
HAL Id: hal-03032897
https://hal.science/hal-03032897

Submitted on 1 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Answering the ”why” in answer set programming - A
survey of explanation approaches

Jorge Fandinno, Claudia Schulz

To cite this version:
Jorge Fandinno, Claudia Schulz. Answering the ”why” in answer set programming - A sur-
vey of explanation approaches. Theory and Practice of Logic Programming, 2018, 19, pp.1-90.
�10.1017/S1471068418000534�. �hal-03032897�

https://hal.science/hal-03032897
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: http://oatao.univ-toulouse.fr/24751

To cite this version: Fandinno, Jorge and Schulz, Claudia Answering the
"why" in answer set programming - A survey of explanation approaches.
(2019) Theory and Practice of Logic Programming, 19. 1-90.

Official URL: https:// https://doi.org/10.1017/S1471068418000534

mailto:tech-oatao@listes-diff.inp-toulouse.fr
http://oatao.univ-toulouse.fr/24751
https://doi.org/10.1017/S1471068418000534

Answering the “why” in Answer Set
Programming – A Survey of Explanation

Approaches

JORGE FANDINNO

Institut de Recherche en Informatique de Toulouse (IRIT)

Université de Toulouse, CNRS

E-mail: jorge.fandinno@irit.fr

CLAUDIA SCHULZ

Ubiquitous Knowledge Processing (UKP) Lab
Technische Universität Darmstadt

E-mail: schulz@ukp.informatik.tu-darmstadt.de

Abstract

Artificial Intelligence (AI) approaches to problem-solving and decision-making are becom-
ing more and more complex, leading to a decrease in the understandability of solutions.
The European Union’s new General Data Protection Regulation tries to tackle this prob-
lem by stipulating a “right to explanation” for decisions made by AI systems. One of
the AI paradigms that may be affected by this new regulation is Answer Set Program-
ming (ASP). Thanks to the emergence of efficient solvers, ASP has recently been used
for problem-solving in a variety of domains, including medicine, cryptography, and biol-
ogy. To ensure the successful application of ASP as a problem-solving paradigm in the
future, explanations of ASP solutions are crucial. In this survey, we give an overview of
approaches that provide an answer to the question of why an answer set is a solution to
a given problem, notably off-line justifications, causal graphs, argumentative explanations
and why-not provenance, and highlight their similarities and differences. Moreover, we
review methods explaining why a set of literals is not an answer set or why no solution
exists at all. Under consideration in Theory and Practice of Logic Programming (TPLP)

KEYWORDS: answer set, explanation, justification, debugging

1 Introduction

With the increasing use of Artificial Intelligence methods in applications affecting
all parts of our lives, the need for explainability of such methods is becoming ever
more important. The European Union recently put forward a new General Data

Protection Regulation (GDPR) (Parliament and Council of the European Union

2016), outlining how personal data may be collected, stored, and – most impor-

tantly – processed. The GDPR reflects the current suspicion of the public towards

automatic methods influencing our lives. It states1 that anyone has the right to re-

ject a “decision based solely on automated processing” that “significantly affects”

this person. This new regulation may not come as a surprise since most Artificial

Intelligence methods are ‘black-boxes’, that is, they produce accurate decisions,

but without the means for humans to understand why a decision was computed.

According to Goodman and Flaxman (2016), an implication of the GDPR is that,

in the future, automatically computed decisions will only be acceptable if they are

explainable in a human-understandable manner. The GDPR states that such an

explanation needs to be made of “meaningful information about the logic involved”

in the automatic decision-making and should be communicated to the person con-

cerned in a “concise, intelligible and easily accessible form” (Goodman and Flaxman

2016).

A popular Artificial Intelligengce paradigm for decision-making and problem-

solving is Answer Set Programming (ASP) (Brewka et al. 2011; Lifschitz 2008). It

has proven useful in a variety of application areas, such as biology (Gebser et al.

2011), psychology (Inclezan 2015; Balduccini and Girotto 2010), medicine (Erdem

and Öztok 2015), and music composition (Boenn et al. 2011). ASP is a declarative

programming language used to specify a problem in terms of general inference rules

and constraints, along with concrete information about the application scenario.

For example, Ricca et al. (2012) present the problem of allocating employees of the

large Gioia Tauro seaport into functional teams. To solve this problem, rules and

constraints are formulated concerning, amongst others, team requirements and em-

ployees’ shift constraints, along with factual knowledge about available employees.

The reasoning engine of ASP then infers possible team configurations, or more gen-

erally, solutions to the problem. Such solutions are called stable models or answer

sets (Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991). Since the compu-

tation of answer sets relies on a ‘guess and check’ procedure, the question as to

why an answer set is a solution to the given problem can – intuitively – only be

answered with “because it fulfils the requirements of an answer set”. Clearly, this

explanation does not provide “meaningful information about the logic involved”,

as required by the GDPR.

In ASP, the need for human-understandable explanations as to why an answer set

was computed, was recognised long before the new GDPR was put forward (Brain

and De Vos 2008). Explanation approaches for ASP have thus been developed for

the past twenty years, each focusing on different aspects. Some explain why a literal

is or is not contained in an answer set, using either the dependencies between literals

or the (non-) application of rules as an explanation. Other approaches provide

explanations of the whole logic program, in other words, the explanation is not

specific to one particular answer set. We will here refer to such explanations of

logic programs that have some (potentially unexpected) answer set as justifications.

A different type of explanation is given by debugging approaches for ASP, which

focus on explaining errors in logic programs. Such errors become apparent either if

1 Article 22

an unexpected answer set is computed or if the answer set computation fails, i.e.

if the logic program is inconsistent. Debugging approaches thus aim to answer the

question why an unexpected answer set is computed or why no answer set exists

at all.

In this survey paper, we outline and compare the most prominent justification

approaches for ASP, notably, off-line justifications (Pontelli et al. 2009), LABAS

justifications (Schulz and Toni 2016), causal justifications (Cabalar et al. 2014; Ca-

balar and Fandinno 2016), and why-not provenance (Damásio et al. 2013). Further

related approaches outlined here are the formal theory of justifications (Denecker

and De Schreye 1993; Denecker et al. 2015) and rule-based justifications (Béatrix

et al. 2016). We will see that justifications obtained using these approaches sig-

nificantly differ due to their ideological underpinnings. For example, causal justi-

fications are inspired by causal reasoning, LABAS justifications by argumentative

reasoning, why-not provenance by ideas from databases, and off-line justifications

by Prolog tabled computations (Roychoudhury et al. 2000). These ideological differ-

ences manifest themselves in the construction and layout of justifications, leading

to variations in, for instance, the elements used in a justification (e.g. rules ver-

sus literals) and the treatment of negation (e.g. assuming versus further explaining

negation-as-failure literals).

Besides explanation approaches for consistent logic programs under the answer

set semantics, i.e. justification approaches, we review and discuss approaches for

explaining inconsistent logic programs under the answer set semantics, i.e. debug-

ging approaches, notably, spock (Brain et al. 2007b; Brain et al. 2007a; Gebser

et al. 2008), Ouroboros (Oetsch et al. 2010), the interactive debugging approach

by Shchekotykhin (2015) that is built on top of spock, dwasp (Alviano et al. 2013;

Alviano et al. 2015), and stepping (Oetsch et al. 2018). We will see that these

approaches form three groups, which use different strategies for detecting errors in

a logic program causing the inconsistency. These strategies also lead to different

types of errors being pointed out to the user. spock, Ouroboros and the inter-

active spock approach use a program transformation to report unsatisfied rules,

unsupported atoms, and unfounded atoms. In contrast, dwasp makes use of the

solve-under-assumption and unsatisfiable core features of the wasp solver (Alviano

et al. 2013; Alviano et al. 2015), indicating faulty rules causing the inconsistency.

The stepping approach uses the third strategy, namely a step-wise assignment of

truth values to literals until a contradiction arises, which is then pointed out to the

user.

The paper is structured as follows. We recall some background on logic programs

and their semantics in Section 2. We then review ASP justification approaches

in Section 3 and ASP debugging approaches in Section 4. In Section 5, we give

a brief historical overview of justifications for logic programs and discuss related

work. Finally, Section 6 concludes the paper, pointing out some issues with current

approaches that provide interesting future work for the ASP community.

2 Syntax and Semantics of Logic Programs

In this section, we review the syntax and notation for disjunctive logic programs.

We also review the stable and the well-founded semantics for this class of programs,

which will be the basis for the works presented through the rest of the paper.

We assume the existence of some (possibly empty or infinite) set of atoms At and

an operator not, denoting negation-as-failure (NAF)2. Lit def= At ∪ { not a
∣

∣ a ∈ At }

denotes the set of literals over At. Literals of the form a and not a are respectively

called positive and negative. Given a literal l ∈ Lit, by l , we denote its complement,

that is, l def= not a iff l = a and l def= a iff l = not a. A rule is an expression of the

form

h1 ∨ . . . ∨ hk ← b1 ∧ . . . ∧ bn ∧ not c1 ∧ . . . not cm (1)

where each hi , bi and ci is an atom. Given some rule r of the form of (1), by

head(r) def= {h1, . . . hk}, we denote the set of head atoms of the rule r . Similarly,

by body+(r) def= {b1, . . . bn} and body−(r) def= {c1, . . . ck}, we respectively denote the

positive and negative body of r . For a set of atoms M ⊆ At we denote the negative

literals corresponding to atoms in M by notM def= { not a
∣

∣ a ∈ M }. Furthermore,

by body(r) def= body+(r) ∪ not body−(r), we denote the body literals of r . A rule is

called normal if it satisfies head(r) = {h1} and positive if body−(r) = {} holds. A

positive normal rule is called definite. If body(r) = {}, the rule is called a fact3 and

we usually represent it omitting the symbol ← . We therefore sometimes use the

term ‘fact’ to refer to the literal(s) in a fact’s head. When dealing with normal rules,

we sometimes denote by head(r) the atom h1 instead of the singleton set {h1}. A

rule with head(r) = {} is called constraint.

A (logic) program P is a set of rules of the form of (1). A program is called normal

(resp. positive or definite) iff all its rules are normal (resp. positive or definite).

Given a set of atoms M ⊆ At, we write M def= At\M for the set containing all

atoms not belonging to M . We say that an atom a is true or holds w.r.t. M ⊆ At

when a ∈ M , we say that it is false otherwise. Similarly, we say that a negative

literal not a is true or holds w.r.t.M ⊆ At when a /∈ M and that it is false otherwise.

A rule r ∈ P is applicable w.r.t. M ⊆ At iff body+(r) ⊆ M and body−(r)∩M = {},

that is, when all body literals are true w.r.t. M . A rule r is satisfied by M iff

head(r) ∩M 6= {} whenever r is applicable. M ⊆ At is closed under P iff every

rule r ∈ P is satisfied by M .

Answer set semantics. Intuitively, for an atom a, the literal not a expresses that

a is false by default, i.e. unless it is proven to be true. The following definition of

reduct and answer set (Gelfond and Lifschitz 1988) capture this intuition.4 The

2 sometimes called ‘default negation’ in the literature
3 This includes disjunctive facts of the form h1 ∨ . . . ∨ hk .
4 Gelfond and Lifschitz (1988) define ‘stable models’ rather than answer sets. Later, Gelfond
and Lifschitz (1991) extended this definition to logic programs with explicit negation and with
disjunction in the head, introducing the terms ‘answer set’. Since then, both terms are frequently
used interchangeably. We will here use the term answer set.

reduct of a program P w.r.t. a set of atoms M ⊆ At, in symbols PM , is the result

of applying the following two steps:

1. removing all rules r such that a ∈ M for some a ∈ body−(r),

2. removing all negative literals from the remaining rules.

The result is a positive program PM . Then, a set of atoms M ⊆ At is an answer set

of a program P iff it is a ⊆-minimal closed set under PM . A logic program is called

consistent if it has at least one answer set, and inconsistent otherwise. Intuitively,

a set of atoms is an answer set if all atoms in it are justified by the rules of the

program under the assumption that all negative literals are evaluated w.r.t. this

answer set.

Example 1

Let P1 be the logic program consisting of the following rules:

p ← q ∧ not r

r ← not p

s ← t

t ← s

q

and let M1 be the set of atoms {p, q}. Then, the reduct of P1 w.r.t. M1 is the

program PM1

1 :

p ← q s ← t

t ← s

q

whose ⊆-minimal closed set is precisely {p, q}. Hence, M1 is an answer set of P1.

