the effect of spatiaily sta tionary, irregularly positioned grains? Is the fluid's nonlinear behavior enhanced or damped by a disordered placements of identical disks? ln a previous study on ordered and disordered porous media Lasseux, O., Abbasian Arani, AA., Ahmadi, A. (2011) the same question was ad dressed for the case of weak and strong inertial effects, for a Newtonian fluid. Here the question can be posed when nonlinearities are induced by the viscosity law, focussing on the variation of the Darcy's effective permeability coefficients. To answer the questions above we start by examining the case of a Carreau fluid with n = 0.5 and À= 5, for a medium of porosity 11 = 0.9, with a driving pressure gradient inclined by a = 45 °. Three clifferent doubly periodic RVE's (r epresentative volume elements) are used: 1 x 1, 2 x 2, and 3 x 3, with respectively, one, four and nine regularly arranged circular inclusions within the domain. ln ail cases the same results are found, i.e. � = .c;'Y = 0.0594 and �Y = � = 0.0070. Another test concerns the case of a RVE of dimensions 10 x 10, with 100 identical circular inclusions, arranged in either an orderly or a dis orderly fashion. Two different fluids, with the same value of n = 0.5, are considered: one with À = 5 and a second with À = 50, to assess the effect of spatial disorder on both the case of weak and strong nonlinearities. Also, two values of the porosity 11 are considered, while a is kept fixed at the value of zero degrees. The results are summarized in Table

Fig. 13 .

 13 Fig. 13. Deviation angle Pa in degrees.

Table A1

 A1 Convergence analysis for a Newtonian fluid in a medium of porosity 𝜃 = 0 . 9 . Left: first component of the tensor  𝐶 for the three different grids tested. Right: grid convergence metrics ( p ≈ 3 . 215 ).

	mesh	mesh	100 ×  𝐶 𝑥𝑥		metric	value
	index	identifier			
	3	fine	4.02728	GCI 23	0.040%
	2	medium	4.02777	GCI 12	0.060%
	1	coarse	4.02857	𝐴𝐶 -1	2 . 4 × 10 -4
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