Intuitively, q is in the answer since it is a fact in the program, while p is in the

answer set due to the rule p ← q∧not r and the fact that q is true and r is assumed

to be false w.r.t. M1. Note that s and t mutually depend on each other, so there

is no reason to believe either of them, and consequently neither is contained in the

answer set. It is easy to check that program P1 has a second answer set {q , r}. �

Well-founded model semantics. We introduce a definition of the well-founded model

semantics for normal logic programs in terms of the least fixpoint of a ΓP oper-

ator (Van Gelder 1989) which is, though equivalent, slightly different from the

original definition by Van Gelder et al. (1988) and Van Gelder et al. (1991). Given

a normal logic program P , let ΓP be the function mapping each set of atoms M to

the ⊆-minimal closed set of the program PM and let Γ2
P be the operator mapping

each set M to ΓP (ΓP (M)). Then, ΓP and Γ2
P are antimonotonic and monotonic,

respectively, and, consequently, the latter has a least and greatest fixpoint, which

we respectively denote by lfp(Γ2
P) and gfp(Γ2

P). We also respectively denote by

WF+
P

def= lfp(Γ2
P) and WF−

P
def= (At\gfp(Γ2

P)) the set of true and false atoms in the

well-founded model of P . The well-founded model of P can then be defined as the

set of literals: WFP
def= WF+

P ∪notWF−
P . The well-founded model is said to be com-

plete iff WF+
P ∪WF−

P = At. We say that an atom a is true w.r.t. the well-founded

model if a ∈WFP , false if not a ∈WFP , and undefined otherwise.

It is easy to see that, by definition, the answer sets of any normal program P

coincide with the fixpoints of ΓP and, thus, every stable model is also a fixpoint

of Γ2
P . Hence, every stable model M satisfies: WF+

P ⊆ M and WF−
P ∩M = {}. In

other words, the well-founded model semantics is more sceptical than the answer set

semantics in the sense that all atoms that are true (resp. false) in the well-founded

model are also true (resp. false) in all answer sets.

Example 2 (Ex. 1 continued)

Continuing with our running example, it is easy to see that P
{}
1 is:

p ← q

r ←

s ← t

t ← s

q

and that its ⊆-minimal model is {p, q , r}. Hence, we have that ΓP1
({}) = {p, q , r}.

In a similar way, it can be checked that Γ2
P1
({}) = Γ4

P1
({}) = {q} is the least

fixpoint of the Γ2
P1

operator. Hence, we have that WFP1
= {q , not s, not t}. As

expected, q is true in all answer sets of P1 while s and t are false in all of them.

Furthermore, p and r are true in one answer set but not in the other and are left

undefined in the well-founded model. Note that it is possible that an atom is true in

all answer sets, but undefined in the well-founded model. For instance, M1 = {p, q}

is the unique answer set of P1 ∪ {u ← r ∧ not u}, but p is still undefined in its

well-founded model. �

Explicit negation. In addition to negation-as-failure, we use the operator ¬ to de-

note explicit negation. For an atom a, ¬a denotes the contrary of a. By ¬S def=

{ ¬a
∣

∣ a ∈ S } we denote the explicitly negated atoms of a set S ⊆ At and, by

Atext
def= At ∪ ¬At we denote the set of extended atoms consisting of atoms and

explicitly negated atoms. By Litext
def= Atext ∪ { not a

∣

∣ a ∈ Atext }, we denote the

set of extended literals over At. As for logic programs without explicit negation,

extended literals ¬a and not¬a are respectively called positive and negative.

An extended rule is an expression of the form (1) where each hi , bi and ci is an

extended atom. An extended (logic) program is a set of extended rules. The notions

of head, body, etc. directly carry over from rules without explicit negation. Note

that we say that a program is positive when it does not contain negation-as-failure,

even if it contains explicit negation.

The definition of answer sets and well-founded model5 are easily transferred to

extended logic programs by replacing M ⊆ At with M ⊆ Atext. If an answer set

(resp. the well-founded model) contains both an atom a and its contrary ¬a, the

answer set is called contradictory (Gelfond and Lifschitz 1991; Gelfond 2008). In

some works (Gelfond and Lifschitz 1991), a contradictory answer set is only an

answer set if the program has no other answer set and is, by definition, Atext.

5 Even though this simply transfer is sufficient for the purpose of this paper, for the well-founded
model semantics the property ensuring that the explicit negation of a formula implies its default
negation is lost. For a detailed study and solution of this problem we refer to the work of Pereira
and Alferes (1992).

Example 3

Let P2 be the logic program consisting of the following rules:

p ← q ∧ not r

r ← not p

¬p

q

and let M2 be the set of extended atoms {¬p, q , r}. Then, the reduct of P2 w.r.t.

M2 is the program PM2

2 :

r ←

¬p

q

whose ⊆-minimal closed set is precisely {¬p, q , r}. Hence, M2 is an answer set of P2.

Note that there is a second answer set {p,¬p, q} which is contradictory. According

to the definition of Gelfond and Lifschitz (1991), M2 is thus the only answer set. �

3 Justifications of Consistent Logic Programs

In this section, we review the most prominent approaches for explaining consistent

logic programs under the answer set semantics. All approaches reviewed here, ex-

cept for the formal theory of justifications (Section 3.5.2), aim to provide concise

structures called justifications that provide a somewhat minimal explanation as to

why a literal in question belongs to an answer set.

We start by introducing off-line (Section 3.1; Pontelli et al. 2009; Pontelli and

Son 2006), LABAS (Section 3.2; Schulz and Toni 2016; Schulz and Toni 2013) and

causal justifications (Section 3.3; Cabalar et al. 2014; Cabalar and Fandinno 2016).

In these three approaches, justifications are represented as different kinds of depen-

dency graphs between literals and/or rules. Next, we review why-not provenance

justifications (Section 3.4; Damásio et al. 2013), which represent justifications as

propositional formulas instead of graph structures. It is interesting to note that

why-not provenance and causal justifications share a multivalued semantic defini-

tion based on a lattice. Finally, we sketch the main idea of rule-based justifications

(Béatrix et al. 2016) and the formal theory of justifications (Denecker and De Schr-

eye 1993; Denecker et al. 2015) in Section 3.5.

3.1 Off-line Justifications

Off-line justifications (Pontelli et al. 2009; Pontelli and Son 2006) are graph struc-

tures that describe the reason for the truth value of an atom with respect to a

given answer set. In particular, each off-line justification describes the derivation of

the truth value (that is, true or false) of an atom using the rules in the program.

Each vertex of such a graph represents an atom and each edge the fact that the

two vertices that it joins are related by some rule in the program, with the edge

pointing from the head of the rule to some atom in its body. Atoms that are true

with respect to a given answer set are labelled ‘+’, whereas atoms that are false

with respect to it are labelled ‘−’ (see condition 3 in Definition 1 below). Similarly,

edges labelled ‘+’ represent positive dependencies while those labelled ‘−’ repre-

sent negative ones. This is reflected in conditions 5a (a true atom is supported by

a true atom through a positive dependency and by a false atom through a negative

dependency) and condition 8 of Definition 1 below (a false atom is supported by a

false atom through a positive dependency and by a true atom through a negative

dependency).

Before we technically describe off-line justifications, we need the following no-

tation: for any set of atoms S ⊆ At, the sets of annotated atoms are defined

as Sp def= { a+
∣

∣ a ∈ S } and Sn def= { a−
∣

∣ a ∈ S }. Furthermore, given

an annotated atom a± (that is, a± = a+ or a± = a−), by atom(a±) = a

we denote the atom associated with a±. Given a set of annotated atoms S , by

atoms(S) def= { atom(a±)
∣

∣ a± ∈ S }, we denote the set of atoms associated with

the annotated atoms in S .

Definition 1 (Off-line Explanation Graph)

Let P be a normal logic program, let M ,U ⊆ At be two sets of atoms, and let

a± ∈ (Atp ∪Atn) be an annotated atom6. An off-line explanation graph of a±

w.r.t. P , M and U is a labelled, directed graph G = 〈V ,E 〉 with a set of ver-

tices V ⊆ (Atp ∪Atn ∪ {assume,⊤,⊥}) and a set of edges E ⊆ (V ×V × {+,−}),

which satisfies the following conditions:

1. a± ∈ V and every b ∈ V is reachable from a±,

2. the only sinks in the graph are: assume, ⊤ and ⊥,

3. atoms(V ∩Atp) ⊆ M and atoms(V ∩Atn) ⊆ (M ∪U),

4. The set of edges E satisfies the following two conditions:

(a) { c
∣

∣ (b+, c−,+) ∈ E } ∪ { c
∣

∣ (b+, c+,−) ∈ E } = {} and

(b) { c
∣

∣ (b−, c+,+) ∈ E } ∪ { c
∣

∣ (b−, c+,−) ∈ E } = {},

5. every b+ ∈ V satisfies that there is a rule r ∈ P with head(r) = b s.t.

(a) body(r) = { c
∣

∣ (b+, c+,+) ∈ E } ∪ { not c
∣

∣ (b+, c−,−) ∈ E }, or

(b) both body(r) = {} and (b+,⊤,+) is the unique edge in E with source b+,

6. every b− ∈ V with b ∈ U satisfies that (b−, assume,−) is the only edge with

source b−,

7. every b− ∈ V with b /∈ U and no rule r ∈ P with head(r) = b satisfies that

(b−,⊥,+) is the only edge with source b−,

8. every b− ∈ V with b /∈ U and some rule r ∈ P with head(r) = b satisfies that

S = { c
∣

∣ (b−, c−,+) ∈ E }∪{ not c
∣

∣ (b−, c+,−) ∈ E } is a minimal set of liter-

als such that every rule r ′ ∈ P with head(r ′) = b satisfies body(r ′) ∩ S 6= {}. �

Intuitively, M represents some answer set and U represents a set of assumptions

with respect to M . These assumptions derive from the inherent ‘guessing’ process

involved in the definition and algorithmic construction of answer sets. In this sense,

6 Off-line justifications were defined without using explicit negation, so we here stick to logic
programs without explicit negation. However, it is easy to see that they can be applied to
extended logic program by replacing At by Atext.

p+ q−

q−

assume assume

−

−

−

Fig. 1: Off-line justifications of p+ and q− w.r.t. M3 = {p} in Example 4. The

assumption is {q}.

the truth value of assumed atoms has no further justification while non-assumed

atoms must be justified by the rules of the program. This is reflected in condition 6

of Definition 1. Note also that this condition ensures that true elements are not

treated as assumptions, which follows from the intuition that any true atom in

an answer set must be justified. Condition 4 ensures that a labelled atom is not

supported by the wrong type of relation.

The following example illustrates how assumptions are used to justify atoms that

are false w.r.t. an answer set in question.

Example 4

Let P3 be the program containing the following two rules:

p ← not q q ← not p

Program P3 has two answer sets, namely M3 = {p} and M4 = {q}. Figure 1 depicts

the off-line explanation graphs justifying the truth of p (annotated atom p+) and

the falsity of q (annotated atom q−) with respect to the program P3, the answer

set M3 and the set of assumptions {q}. Note that the falsity of q is assumed in both

justifications. �

To ensure that the set of assumptions is meaningful with respect to the answer

set being explained, it needs to be restricted. In particular, it will be restricted

to a subset of atoms that are false w.r.t. the answer set and undefined w.r.t. the

well-founded model. As mentioned above, assumptions are restricted to be false

atoms to follow the intuition that any true atom in an answer set must be justified.

Restricting the set of assumptions further to only those that are undefined w.r.t.

the well-founded model ensures that false atoms that are also false w.r.t. to the

well-founded model are justified by the constructive process of the well-founded

model rather than being assumed. The following notation is needed to achieve this

restriction:

Definition 2

Given a normal program P , by NANT(P) def= { b ∈ At
∣

∣ ∃r ∈ P s.t. b ∈ body−(r) },

we denote the set of atoms that occur negated in P . �

Definition 3 (Negative Reduct)

Given a normal program P , by NR(P ,U) def= { r ∈ P
∣

∣ head(r) /∈ U }, we denote

the negative reduct of P w.r.t. some set of atoms U ⊆ At. �

p+

q+

+ +

q+

p+

+ +

Fig. 2: Off-line explanation graphs of p+ and q+ w.r.t. {}, which are not off-line

justifications.

Definition 4 (Assumptions)

Let P be a normal program and M an answer set of P . Let us denote by

TAP(M) def= { a ∈ NANT(P)
∣

∣ a ∈ M and a /∈ (WF+
P ∪WF−

P) }

the tentative assumptions of P w.r.t. M . Then, an assumption w.r.t M is a set of

atoms U ⊆ TAP(M) such that WF+
NR(P,U) = M . The set of all possible assumptions

of P w.r.t. M is denoted by Assumptions(P ,M). �

An interesting observation to make is that TAP(M) is always an element of the

set Assumptions(P ,M) and, therefore, the latter is never empty. Intuitively, an

assumption is a set of atoms that are false w.r.t. the considered answer set and

that, when ‘forced to be false’ in the program, produces a complete well-founded

model that coincides with this answer set. The negative reduct (see Definition 3),

removing all rules whose head belongs to the assumption, can be interpreted as

‘forcing atoms to be false’ since it results in all atoms in the assumption being false

in the well-founded model. Then, since the computation of the well-founded model

is deterministic, no guessing is necessary. Justifications relative to the well-founded

model can thus be used for the explanation w.r.t. an answer set by adding edges

that point out which atoms in the assumption were used to obtain the answer set.

This is formalised as follows:

Definition 5 (Off-line Justification)

Let P be a normal program, M an answer set of P , U ∈ Assumptions(P ,M)

an assumption w.r.t M and P , and a± ∈ (Atp ∪ Atn) an annotated atom. Then,

an off-line justification of a± w.r.t. P , M and U is an off-line explanation graph

w.r.t. P , M and U (Definition 1), which satisfies that for all b ∈ At, (b+, b+) does

not belong to the transitive closure of { (c, e)
∣

∣ (c, e,+) ∈ E }. �

The last condition of Definition 5 ensures that true atoms are not justified through

positive cycles, thus ensuring that justifications of true atoms are rooted in some

rule without positive body, that is, either facts or rules whose body is a conjunction

of negative literals. We may also interpret the latter type of rules as a kind of ‘facts

by default’.

Example 5

Let P4 be the program containing the following two rules:

p ← q q ← p

It has a unique answer set that coincides with its complete well-founded model:

M5 = WF+
P4

= {}. Figure 2 depicts two cyclic off-line explanation graphs of p+

and q+, which, as can be expected, are not off-line justifications since p and q

are false w.r.t. M5 and since positive cycles are allowed in explanation graphs,

but not in off-line justifications. Figure 3 depicts two cyclic off-line justifications

p−

q−

+ +

q−

p−

+ +

Fig. 3: Off-line justifications of p− and q− w.r.t. M5 = {} and assumption {}.

explaining that p and q are false w.r.t. M5 because they positively depend on each

other. Note that cycles between negatively annotated atoms are allowed in off-line

justifications. �

The following example illustrates how off-line justifications are built for a more

complex program that has a complete well-founded model, in which case the unique

assumption is the empty set. Example 4 is continued later, in Example 8, where

it is shown that the off-line explanation graphs in Figure 1 are in fact off-line

justifications. Note that the program discussed in Example 4 has a non-complete

well-founded model and, thus, some atoms will need to be assumed to build the

off-line justifications.

Example 6

Let P5 be the program consisting of the following rules:

p ← q q ← r ∧ s r ← not t s

This program has a unique answer set M6 = {p, q , r , s}, which coincides with

its complete well-founded model. As a result, we have an empty set of tentative

assumptions TAP5
(M6) = {} and the empty set as the only valid assumption, that

is, Assumptions(P5,M6) = {{}}. Figure 4a depicts the unique off-line justification

of p+ w.r.t. program P5 and answer set M6. Intuitively, the edge (t−,⊥,+) points

out that t is false because there is no rule in P5 with t in the head. Then, as a

consequence of the closed world assumption, t is considered to be false. Similarly,

edge (s+,⊤,+) indicates that s is true because it is a fact. Edge (p+, q+,+) (resp.

(r+, t−,−)) indicates that p (resp. r) is true because it positively (resp. negatively)

depends on q (resp. t) which is true (resp. false). Finally, edges (q+, r+,+) and

(q+, s+,+) together point out that q is true because it positively depends on both

r and s, which are true. It is also worth noting that the subgraphs of this off-line

justification rooted in q+, r+ and s+ constitute the off-line justifications of q , r

and s being true w.r.t. P5 and M6. Similarly, the subgraph rooted in t− represents

the off-line justification for the atom t being false. �

In the above example, there is a unique off-line justification for each true or false

atom. The following examples show that several justifications may exist for a given

atom w.r.t. a given answer set.

p+

q+

r+ s+

t−

⊥ ⊤

+

+ +

−

+

+

(a)

p+

q+

r+ s+

t−

⊥

+

+ +

−

+

−

(b)

Fig. 4: Off-line justifications of p+ w.r.t. P6, M6, and assumption {}. Figure 4a is

also an off-line justification w.r.t. P5, M6, and {} (see Examples 6 and 7).

Example 7 (Ex. 6 continued)

Let P6 be the result of adding rule s ← not t to program P5. It is easy to check

that M6 is also the unique answer set of P6 (and {} the unique assumption), but

now there is a second way to justify the truth of s, namely in terms of the falsity

of t . As a result, there are two off-line justification of p+, respectively depicted in

Figures 4a and 4b. �

Example 8 (Ex. 4 continued)

In contrast to P5 and P6, program P3 does not have a complete well-founded model.

In fact, its well-founded model leaves all atoms undefined. Thus, q ∈ NANT(P3)

implies that TAP3
(M3) = {q} which, in turn, implies Assumptions(P3,M3) =

{

{q}
}

. Note that {} is not a valid assumption because the well-founded model

of NR(P , {}) is not complete. Then, since there is no cycle in Figure 1, it follows

that these two off-line explanation graphs are also off-line justifications. Note that

edge (q−, assume,−) captures that atom q is false because of the inherent guessing

involved in the definition of answer sets. �

In Example 5, we already illustrated the difference between off-line explanation

graphs and off-line justifications. The following example shows this difference in a

program without cycles.

Example 9

Let P7 be the program containing the single rule p ← not q . Program P7 has a

complete well-founded model, which consequently coincides with the unique answer

set: M7 = WF+
P7

= {p}. As in Example 4, it easy to see that graphs depicted in

Figure 1 (also depicted in Figure 5a to ease the comparison) are off-line explanation

graphs of p+ and q− with respect to the program P7, the answer set M7 and the

assumption {q}. Moreover, since the well-founded model is complete, there are no

tentative assumptions, that is, TAP7
(M7) = {} and Assumptions(P7,M7) =

{

{}
}

.

p+ q−

q−

assume assume

−

−

−

(a)

p+ q−

q−

⊥ ⊥

−

−

−

(b)

Fig. 5: Off-line justifications of p+ and q− w.r.t. M3 = M7 = {p} in Examples 4

and 9, respectively. Note that the assumption is respectively {q} and {} in subfig-

ures 5a and in 5b.

Therefore, the off-line explanation graphs in Figure 5a are not valid off-line justi-

fications. Figure 5b depicts the off-line justifications of p+ and q− with respect to

program P7, the answer set M7 and the assumption {}. Note that, since there is no

rule with q in the head, the falsity of q can be justified without assumptions. �

By adding the rule q ← not p to program P7 (Example 9) we create an even-

length negative dependency cycle, that is, not only p is dependent on q being false,

but also q is dependent on p being false (note that this is exactly program P3 from

Example 4). This has the effect of replacing the edge (q−,⊥,−) by (q−, assume,−)

in the off-line justifications of p+ and q− (see Figure 5). In other words, rather than

q being false by default, it is now assumed to be false w.r.t. the answer set {p}.

As shown by the following example this change from default to assuming is not

always the case when creating an even-length negative dependency cycle: for some

programs, this may have the effect of introducing additional justifications.

Example 10

Let P8 be the program

p ← not q r ← not p s ← not r

As in Example 9, this program has a complete well-founded model and, thus, a

unique answer set that coincides with the well-founded model:M8 = WF+
P8

= {p, s}.

Then, we have that TAP8
(M8) = {} and Assumptions(P8,M8) =

{

{}
}

. Figure 6a

depicts the unique off-line justification of s+ with respect to program P8, the answer

set M8 and assumption {}. Let now P9 = P8 ∪{q ← not p}. As in Example 4, this

program also has two answer sets, namely M9 = {p, s} and M10 = {q , r}, and an

empty well-founded model WF+
P9

= WF−
P9

= {}. Then, it follows that TAP9
(M9) =

{q , r} and Assumptions(P9,M9) =
{

{q}, {q , r}
}

. Figures 6b and 6c depict the

two off-line justifications of s+ with respect to program P9, M9 and assumptions

{q} and {q , r}, respectively. As opposed to what happens in Example 9, adding the

rule q ← not p, and thus creating an even-length negative dependency cycle, not

only has the effect of replacing the edge (q−,⊥,−) by (q−, assume,−), but it also

produces a second off-line justification in which r− is assumed (Figure 6c). This

difference disappears if we only take into account off-line justifications with respect

to ⊆-minimal assumptions, in which case only Figures 6b would be a justification. �

s+

r−

p+

q−

⊥

−

−

−

−

(a)

s+

r−

p+

q−

assume

−

−

−

−

(b)

s+

r−

assume

−

−

(c)

Fig. 6: Off-line justifications of s+ w.r.t. M8 = M9 = {p, s} and the assumption {}

(Subfigure 6a), {q} (Subfigure 6b), and {q , r} (Subfigure 6c) in Example 10.

r+

p−

q−

⊥

−

+

+

(a)

r+

p−

− −

(b)

Fig. 7: Off-line justifications of r+ w.r.t. M11 = {r} and assumption {} in Exam-

ple 11.

As mentioned above, the last condition of Definition 5 ensures that true atoms are

not justified through positive cycles (those in which all edges are labelled ‘+’). Still,

there exist off-line justifications in which true atoms are justified by (non-positive)

cycles, as illustrated by the following example.

Example 11

Let P10 be the program containing the following two rules:

p ← q ∧ not r r ← not p

This program has a complete well-founded model, which coincides with its unique

answer set WF+
P10

= M11 = {r}. Then, Assumptions(P10,M11) =
{

{}
}

. Figure 7

depicts the two off-line justifications of r+ with respect to program P10, the answer

set M11 and the assumption {}. �

Though at first sight, cyclic justifications (like the one in Figure 7) may seem to

contradict the intuition that the justifications of true atoms must be rooted in a

rule without positive body (facts or rules whose body is a conjunction of negative

literals), we note that the existence of an acyclic off-line justification (Figure 7a) in

Example 11 is not accidental. In fact, for every true atom, there always exists at

least one acyclic justification (Pontelli and Son 2006, Proposition 2).

3.2 LABAS Justifications

LABAS justifications (Schulz and Toni 2016; Schulz and Toni 2013) explain the

truth value of an extended literal with respect to a given answer set of an extended

normal logic program.7 They have been implemented in an online platform called

LABAS Justifier.8 In contrast to off-line justifications, where every rule applica-

tion step used to derive a literal is included in a justification, LABAS justifications

abstract away from intermediate rule applications in the derivation, only pointing

out the literal in question and the facts and negative literals occurring in rules used

in the derivation. In addition, the truth of negative literals not l is not taken for

granted or assumed, but is further explained in terms of the truth value of the

respective positive literal l .

LABAS justifications have an argumentative flavour as they are constructed from

trees of conflicting arguments.9

Definition 6 (Argument)

Given an extended logic program P , an argument for l ∈ Litext is a finite tree,

where every node holds a literal in Litext, such that

• the root node holds l ;

• for every node N

— if N is a leaf then N holds either a negative literal or a fact;

— if N is not a leaf and N holds the positive literal h, then there is a rule

h ← b1 ∧ . . . ∧ bn ∧ not c1 ∧ . . . not cm in P and N has n + m children,

holding b1, . . . , bn , not c1, . . . not cm respectively;

• AP is the set of all negative literals held by leaves;

• FP is the set of all facts held by leaves.

An argument is denoted A : (AP ,FP) ⊢ l , where A is a unique name, AP is the

set of assumption premises, FP the set of fact premises, and l the conclusion. �

Intuitively, an argument is a derivation where each rule is used and where only

negative literals and facts are recorded. Note however, that arguments are not

necessarily minimal derivations and that they allow the repeated application of a

rule.

7 For simplicity, we use the term ‘literal’ instead of ‘extended literal’ throughout this section.
8 http://labas-justification.herokuapp.com/
9 Schulz and Toni (2016) define arguments and attack trees with respect to the translation of a
logic program into an Assumption-Based Argumentation (ABA) framework (Dung et al. 2009).
For simplicity, we here reformulate these definitions with respect to a logic program. Due to the
semantic correspondence between logic programs and their translation into ABA frameworks
(Schulz and Toni 2016; Schulz and Toni 2015), these definitions are equivalent to the original
ones.

p

q not r

(a) Argument A1

p

q not r

q

(b) Argument A2

p

q not r

q

...

q

(c) Argument An

Fig. 8: Different arguments with conclusion p.

Example 12

Let P11 be the following logic program:

p ← q ∧ not r q ← q q

There are infinitely many arguments for p (and q) since the second rule can be used

infinitely many times before using the fact q . Figure 8a illustrates the argument A1

where the second rule is not used at all, Figure 8b illustrates the argument A2

where the second rule is used once, and Figure 8c illustrates arguments where the

second rule is applied various times (indicated by the dots). Note that all arguments

with conclusion p differ in their name and their tree representation, but they are

all denoted ({not r}, q) ⊢ p in the shorthand notation. �

An argument for a literal only exists if all literals in the rules used in the derivation

have an argument themselves. That is, for a logic program with only one rule

p ← q , there is no argument for either p or q (q is neither a negative literal nor a

fact, so it cannot be the leaf of an argument tree).

If the conclusion of an argument is a positive literal l then it attacks every

argument that has not l in its assumption premises. In other words, a derivation

for l provides a reason against any derivation using not l .

Definition 7 (Attack)

An argument (AP1,FP1) ⊢ l1 attacks an argument (AP2,FP2) ⊢ l2 iff l1 is a positive

literal and not l1 ∈ AP2. �

Note that attacks do not arise due to the existence of an atom a and its contrary

¬a in two arguments.

Example 13 (Ex. 4 continued, page 9)

Four arguments can be constructed from P3:

A1 : ({not p}, {}) ⊢ not p A3 : ({not p}, {}) ⊢ q

A2 : ({not q}, {}) ⊢ not q A4 : ({not q}, {}) ⊢ p

A3 attacks A2 and A4 since its conclusion q is the complement of the assumption

premise not q in the two attacked arguments. Similarly, A4 attacks A1 and A3. �

3.2.1 Attack Trees

LABAS justifications are constructed from trees of attacking arguments.

Definition 8 (Attack Tree)

Given an extended program P , an attack tree of an argument A : (AP ,FP) ⊢ l

w.r.t. an answer set M of P , denoted attTreeM (A), is a (possibly infinite) tree such

that:

1. Every node in attTreeM (A) holds an argument, labelled '+' or '−'.

2. The root node is A+ if ∀not l ′ ∈ AP : l ′ /∈ M , or A− otherwise.

3. For every node B+ and for every argument C attacking argument B , there

exists a child node C− of B+.

4. Every node B− has exactly one child node C+ for some argument

C : (APC ,FPC) ⊢ lC attacking argument B and satisfying that ∀not l ′ ∈ APC ,

l ′ /∈ M .

5. There are no other nodes in attTreeM (A) except those given in 1-4. �

The intuition for labelling arguments in an attack tree is as follows: If an argument

A is based on some negative literal not l (i.e. it has not l as an assumption premise)

such that l ∈ M , then some rule used to construct A is not applicable w.r.t. M

(namely the rule in which not l occurs), so argument A does not warrant that its

conclusion is in M . Therefore, argument A is labelled '−'. Otherwise, all rules used

to construct A are applicable, so the conclusion of argument A is in M . Thus,

argument A is labelled '+'.

Example 14 (Ex. 13 continued)

The unique attack trees of A3 and A4 w.r.t. M3 = {p} are displayed in Figure 9a

and 9b, respectively. When inverting all '+' and '−' labels in the trees, the attack

trees w.r.t. M4 = {q} are obtained. �

An attack tree is thus made of layers of arguments for literals that are alternately

true and false w.r.t. the answer set M . Note the difference in Definition 8 between

arguments labelled '+', which have all attackers as child nodes, and arguments

labelled '−', which have only one attacker as a child node. This is in line with the

definition of answer sets. To prove that a literal l is in M , all negative literals not l ′

used in its derivation (i.e. in the argument B in condition 3) need to be true, so for

all l ′ there must not be a derivation that concludes that l ′ is true. Thus, all such

derivations for l ′ (i.e. all arguments C attacking B in condition 3) are explained

in an attack tree. In contrast, to prove that a derivation of a literal l (argument

B in condition 4) does not lead to l being true w.r.t. M , it is sufficient that one

negative literal not l ′ used in this derivation is false, i.e. l ′ is in M , so there exists

some derivation for l ′ (argument C in condition 4) that warrants that l ′ is true

w.r.t. M .

A−

3 : ({not p}, {}) ⊢ q

A+

4 : ({not q}, {}) ⊢ p

A−

3 : ({not p}, {}) ⊢ q

A+

4 : ({not q}, {}) ⊢ p

...

(a)

A+

4 : ({not q}, {}) ⊢ p

A−

3 : ({not p}, {}) ⊢ q

A+

4 : ({not q}, {}) ⊢ p

A−

3 : ({not p}, {}) ⊢ q

...

(b)

Fig. 9: Attack trees of arguments A3 and A4 w.r.t. M3 of P3.

Example 15

Let P12 be the following logic program:

p ← not q ∧ not r q ← not s s

r ← s ∧ not p r ← not s

Program P12 has two answer sets, namely M12 = {s, p} and M13 = {s, r}. The

argument A1 : ({not q , not r}, {}) ⊢ p has one attack tree w.r.t. M12 and one

w.r.t. M13, depicted in Figures 10a and 10b, respectively. Note that in the attack

tree of A1 w.r.t. M13, A2 and A4 cannot be chosen as the child nodes of A1, even

though they attack A1, since they both have not s as an assumption premise, where

s is contained in the answer set M13 (they thus violate condition 4 in Definition 8).

These arguments thus do not provide explanations as to why r is true w.r.t. M13

and consequently cannot be used to explain why p is false. �

Attack trees are not only used to construct LABAS justifications, as explained

in the following, but in fact constitute justifications of literals in their own right.

Definition 9 (Attack Tree Justification)

Let M be an answer set of an extended program P , l ∈ Litext, and A an argument

with conclusion l .

• If l is true w.r.t. M , then an attTreeM (A) is a justification of l if the root node

is A+.

• If l is false w.r.t. M , then an attTreeM (A) is a justification of l if the root node

is A−. �

In fact, in the second case any attack tree for an argument with conclusion l

will have its root node labelled '−' (Schulz and Toni 2016, from Theorem 3 and

Lemma 5).

Attack trees justify literals in terms of dependencies between arguments. Next,

we explain how dependencies between literals are extracted from attack trees to

construct a justification in terms of literals.

A+

1 : ({not q , not r}, {}) ⊢ p

A−

2 : ({not s}, {}) ⊢ q A−

3 : ({not p}, {s}) ⊢ r A−

4 : ({not s}, {}) ⊢ r

A+

5 : ({}, {s}) ⊢ s A+

1 : ({not q , not r}, {}) ⊢ p A+

5 : ({}, {s}) ⊢ s

...

(a)

A−

1 : ({not q , not r}, {}) ⊢ p

A+

3 : ({not p}, {s}) ⊢ r

A−

1 : ({not q , not r}, {}) ⊢ p

...

(b)

Fig. 10: Attack trees of argument A1 w.r.t. M12 and M13.

3.2.2 Constructing LABAS Justifications

Labelled ABA-Based Answer Set Justifications (“ABA” stands for “Assumption-

Based Argumentation”), short LABAS justifications, are constructed from attack

trees by extracting the relations between literals in arguments. That is, literals

occurring as assumption or fact premises in an argument of the attack tree are

supporting the conclusion literal, whereas the conclusion l of an attacking argument

attacks the negative literal not l occurring as an assumption premise of the attacked

argument.

As a first step of the LABAS justification construction, an attack tree is trans-

formed into a labelled justification. A labelled justification is a set of labelled rela-

tions between literals, which can thus be represented as a graph. Each literal in a

relation is labelled as '+', meaning that it is true w.r.t. the answer set in question,

or '−', meaning that it is false w.r.t. the answer set in question. Support and attack

relations are labelled the same as the respective source literals of the relation. The

label '+' represents that the source label is able to effectively attack or support the

target literal, whereas '−' represents an ineffective relation. In addition, a literal

is labelled with fact or asm if it is a fact or assumption premise, or else with its

argument’s name.

Definition 10 (Labelled Justification)

Let M be an answer set of an extended program P , A an argument and Υ =

attTreeM (A) an attack tree of A w.r.t. M . For any node B+/− in Υ, children(B+/−)

denotes the set of child nodes of B+/− and conc(B+/−) the conclusion of argu-

ment B . The labelled justification of Υ, denoted just(Υ), is obtained as follows:

just(Υ) def=
⋃

B+:(AP,FP)⊢l in Υ

{supp rel+(not p+
asm , l+B) | not p ∈ AP\{l}} ∪

{supp rel+(f +fact , l
+
B) | f ∈ FP\{l}} ∪

{att rel−(k−
C , not k+

asm) | C− ∈ children(B+), conc(C−) = k} ∪
⋃

B−:(AP,FP)⊢l in Υ

{supp rel−(not p−
asm , l−B) | not p ∈ AP\{l}, children(B−) = {C+},

conc(C+) = p} ∪

{att rel+(f +fact , not f
−
asm) | children(B−) = {C+ : ({}, {f }) ⊢ f }} ∪

{att rel+(k+
B , not k−

asm) | children(B−) = {C+ : (APC ,FPC) ⊢ k},

APC 6= {} or FPC 6= {k}} �

Note that a labelled justification does not extract all relations from an attack

tree but only those deemed relevant for justifying the conclusion of argument A.

For example, for an argument B− in the attack tree, only one negative literal is

extracted as supporting the conclusion, namely the one that is attacked by the child

node C+ of B−, since this negative literal provides the reason that the conclusion

of B is not in the answer set.

Infinite attack trees, as for example shown in Figures 9a and 9b, may be repre-

sented by finite LABAS justifications as re-occurring arguments in an attack tree

are only processed once (note that justifications are sets).

Example 16 (Ex. 14 continued)

Since the two attack trees attTreeM3
(A3) and attTreeM3

(A4) (Figures 9a and 9b)

comprise the same nodes, their labelled justifications are the same, namely:

{supp rel−(not p−
asm , q−A3

), att rel+(p+
A4

, not p−
asm),

supp rel+(not q+asm , p+
A4

), att rel−(q−A3
, not q+asm)} �

As illustrated by Example 16, it is not obvious from a labelled justification,

which literal is being justified. A LABAS justification thus adds the literal being

justified to labelled justifications. It furthermore defines a justification in terms of

one labelled justification if a literal contained in the answer set is justified and

in terms of all labelled justifications if a literal not contained in the answer set is

justified. This is based on the idea that if a literal can be successfully derived in

one way, it is in the answer set, but that it is not in the answer set only if all ways

of deriving the literal are unsuccessful.

Definition 11 (LABAS Justification)

Let M be an answer set of an extended program P and l ∈ Litext.

1. Let l be true w.r.t. M , let A : (AP ,FP) ⊢ l be an argument, and attTreeM (A)

an attack tree with root node A+. Let lab(l) def= l+asm if l is a negative literal,

lab(l) def= l+fact
if FP = {l} and AP = {}, and lab(l) = l+

A else. A (positive)

LABAS justification of l with respect to M is:

justLABAS+
M (l) def= {lab(l)} ∪ just(attTreeM (A)).

2. Let l be false w.r.t. M , let A1, . . . ,An be all arguments with conclusion l , and

Υ11, . . . ,Υ1m1
, . . . ,Υn1, . . . ,Υnmn

all attack trees of A1, . . . ,An with root node

labelled '−'.

(a) If n = 0, then the (negative) LABAS justification of l with respect to M is:

justLABAS−
M (l) def= {}

(b) If n > 0, then let lab(l1)
def= l−asm , . . . , lab(ln)

def= l−asm if l is a negative literal

and lab(l1)
def= l−A1

, . . . , lab(ln)
def= l−An

else. Then the (negative) LABAS

justification of l with respect to M is:

justLABAS−
M (l) def= {{lab(l1)} ∪ just(Υ11), . . . , {lab(ln)} ∪ just(Υnmn

)}. �

Note that there may be various LABAS justifications of a literal that is true w.r.t.

the answer setM , but only one LABAS justification of a literal that is false w.r.t.M .

Example 17 (Ex. 16 continued)

Since there exists only one argument with conclusion q /∈ M3, namely A3, and since

this argument has a unique attack tree attTreeM3
(A3), only the labelled justification

from Example 16 has to be taken into account for the LABAS justification of q

w.r.t. M3. That is,

justLABAS−
M3

(q) = {{q−A3
, supp rel−(not p−

asm , q−A3
), att rel+(p+

A4
, not p−

asm),

supp rel+(not q+asm , p+
A4

), att rel−(q−A3
, not q+asm)}}

Similarly, the only LABAS justification of p w.r.t. M3 is

justLABAS+
M3

(p) = {p−
A4

, supp rel−(not p−
asm , q−A3

), att rel+(p+
A4

, not p−
asm),

supp rel+(not q+asm , p+
A4

), att rel−(q−A3
, not q+asm)}

Note that the first is a set of sets, whereas the second is a simple set. �

LABAS justifications can be represented as directed graphs, where the justified

literal is depicted as the top node of the graph, and all literals occurring in a

relation as the other nodes. Support and attack relations form two different arcs:

here, dashed arcs represent support, whereas solid arcs represent attack. Both types

of arcs are labelled according to the label in the LABAS justification.

Example 18 (Ex. 17 continued)

The graphical representations of the LABAS justifications in Example 17 are re-

spectively illustrated in Figures 11a and 11b. Unsurprisingly, they have the same

nodes and arcs. However, the respective orientation of the graph indicates the lit-

eral being justified. Note the difference between the LABAS justification graphs

and the off-line justifications in Figure 1. In particular, the LABAS justification

q−

A3

not p−

asm

p+

A4

not q+
asm

+

−

+

−

(a)

p+

A4

not q+
asm

q−

A3

not p−

asm

+

−

+

−

(b)

Fig. 11: LABAS justifications of q and p w.r.t. M3: dashed arcs represent support,

whereas solid arcs represent attack.

graphs explain the truth values of non-fact positive literals in terms of negative

literals needed to derive the positive literal. Furthermore, the truth values of neg-

ative literals, which do not occur in off-line justifications at all, are explained in

terms of their complement’s truth value. Also note that q being false w.r.t. M3 is

explained as a truth value being assumed in the off-line justifications, whereas its

truth value is further explained in terms of the ineffective support by not p in the

LABAS justifications. �

Example 19 (Ex. 15 continued)

Figures 12a and 12b illustrate the LABAS justifications of p w.r.t. M12 and M13 of

P12 (see Example 15). The first demonstrates the importance of labelling literals

by their arguments for distinction. If these labels did not exist, r−A3
and r−A4

would

collapse into one node r−. The resulting graph would give the impression that

there is only one derivation for r , which uses both not p and not s. In contrast, the

distinction achieved by labelling literals with their argument names (Figure 12a),

expresses that there are two derivations for r , one using not p and one using not s.

Note that off-line justifications use a non-labelling strategy, leading to the previously

explained collapse of the two nodes holding atom r , as shown in Figures 13a and 13b.

Figure 12a, and in particular node r−A3
, furthermore shows that for nodes labelled

'−' in an attack tree, fact premises are not included in the LABAS justification (A3

has a fact premise s). In contrast, Figure 12b, and in particular node r+A3
, shows

that for nodes labelled '+' in an attack tree, all assumption and fact premises are

included in a LABAS justification. Furthermore, for nodes labelled '−' only the

assumption premise that is attacked by the child node is included (only assumption

premise not r of p is included and assumption premise not q is neglected). �

Comparing the LABAS justification in Figure 12a and the off-line justification

in Figure 13b, we observe various similarities: Deleting the nodes holding negative

p+

A1

not q+
asm not r+asm

q−

A2
r−A4

r−A3

not s−asm not p−

asm

s+fact

+ +

− −−

− −

+

−

+

(a)

p−

A1

not r−asm

r+A3

s+fact not p+
asm

−

+

++

−

(b)

Fig. 12: LABAS justifications of p w.r.t. M12 and M13.

p+

q− r−

s+ assume

− −

− −

(a)

p+

q− r−

s+

− −

− −

−

(b)

Fig. 13: Off-line justifications of p w.r.t. M12.

literals in the LABAS justification and collapsing the two nodes of atom r results

in the same nodes as in the off-line justification. Note that this is because all

derivations of atoms are “one-step” derivations, i.e. there is no chaining of rules

involved. If the derivation of some atom involved the chaining of various rules,

the off-line justification would include more nodes than the LABAS justification,

even if nodes holding negative literals were deleted (see for example Figures 17a

and 17b). Furthermore, ‘rerouting’ the attack edges in the LABAS justification

from the attacked negative literal to the atom supported by this negative literal

(e.g. ‘rerouting’ the attacking edge from p+ to not p instead to atom r , which is

supported by not p) and then reverting them results, in this example, in the same

edges as in the off-line justification. Note however that the labelling of edges is

different in LABAS and off-line justifications.

The following examples point out some further differences between LABAS and

off-line justifications. In particular, LABAS justifications do not explicitly contain

information about all rules applied in a derivation and there is no LABAS justi-

fication for literals that have no argument, i.e. literals that cannot be successfully

derived.

Example 20 (Ex. 7 continued, page 12)

Figures 14a and 14b show the LABAS justifications of p w.r.t. M6 of P6. The

p+

A1

not t+asm s+fact

+ +

(a)

p+

A2

not t+asm

+

(b)

Fig. 14: The two LABAS justifications of p w.r.t. M6 of P6.

difference between the two derivations of p is not as explicit as in the off-line

justifications illustrated in Figures 4a and 4b (page 12). It is merely indicated by

the different argument labels of p. �

Example 21 (Ex. 11 continued, page 14)

There are two off-line justifications of r w.r.t. P10 and M11 (see Figures 7a and 7b

on page 14). In contrast, there is only one LABAS justification of r , shown in

Figure 15. The reason is that there is no argument with conclusion p, since no

rule with head p exists. Thus, not p is not further explained as there is no way to

prove p. �

As previously pointed out, infinite attack trees may be represented by finite

LABAS justifications. However, this is only the case if the infinity is due to the

repetition of the same arguments. Instead, if the infinity is due to the existence of

infinitely many arguments with the same conclusion, a LABAS justification may

be infinite too.

r+A1

not p+
asm

+

Fig. 15: The unique LABAS justification of r w.r.t. M11 of P10.

A+
p1 : ({not q}, {r}) ⊢ p

A−

q1 : ({not p}, {r}) ⊢ q A−

q2 : ({not p}, {r}) ⊢ q . . .

A+
p1 : ({not q}, {r}) ⊢ p A+

p1 : ({not q}, {r}) ⊢ p

...
...

(a)

p+

Ap1

not q+
asm r+fact

. . . q−

Aq2
q−

Aq1

not p−

asm

+ +

−−−

−−−

+

(b)

Fig. 16: One of the infinite attack trees and LABAS justifications of p w.r.t. M14

of P13.

Example 22

Let P13 be the following program with answer sets M14 = {p, r} and M15 = {q , r}:

p ← not q ∧ r q ← not p ∧ r r ← r r

Note first that there are infinitely many arguments with conclusion r of the form

Ari : ({}, {r}) ⊢ r , each applying the third rule a different number of times. For the

same reason, there are infinitely many arguments with conclusion p, of the form

Apj
: ({not q}, {r}) ⊢ p, and with conclusion q , of the form Aqk : ({not p}, {r}) ⊢ q .

Since there are infinitely many arguments with conclusion p (resp. q), there are also

infinitely many attack trees explaining p (resp. q) with respect to either of the two

answer sets. Similarly to the attack trees illustrated in Figures 9a and 9b, all attack

trees for p and q are infinite in depth. In addition, they are infinite in breadth

since any of the Apj
attacks every Aqk and vice versa. This means that whenever

an argument for p (resp. q) is labelled '+' in an attack tree, all infinitely many

arguments with conclusion q (resp. p) are child nodes labelled '−'. Figure 16a

illustrates an attack tree of one of the arguments with conclusion p w.r.t. M14.

Note that in this particular attack tree, the argument A+
p1

: ({not q}, {r}) ⊢ p

is re-used to attack all the arguments with conclusion q attacking the root node.

By exchanging any occurrence of A+
p1

: ({not q}, {r}) ⊢ p by another argument

with conclusion p, e.g. A+
p2

: ({not q}, {r}) ⊢ p, a different (infinite) attack tree

explaining p is obtained. We observe that any of these attack trees yields an infinite

LABAS justification. For example, the attack tree from Figure 16a results in a

LABAS justification with infinitely many relations of the form att rel−(q−Aqk
, p+

Apj
)

relations. Assuming that the only argument with conclusion p used in the attack tree

in Figure 16a is A+
p1

: ({not q}, {r}) ⊢ p, we obtain the infinite LABAS justification

in Figure 16b. �

This behaviour of infinity is dealt with in the LABAS Justifier by disallowing

the repeated application of a rule when constructing an argument (Schulz 2017).

In Example 22, the LABAS Justifier thus only constructs two different arguments

for p and q .

3.3 Causal Graph Justifications

In contrast to the two previously discussed approaches (off-line and LABAS jus-

tifications), whose main purpose is to explain why a literal is (not) contained in

an answer set, the approach outlined in this section – called causal graph justifica-

tions (Cabalar et al. 2014; Cabalar and Fandinno 2016) – is a reasoning formalism

in its own right, which can additionally be used to explain why a literal is con-

tained in an answer set: the main goal of the causal justification approach is to

formalise and reason with causal knowledge, so that sentences like “whoever causes

the death of somebody else will be imprisoned” can be represented in an elaboration

tolerant10 manner (McCarthy 1998). An online tool providing causal justifications

and allowing this reasoning with causal knowledge (Fandinno 2016a) is available at

http://kr.irlab.org/cgraphs-solver/nmsolver.

The semantics used for causal justifications is a multi-valued extension of the

answer set semantics, where each (true) literal in a model is associated with a set

of causal values expressing causal reasons for its inclusion in the model. Each of

these causal values represents a set of causal justifications, each of which, in turn,

can be depicted as a causal graph. Regarding the causal literature, a causal graph

can be seen as an extension of Lewis’s notion of causal chain: “let c, d , e, . . . be

a finite sequence of actual particular events such that d causally depends on c, e

on d , and so on throughout. Then, this sequence is a causal chain.” (Lewis 1973;

see also Hall 2004 and Hall 2007). The following example illustrates the connection

between causal chains and justifications in ASP.

Example 23

Consider a scenario in which Suzy pulls the trigger of her gun, causing the gunpow-

der to explode. This causes the bullet to leave the gun at a high speed, impacting

10 We recall that a representation is elaboration tolerant if modifications of it can easily be taken
into account.

dead+

haemorrhage+

impact+

bullet+

gunpowder+

trigger(suzy)+

⊤

+

+

+

+

+

+

(a)

dead+A1

trigger(suzy)+fact

+

(b)

rdead1

r
haemorrhage
2

r
impact
3

rbullet4

r
gunpowder
5

trigger(suzy)

(c)

dead

haemorrhage

impact

bullet

gunpowder

trigger(suzy)

(d)

Fig. 17: Off-line justification, LABAS justification, causal justification and causal

chain of dead in Example 23.

on Billy’s chest, provoking a massive haemorrhage and, consequently, Billy’s death.

We can model this scenario as the following positive logic program P14:

dead ← haemorrhage (2)

haemorrhage ← impact (3)

impact ← bullet (4)

bullet ← gunpowder (5)

gunpowder ← trigger(suzy) (6)

trigger(suzy) (7)

Then, trigger(suzy) · gunpowder · bullet · impact · haemorrhage · dead is a causal

chain connecting trigger(suzy) with dead. �

This example suggests an intuitive correspondence between causal chains and

the idea of justification. In particular, the causal chain that connects the fact

trigger(suzy) with dead can be written as the graph in Figure 17d. It is easy

to see the correspondence between this graph and the off-line justification of dead,

depicted in Figure 17a. For comparison, Figures 17b and 17c depict the LABAS

justification and the causal graph (which will be defined later) of dead. Recall that

LABAS justifications focus on facts and negative literals, precisely abstracting from

the causal chain, which will be the focus of causal justifications. In contrast, the

causal graph expresses the same information as the causal chain. This is due to the

fact that no atom depends on more than one other atom. More generally, causal

chains coincide with the paths in causal graphs.

In addition to the idealogical differences between causal justifications, which treat

logic programs as causal knowledge, and off-line and LABAS justifications, which

treat logic programs as declarative problem descriptions, causal justifications allow

for causal reasoning, as they are based on a causal extension of the answer set

semantics. More precisely, causal justifications are defined in terms of the causal

value that each causal answer set associates to atoms (causal answer sets assign

causal values instead of truth values to each atom). These causal values form a

completely distributive (complete) lattice that serves as the basis for a multi-valued

extension of the answer set semantics.

Let us introduce causal terms as a suitable syntax to write causal values.

Definition 12 (Causal Term)
Given a set of atoms At and a set of labels Lb, a (causal) term t is recursively

defined as one of the following expressions

t ::= l
∣

∣

∣

∏

S
∣

∣

∣

∑

S
∣

∣

∣
t1 · t2

where l ∈ (Atext ∪ Lb) is an extended atom or a label, t1, t2 are in turn terms, and

S is a (possibly empty and possibly infinite) set of terms. �

When S = {t1, . . . , tn} is a finite set, we write t1 ∗ . . .∗ tn and t1+ . . .+ tn instead

of
∏

S and
∑

S , respectively. The empty sum and empty product are respectively

represented as 0 and 1. We assume that application ‘·’ has higher priority than

product ‘∗’ and, in turn, product ‘∗’ has higher priority than addition ‘+’. Intu-

itively, product ‘∗’ represents conjunction or joint causation, sum ‘+’ represents

alternative causes, and application ‘·’ is a non-commutative product that builds

causal chains by capturing the successive application of rules.

Associativity

t · (u·w) = (t ·u) · w

Absorption

t = t + u · t · w
u · t · w = t ∗ u · t · w

Identity

t = 1 · t
t = t · 1

Annihilator

0 = t · 0
0 = 0 · t

Indempotence

l · l = l

Addition distributivity

t · (u+w) = (t ·u) + (t ·w)
(t + u) · w = (t ·w) + (u·w)

Product distributivity

c · d · e = (c · d) ∗ (d · e) with d 6= 1
c · (d ∗ e) = (c · d) ∗ (c · e)
(c ∗ d) · e = (c · e) ∗ (d · e)

Fig. 18: Properties of the operators: t , u,w are terms, l is a label or an extended

atom and c, d , e are terms without addition ‘+’. Addition and product distributivity

are also satisfied over infinite sums and products. A kind of absorption over infinite

sums and products can also be derived from the finite absorption above and infinite

distributivity.

Definition 13 (Causal Value)
(Causal) values are the equivalence classes of terms under the axioms for a com-

pletely distributive (complete) lattice with meet ‘
∏

’ and join ‘
∑

’ plus the axioms

in Figure 18. The set of values is denoted by VLb. Furthermore, by CLb we denote

the subset of causal values with some representative term without addition ‘
∑

’. �

As an example, the causal value [a] = {a, a ∗ a, a + a, a·a, a ∗ (a + b), . . . } is

the (possibly infinite) set of causal terms that are equivalent to a under the axioms

for a completely distributive lattice with meet ‘
∏

’ and join ‘
∑

’ plus the axioms

in Figure 18. Note that there are no causal terms equivalent to 0 or 1 besides

themselves, that is, [0] = {0} and [1] = {1}. By abuse of notation, we will use any

causal term belonging to a causal value to represent the value, that is, we write a

instead of [a], 0 instead of [0], and so on.

Note that all three operations ‘∗’, ‘+’ and ‘·’ are associative. Product ‘∗’ and

addition ‘+’ are also commutative, and they satisfy the usual absorption and dis-

tributive laws with respect to infinite sums and products of a completely distributive

lattice. As usual, the lattice order relation is defined as:

t ≤ u iff t ∗ u = t iff t + u = u

An immediate consequence of this definition is that the ≤-relation has the product

as greatest lower bound, the addition as least upper bound, 1 as top element and 0

as bottom element. The term 1 represents a value that holds by default, without

an explicit cause, and will be assigned to the empty body. The term 0 represents

the absence of cause or the empty set of causes, and will be assigned to falsity.

Furthermore, applying distributivity (and absorption) of products and applica-

tions over addition, every term can be represented in a (minimal) disjunctive normal

form in which addition is not in the scope of any other operation and every pair

of addends are pairwise ≤-incomparable. As we will see in Example 31, this nor-

mal form emphasises the intuition that addition ‘+’ separates alternative causes.

Moreover, applying product distributivity, this normal form can be further rewrit-

ten into a graph normal form in which the application operator ‘·’ is only applied

to pairs of labels or extended atoms, thus representing the edges of a graph: v ·v ′

with v , v ′ ∈ (Atext ∪ Lb). For instance, applying priority rules, the causal terms

a ∗(((b·c)·e)+d) and ((a ∗((b·c)·e))+(a ∗d) can be rewritten as a ∗(b·c·e+d) and

a ∗ b·c·e + a ∗ d , respectively. Furthermore, it is easy to see that these two terms

represent the same causal value since the former can be rewritten as the latter by

applying distributivity of products over sums. The latter is in disjunctive normal

form and can be further rewritten in graph normal form as a ∗ b·c ∗ c·e + a ∗ d by

applying distributivity of application over products.

Given any causal term without sums c ∈ CLb in graph normal form, we can

associate a graph Gc = 〈V ,E 〉 where V is the set of labels and extended atoms

occurring in c and E contains an edge (v , v ′) for every subterm of the form v ·v ′. By

graph(c) we denote the transitive and reflexive reduction11 of Gc . Given this rela-

tion between application ‘·’ and edges in such graphs it follows that application ‘·’

must be non-commutative. For any causal term in normal form t , by graphs(t) we

denote the set containing a graph graph(c) for each addend c in t .

11 Recall that the transitive and reflexive reduction of a graph G is a graph G′ whose transitive
and reflexive closure is G. A causal graph (see Definition 16), in which every cycle is a reflexive
edge, has a unique transitive and reflexive reduction.

Example 24 (Ex. 23 continued)
The causal chain of Example 23 is in disjunctive normal form (since it does not

contain products nor sums), but not in graph normal form. Using product distribu-

tivity, this causal chain can be rewritten in graph normal form as (trigger(suzy) ·

gunpowder) ∗ (gunpowder · bullet) ∗ (bullet · impact) ∗ (impact · haemorrhage) ∗

(haemorrhage · dead). In this form, every subterm of the form (v ·v ′) corresponds

to an edge in Figure 17d. �

So far, we have introduced causal values, which will be the semantic building

blocks of causal justifications and the associated causal graphs. In the following,

we define how these causal values are assigned to each atom to form causal answer

sets and how causal justifications and graphs are obtained.

3.3.1 Causal Semantics for Programs without Negation-as-Failure

Semantics for logic programs usually assign truth values to atoms. In contrast, for

the causal semantics of logic programs, causal interpretations assign causal values

to atoms. Based on this, causal models and causal answer sets are defined. Causal

justifications are then extracted using the causal value of atoms in a causal answer

set corresponding to a standard answer set.

A (causal) interpretation is a mapping I : Atext −→ VLb assigning a value to

each extended atom and satisfying I (a) = 0 or I (¬a) = 0 for every atom a ∈ At.

By Atoms(I) def= { a ∈ Atext
∣

∣ I (a) 6= 0 } we denote the set of extended atoms in

an interpretation I . For any pair of interpretations I and J , we write I ≤ J to

represent the straightforward causal ordering, that is, I (a) ≤ J (a) for every atom

a ∈ Atext and we write I ⊑ J when either I ≤ J or Atoms(I) ⊂ Atoms(J). That

is, I ⊑ J is a weaker partial order, since apart from the cases in which I ≤ J

holds, it also holds when true atoms in I are a strict subset of true atoms in J . As

usual, we write I < J (resp. I ⊏ J) iff I ≤ J (resp I ⊑ J) and I 6= J . Note that

Atoms(I) ⊂ Atoms(J) implies I 6= J and so I ⊏ J . We say that an interpretation

I is ≤-minimal (resp. ⊑-minimal) satisfying some property when there is no J < I

(resp. J ⊏ I) satisfying that property. Note that there is a ≤-bottom and ⊑-bottom

interpretation 0 (resp. a ≤-top and ⊑-top interpretation 1) that stands for the

interpretation mapping every extended atom a to the causal value 0 (resp. 1). It is

easy to see that ⊑-minimal models are also ≤-minimal models, though the converse

is not necessarily true, as will be illustrated by Example 30 (see page 33). For

every rule r in the program, we assign a label denoted by label(r). We assume that

label(h) = h for every definite fact h and that label(r) 6= label(r ′) for every pair of

distinct rules r and r ′. We also assume that Lb contains all rule labels.

Definition 14 (Causal Model)
An interpretation I satisfies a positive rule r of the form (1) (with m = 0) iff

(

I (b1) ∗ . . . ∗ I (bn)
)

· ri · hj ≤ I (hj) (8)

for some atom hj ∈ head(r) and where ri = label(r) is the label associated with

rule r . We say that an interpretation I is a (causal) model of a positive extended

program P , in symbols I |= P , iff I satisfies all rules in P . �

Example 25 (Ex. 23 continued)

Let us assume that rules of P14 are respectively labelled as r1, r2, r3, r4, r5
and trigger(suzy). Then, it is easy to check that the model I of P14 must sat-

isfy

I (trigger(suzy)) ≥ trigger(suzy) · trigger(suzy) = trigger(suzy)

I (gunpowder) ≥ trigger(suzy) · r5 · gunpowder �

Observation 1

If r is a definite fact h, that is, it has the form (h ←), then label(r) = h and, thus,

I |= r iff I (A) ≥ h·h = h (by idempotence of application on labels). �

Based on the definitions of causal values and models, the causal extension of the

answer set semantics is defined as follows.

Definition 15 (Causal Answer Set without Negation-as-Failure)

Let P be a positive extended program. A model I of P is a causal answer set iff it

is ⊑-minimal among the models of P . �

Example 26 (Ex. 25 continued)

Continuing with our running example, note that there is only one rule with atoms

trigger(suzy) and gunpowder in the head. Then, any ⊑-minimal model I1 of P14

must satisfy equality instead of ≥, that is,

I1(trigger(suzy)) = trigger(suzy) · trigger(suzy) = trigger(suzy)

I1(gunpowder) = trigger(suzy) · r5 · gunpowder

Note that any ⊑-minimal model must also be a ≤-minimal model and, thus, I1(A)

must be equal to the least upper bound of the terms corresponding to all rules with

the atom A in the head. Since here we only have one rule for each atom, this least

upper bound coincides with the value corresponding to that rule. �

Definition 16 (Causal Justification and Causal Graph)

Given a logic program P and an answer set M of P , a term without sums c is a

causal justification of some atom a w.r.t. P and M if there is some causal answer

set I of P such that Atoms(I) = M and c is an addend in the minimal disjunctive

normal form of I (a). For any causal justification of a w.r.t. P and M , graph(c) is

a causal graph (justification). �

Notation 1

In causal justifications, we will write rai instead of ri ·a when ri ∈ Lb is a rule label

and a ∈ Atext is an extended atom occurring in the head of the rule labelled ri .

Similarly, in causal graphs we write a single vertex rai instead of two vertices ri and

a and an edge connecting them. �

Example 27 (Ex. 26 continued)

Assuming the above notation, we may rewrite the causal value associated with

gunpowder, which is also its unique causal justifications, as I1(gunpowder) =

trigger(suzy) · rgunpowder
5 . Similarly, it is also easy to check that

I1(dead) = trigger(suzy) · rgunpowder
5 · r bullet4 · r impact

3 · rhaemorrhage
2 · rdead1

Figure 17c depicts the causal graph associated with the causal justification I1(dead).

�

Next, we give an example of causal justifications for non-normal programs taken

from (Cabalar and Fandinno 2016):

Example 28

Assume that Harvey throws a coin and only shoots when he gets tails. This scenario

can be modelled as the following logic program P15:

r1 : dead ← shoot (9)

r2 : shoot ← tails (10)

r3 : head ∨ tails ← harvey (11)

harvey (12)

where r1, r2 and r3 represent the labels associated with the corresponding rules.

Then, this logic program has two (standard) answer sets: M16 = {harvey, head}

and M17 = {harvey, tails, shoot, dead}. Similarly, this program also has two causal

answer sets satisfying

I16(harvey) = harvey

I16(head) = harvey·rhead3

I16(tails) = 0

I16(shoot) = 0

I16(dead) = 0

I17(harvey) = harvey

I17(head) = 0

I17(tails) = harvey·r tails3

I17(shoot) = harvey·r tails3 ·rshoot2

I17(dead) = harvey·r tails3 ·rshoot2 ·rdead1

Here, the I17(dead) represents the causal justification of dead w.r.t. M17 while

I16(dead) = 0 states that there is no causal justifications for dead w.r.t. M16. �

Example 28 illustrates that a causal answer set assigns the value 0 (that is, the

absence of a justification) to an atom iff the atom is false in its corresponding

standard answer set.

It is also worth to note that, for normal logic programs, there is a one-to-one

correspondence between the standard answer sets of a program and their causal

answer sets. For programs with disjunctive rules, there also exists a one-to-one cor-

respondence, but in this case it relates each standard answer set with a class of

causal answer sets that represent the same truth assignments, but different jus-

tifications (see Example 29 below). Furthermore, in the case of disjunctive rules,

the superindex of a disjunctive rule’s label in the causal answer set indicates the

disjunct that has been effectively applied. For instance, in Example 28, term r tails3

points out that the disjunct tails in r3 has been effectively applied. In the case of

normal rules, the superindex is somehow superfluous, as it is fully determined by

the rule, and could easily be omitted as in (Cabalar and Fandinno 2016). Never-

theless, we decide to keep them to ease the comparison with the other justification

approaches, whose vertices are literals.

Example 29

Consider a program P16 consisting of the following rules

r1 : a ∨ b ← r2 : a ← b r3 : b ← a

which has a unique (standard) answer set M18 = {a, b}, but two causal ones that

satisfy:

I18(a) = ra1

I18(b) = ra1 ·r
b
3

I ′18(a) = rb1 ·r
a
2

I ′18(b) = rb1

As we can see, the true atoms in both models, Atoms(I18) = Atoms(I ′18) = {a, b},

coincide with the unique (standard) answer set M18, but their justifications differ.

In I18, atom a is a (non-deterministic) effect of the disjunction r1, while b is derived

from a through r3. Analogously, I
′
18 makes b true because of r1 and then obtains a

from b through r2. It is interesting to point out that I ′′18 with

I ′′18(a) = ra1 + rb1 ·r
a
2

I ′′18(b) = rb1 + ra1 ·r
b
3

is also a model of the program, but not a ⊑-minimal one because we have I18 ⊏ I ′′18.

Intuitively, I ′′18 would represent a scenario in which both a and b are justified by

rule r1, which does not fit the intuitive understanding that rule r1 can only justify

one of its head atoms. �

Let us also recall that, for normal programs, (Cabalar et al. 2014) defining causal

answer sets as ≤-minimal models instead of ⊑-minimal ones. These two definitions

agree for normal logic programs (Cabalar and Fandinno 2016) with the former being

preferred for its simplicity.12 On the other hand, for disjunctive programs, there are

≤-minimal models that do not correspond to any standard stable model, thus the

need for the latter. This is illustrated by the following example.

Example 30

Let P17 be the following logic program:

r1 : head ∨ tails head

which has two ≤-minimal models, one in which I17(head) = head + rhead1 and

I17(tails) = 0, plus another in which I ′17(head) = head and I ′17(tails) = r tails1 .

However, only the former is a ⊑-minimal one. Note that this corresponds to the

set of atoms Atoms(I17) = {head} which is the unique standard answer set of the

program. �

12 This definition is also used in Section 3.3.3 where the syntax is restricted to normal programs.

r
p
1

r
q
2

r s

(a)

p+

q+

r+ s+

⊤

+

+ +

+ +

(b)

Fig. 19: Causal graph and off-line justification of p w.r.t. the unique answer set of

P18 (see Examples 31 and 31).

The following example illustrates the fact that ‘∗’ is used to represent joint causa-

tion, or in other words, that two or more atoms are needed to justify the conclusion

of some rule.

Example 31

Consider the logic program P18 consisting of the following rules:

r1 : p ← q r2 : q ← r ∧ s r s

This program has a unique causal answer set I2 that satisfies:

I2(p) = (r ∗ s)·rq2 ·r
p
1

I2(q) = (r ∗ s)·rq2

I2(r) = r

I2(s) = s

As shown in Observation 1, we have I2(r) ≥ r ·r = r . Then, the value of I2(r) follows

from the fact that causal answer sets are ≤-minimal models. Similar reasoning

applies for the atom s. Furthermore, from Definition 14, it follows that I2(q) ≥

(r ∗s)·rq2 and, by minimality, that I2(q) = (r ∗s)·rq2 . In a similar way, we obtain for p

that I2(p) = I2(q)·r
p
1 = (r ∗s)·rq2 ·r

p
1 . Figure 19a depicts the causal graph associated

with I2(p). Note that product ‘∗’ is translated in this causal graph (Figure 19a)

as two incoming edges to the vertex r
q
2 . The causal graph associated with some

causal value can be easily constructed by rewriting the causal value in graph normal

form and representing each term of the form v1·v2 with an edge from v1 to v2. In

particular, we can obtain the causal graph in Figure 19a by rewriting (r ∗ s)·rq2 ·r
p
1

in graph normal form as follows:

(r ∗ s)·rq2 ·r
p
1 = r ·rq2 ·r

p
1 ∗ s·r

q
2 ·r

p
1

= r ·rq2 ∗ r
q
2 ·r

p
1 ∗ s·r

q
2 ∗ r

q
2 ·r

p
1

= r ·rq2 ∗ r
q
2 ·r

p
1 ∗ s·r

q
2

Then, the three edges of the causal graph in Figure 19a correspond to the three

subterms of the form v1·v2 (that is, r ·rq2 , r
q
2 ·r

p
1 and s·rq2) in the above causal term.

For comparison, Figure 19b depicts the off-line justification of p+. It is easy to see

that this particular off-line justification can be obtained from the causal graph by

replacing each vertex rai by a, reversing edges, adding the label ‘+’ to each vertex

and resulting edge and adding edges of the form (a,⊤,+) for each resulting sink a.

�

Next, we illustrate that ‘+’ is used to separate alternative causal justifications

and the importance of addition distributivity to obtain such behaviour.

Example 32

Consider the logic program P19 consisting of the following rules:

r1 : p ← q r2 : q ← r r3 : q ← s r s

This program has a unique causal answer set I3 that satisfies:

I3(p) = r ·rq2 ·r
p
1 + s·rq3 ·r

p
1

I3(q) = r ·rq2 + s·rq3

I3(r) = r

I3(s) = s

As in Example 31, we have that I3(r) = r and I3(s) = s. Furthermore, in this case,

Definition 14 implies I3(q) ≥ r ·rq2 and I3(q) ≥ s·rq3 . Then, the value of I3(q) follows

from the fact that causal answer sets are ≤-minimal models and the fact that ‘+’ is

the least upper bound of the ≤ relation. Finally, I3(p) = I3(q)·r
p
1 = (r ·rq2 +s·rq3)·r

p
1

follows in similar way. The value of I3(p) shown above is the disjunctive normal

form of this term, and it is obtained by applying addition distributivity. Here, both

addends in I3(p), that is r ·r
q
2 ·r

p
1 and s·rq3 ·r

p
1 , are causal justifications of p w.r.t. the

unique answer set of the program. �

3.3.2 Causal Semantics for Programs with Negation-as-Failure

We now extend the causal answer set semantics to logic programs with negation-

as-failure. For this, the closed world assumption is directly translated into the lan-

guage of justifications, assuming that everything that has no justification is false

by default. Accordingly, negative literals are assumed to hold by default, without

requiring further justification. This contrasts with the previously presented off-line

and LABAS justifications, which further explain why negative literals hold. The

next section shows how causal justifications can be extended in order to provide

such information. Let us start with an example motivating why omitting the jus-

tification of negative literals, thus treating them as defaults, may provide intuitive

explanation in some scenarios.

Example 33 (Ex. 23 continued)

Consider a variation of the scenario of Example 23 in which shooting the victim

may fail in several ways: the victim may be wearing a bulletproof vest, the gun-

powder may be wet, etc. This is an instance of the well-known qualification prob-

lem (McCarthy 1977): any comprehensive knowledge base for general commonsense

reasoning may contain hundreds or thousands of exceptions to any rule, which may

also be impossible to list in advance. As usual in answer set programming, this

problem can be solved by adding abnormality predicates to the body of all rules.

In particular, rules (2-7) are rewritten as follows:

r1 : dead ← haemorrhage ∧ not ab1 (13)

r2 : haemorrhage ← impact ∧ not ab2 (14)

r3 : impact ← bullet ∧ not ab2 (15)

r4 : bullet ← gunpowder ∧ not ab3 (16)

r5 : gunpowder ← trigger(suzy) ∧ not ab4 (17)

trigger(suzy) (18)

Then, exceptions can be added in an elaboration tolerant manner by adding new

rules as follows:

r6 : ab2 ← bulletproof (19)

r7 : ab4 ← wet (20)

Let P20 be the program containing rules (13-20). �

For justifications, Example 33 sets out a new challenge: a justification for the

lack of all exceptions may be much bigger than the justification for the conclusion

without exceptions. Furthermore, from a causal perspective, saying that the lack

of an exception is part of a cause (e.g., for dead) may seem rather counterintuitive.

It is not the case that the victim is dead because the gunpowder was not wet, or

because the victim was not wearing a bulletproof vest, or whatever other possible

exception might be added in the future.

This is a well-known problem in the causal literature (Maudlin 2004; Hall 2007;

Halpern 2008; Hitchcock and Knobe 2009): in particular, Hitchcock and Knobe

(2009) provides an extended discussion with several examples showing how people

ordinarily understand causes as deviations from a normal or default behaviour. In

this sense, by understanding falsity of exceptions as the default situation, we obtain

that, when no exception is true with respect to the causal answer set, the causal

justifications for dead in programs P14 and P20 are the same. This interpretation

of negation-as-failure can be captured by the following definitions:

Definition 17 (Causal Program Reduct)

The (causal) reduct of an extended program P with respect to a causal interpreta-

tion I , in symbols P I , is the result of

1. removing all rules such that I (b) 6= 0 for some b ∈ body−(r),

2. removing all the negative literals from the remaining rules. �

Definition 18 (Causal Answer Set)

We say that a causal interpretation I is a causal answer set of an extended pro-

gram P iff I is a causal answer set of the positive program P I . �

Example 34 (Ex. 33 continued)

Let I4 be an interpretation such that I4(A) = I1(A) for all literals A occurring in the

program P14, and I4(A) = 0 for all other literals occurring in program P20. Then,

r
p
1

r
q
2

r r3 s

(a)

p+

q+

r+ s+

t−

⊥ ⊤

+

+ +

−

+

+

(b)

Fig. 20: Causal graph and off-line justification of p w.r.t. the unique answer set of

P5 (see Example 6 on page 11 and Example 35).

it is easy to see that P I4
20 = P14 ∪ {(19), (20)} and, thus, that I4 is the ⊑-minimal

model of P I4
20. Note that 0 is the bottom value and there are no rules assigning

greater values to bulletproof or wet and, thus, neither to any of the abi . That is,

the unique answer sets of programs P14 and P20 agree on the causal values assigned

to all literals they have in common. �

We note that the behaviour of causal justifications in Example 33 is similar to

LABAS justifications in the sense that, in the latter, the defaults are not further

explained either. This happens because there are no derivations for any abnormality

atom abi . On the other hand, if exceptions could be derived, then the behaviour

would be different. For instance, let P21 be the program obtained from P20 by

replacing rule (19) by the following two rules

r6 : ab2 ← bulletproof ∧ not ab5 (21)

r8 : ab5 ← damaged (22)

plus the facts bulletproof and damaged. In this case, ab2 is still false, so the causal

justification of dead remains the same. However, now there is a derivation for ab2
which is ‘attacked’ by damaged, so a LABAS justification further justifies the fal-

sity of exception ab2 in terms of damaged. The following example illustrates some

similarities and differences between causal and off-line justifications.

Example 35 (Ex. 6 continued, page 11)

Let us now consider the program P5 and the following labelling of its rules

r1 : p ← q r2 : q ← r ∧ s r3 : r ← not t s

Then, the unique causal answer set I5 of program P5 satisfies:

I5(p) = (r r3 ∗ s)·r
q
2 ·r

p
1

I5(q) = (r r3 ∗ s)·r
q
2

I5(r) = r r3

I5(s) = s

I5(t) = 0

Figure 20a depicts the causal graph associated with I5(p), while Figure 20b depicts

the off-line justification of p+ for the sake of comparison. Note that the causal

graph can be obtained from the off-line justification by removing the ⊥, ⊤ and all

negatively labelled vertices plus all the edges connected to these vertices (where

the edges are inverted). Note that the only change in the causal justification of p

in this example with respect to that in program P18 is the renaming of the node r

as r r3 , while off-line justifications of the two programs further differ in the subgraph

rooted in r+. �

Example 36

Let us consider a scenario where there is a light bulb that turns on whenever the

switches a and b are pushed at the same time, and off whenever the switches c

and d are pushed at the same time. Assume also that the light is currently off and

the switches a and b are pushed (situation 0). This problem can be easily formalised

r
on1
11

swa0 swb0

(a)

i
on2
12

r
on1
11

swa0 swb0

(b)

Fig. 21: Causal justifications of the truth of on1 and on2.

as a logic program P22 consisting of rules13:

r1t+1 : ont+1 ← swat ∧ swbt r2t+1 : offt+1 ← swct ∧ swdt (23)

for t ≥ 0, plus the facts off0, swa0 and swb0. As usual, inertia is represented by the

following pair of rules:

i1t+1 : ont+1 ← ont ∧ not offt+1 (24)

i2t+1 : offt+1 ← offt ∧ not ont+1 (25)

for t ≥ 0. We also have an integrity constraint

← ont ∧ offt (26)

ensuring that on and off cannot hold at the same time. This program has a complete

well-founded model and, thus, a unique answer set, in which ont holds for every

time t > 0. Figures 21a and 21b respectively depict the causal justifications of on1
and on2 w.r.t. that answer set. �

13 For the sake of simplicity, we avoid introducing a first order language here and indirectly use
the propositional logic program that is produced through grounding.

As illustrated by the above example, understanding negation-as-failure as a de-

fault (which does not need to be further explained), allows that causal justifications

are ‘preserved’ by inertia in the following sense: at any situation t + 1 if nothing

happens, then the causal justification of ont+1 can be obtained by adding to the

causal justification of ont , an edge from iont

1t to i
ont+1

1t+1 . True persistence of justifi-

cations, that is, exactly the same justification preserved by inertia, can be obtained

by selecting some rule labels, in this case the labels associated with inertia (i1t+1

and i2t+1), as not forming part of the causal justifications, and thus of the causal

graphs. In such case, the causal graph for ont at any situation t would be the one

depicted in Figure 21a. In contrast, the number of off-line and LABAS justifications

grows exponentially with the number of situations in which nothing happens. This

will be discussed in more detail in Section 3.6.

3.3.3 Explaining Negative Literals in Causal Justifications

As we have seen, one major difference between causal justifications and the two

previous approaches, off-line and LABAS justifications, is the way in which all

negative literals that are true w.r.t. the answer set in question are assumed to hold

by default, so they do not need further justification. This behaviour allows to get

an important reduction in the number of justifications in examples that involve

exceptions or defaults like inertia (as was illustrated in Example 36). On the other

hand, there are scenarios in which justifications for negative literals are valuable.14

Consider, for instance, the following example from (Cabalar and Fandinno 2017):

Example 37

A drug d in James Bond’s drink causes his paralysis p provided that he was not

given an antidote a that day. We know that Bond’s enemy, Dr. No, poured the

drug and that Bond is daily administered an antidote by the MI6, unless it is a

holiday h:

r1 : p ← d , not a (27)

r2 : a ← not h (28)

d (29)

Then, {a, d} is the unique answer set of the program consisting of rules (27-29).

Since p is false with respect this answer set, the causal value associated to it is 0,

that is, it has its value by default without further explanation. On the other hand,

Figures 22a and 22b respectively depict the off-line and LABAS justifications ex-

plaining that p does not hold because a is somehow preventing it. The exten-

sion of causal justifications, presented in this section, associates the causal value

(∼ra2 ∗ d)·r
p
1 to p in this scenario, pointing out that rule r2 (and, thus a) is what

prevents p from becoming true. A causal reading of this expression is that “a has

prevented (through rule r2) d to cause p (through rule r1)” or, equivalently, “if it

was not for rule r2 (implying a), d would cause p through rule r1”. Suppose now

14 A more detailed elaboration of this argument can be found in Section 3.6.

p−

a+

h−

⊥

−

−

−

(a)

p−

A1

not a−

asm

a+

A2

not h+
asm

−

+

+

(b)

p+

d+ a−

h+

⊤

+ −

−
+

+

(c)

p+

A1

d+

fact not a+
asm

a−

A2

not h−

asm

h+

fact

+ +

−

−

+

(d)

Fig. 22: Off-line and LABAS justifications of p w.r.t. the unique answer set of Ex-

ample 37.

that it is a holiday, so fact h is added to the program (27)-(28). Then, a is itself

disabled and d is free to cause p. The causal justification of p in this case is d ·rp1
(which corresponds to the graph with a single edge from d to r

p
1), which reflects the

fact that d has caused p, but without keeping any record about the fact that h has

also been necessary for this to happen. On the other hand, we can see in Figures 22c

and 22d that both off-line and LABAS justifications keep track of this dependency.

The extended causal justifications also keep track of this dependency and associate

the casual value (∼∼h ∗ d)·rp1 + (∼ra2 ∗ d)·r
p
1 with p. Here, the first addend can be

informally read as “h has allowed d to cause p (through rule r1).” Double negation

in front of h is introduced to distinguish between the philosophically distinct con-

cepts15 of productive cause (in this case d) and other contingently counterfactual

dependencies (in this case h), though this distinction is not of particular relevance

in the context of justifications. As before, the second addend can be informally read

as “if it was not for rule r2 (implying a), d would cause p through rule r1” (even

without the presence of h). �

In order to introduce information about negative literals in causal justifications,

Cabalar and Fandinno (2017) extended causal justifications with a negation inspired

by why-not provenance justifications (see Section 3.4; Damásio et al. 2013). We now

review this extension, starting with the introduction of negation in causal terms as

follows:

Definition 19 (Extended Causal Terms)

Given a set of atoms At and a set of labels Lb, an extended (causal) term (e-term

15 A productive cause is an event connected to its effect by a causal chain as explained at the
beginning of Section 3.3. For a thorough philosophical explanation about the differences between
productive causes and contingently counterfactual dependencies we refer to (Hall 2004; Hall
2007).

Pseudo-complement

t ∗ ∼t = 0
∼∼∼t = ∼t

De Morgan

∼(t+u) = (∼t ∗∼u)
∼(t ∗u) = (∼t+∼u)

Weak excl. middle

∼t + ∼∼t = 1

appl. negation

∼(t · u) = ∼(t ∗ u)

Fig. 23: Properties of the ‘∼’ operator.

for short), t is recursively defined as one of the following expressions

t ::= l |
∏

S |
∑

S | t1·t2 | ∼t1

where l ∈ Lbext
def= { rai

∣

∣ ri ∈ Lb and a ∈ Atext }, t1, t2 are in turn terms, and S

is a (possibly empty and possibly infinite) set of terms. An e-term is elementary if

it has the form l , ∼l or ∼∼l with l ∈ Lbext being an extended label. �

Definition 20 (Extended Causal Values)

An extended (causal) value (e-value for short) is each equivalence class of e-terms

under axioms for a completely distributive (complete) lattice with meet ‘∗’ and join

‘+’ plus the axioms of Figures 18 and 23. The set of e-values is denoted by ELb. �

As with causal values, we will use any of the members of the class as repre-

sentative of the extended casual value. Note that [0] = {0, ra1 ∗ ∼r
a
1 , . . . , } and

[1] = {1,∼ra1 +∼∼ra1 , . . . } are no longer singleton sets. The definition of disjunc-

tive and graph normal form is now strengthened by requiring that negation ‘∼’ or

double negation ‘∼∼’ only occurs in front of labels and extended atoms. Similarly,

the graph normal form also requires now that negation ‘∼’ or double negation ‘∼∼’

only occurs in front of labels and extended atoms.

Interpretations are extended in a straightforward way: an e-interpretation is a

mapping I : Atext −→ ELb assigning an e-value to each extended atom such that

I(a) = 0 or I(¬a) = 0 for every atom a ∈ At. For interpretations I and J we

say that I ≤ J when I(a) ≤ J (a) for each atom a ∈ Atext. As above, there is a

≤-bottom e-interpretation 0 (resp. a ≤-top e-interpretation 1) that stands for the

e-interpretation mapping each extended atom a to 0 (resp. 1). The value assigned

to a negative literal not a by an e-interpretation I, denoted as I(not a), is defined as

I(not a) def= ∼I(a), as expected. Similarly, for any e-term t , its valuation I(t) def= [t]

is the equivalence class of t .

To define the semantics of logic programs for extended causal justifications a

slight extension in the syntax is also needed: we allow that b1, . . . , bn in (1), are

not only extended atoms, but also e-terms. For instance, p ← q ∧ (a ∗ ∼b), with

p, q ∈ Atext and a, b ∈ Lb, is a valid rule in this extended syntax. Furthermore,

only normal logic programs are considered.

Definition 21 (E-Model)

A e-interpretation I satisfies a rule like (1) with k = 1 iff
(

I(b1) ∗ . . . ∗ I(bn) ∗ I(not c1) ∗ . . . ∗ I(not cm)
)

· rh1

i ≤ I(h1) (30)

and I is an e-model of P , written I |= P , iff I satisfies all rules in P . �

Definition 22 (E-Reduct)

Given a normal program P and an interpretation I, by PI we denote the positive

program containing a rule of the form16:

h1 ← b1, . . . , bn , I(not c1), . . . , I(not cm) (31)

for each rule of the form (1) in P . �

Program PI is positive and it has a ≤-least e-model17. By Γ̂P (·), we denote

the operator18 mapping each e-interpretation I to the ≤-least e-model of pro-

gram PI . Furthermore, Γ̂2
P (·) denotes the operator over e-interpretations resulting

of applying Γ̂P to the result of is its application to any e-interpretation, that is,

Γ̂2
P (I)

def= Γ̂P (Γ̂P (I)). This operator Γ̂2
P is monotonic and so, by Knaster-Tarski’s

theorem, it has a least fixpoint LP and a greatest fixpoint UP
def= Γ̂P (LP). These

two fixpoints respectively correspond to the justifications for true and for non-false

(that is, either true of undefined) extended atoms in the (standard) well-founded

model. To capture justifications with respect to answer sets, we use the negative

reduct from Definition 3.

Definition 23 (Extended Causal Answer Sets)

Given a normal extended program P one of its standard answer sets M , and a set

of assumptions U ⊆ M such that WFNR(P,U) = M , the extended causal answer set

(e-answer set) corresponding to M and U is a function mapping each literal to an

e-value as follows:

MU (a) def= LQ(a) MU (not a) def= ∼UQ(a)

with Q = NR(P ,U). �

The notion of causal justification is extended as expected.

Definition 24 (Extended Causal Justification)

Given a logic program P , an answer set M of P and a set of assumptions U ⊆ M , a

term without sums c is an extended causal justification of some literal l ∈ {a, not a}

w.r.t. P , M and U if c is an addend in the minimal disjunctive normal form of

MU (l). For any causal justification of l w.r.t. P , M and U graph(c) is an extended

causal graph (justification). �

Example 38 (Ex. 37 continued)

Let P23 be the logic program containing rules (27-28). This program has a complete

well-founded model which coincides with its unique answer set: M19 = {a, d}. Then,

the possible assumptions with respect to this answer set are those U such that

16 Note that I(not ci) is a possibly infinite causal term for each ci .
17 Here, we take ≤-minimal models instead of ⊑-minimal models as in earlier sections. These two

concepts coincide for normal programs, so we use the former for simplicity.
18 The operator Γ̂P (·) is analogous to the operator ΓP (·) defined in Section 2, but using e-

interpretations instead of sets of atoms.

U ⊆ {h}, that is, {} and {h}. Usually ⊆-minimal assumptions are used and, thus,

we have that P23 = NR(P23, {}) and that

Γ̂P23
(0)(p) = d ·rp1

Γ̂P23
(0)(d) = d

Γ̂P23
(0)(a) = ra2

Γ̂P23
(0)(h) = 0

Γ̂2
P23

(0)(p) = (∼ra2 ∗ d)·r
p
1

Γ̂2
P23

(0)(d) = d

Γ̂2
P23

(0)(a) = ra2

Γ̂2
P23

(0)(h) = 0

Γ̂3
P23

(0)(p) = (∼ra2 ∗ d)·r
p
1

Γ̂3
P23

(0)(d) = d

Γ̂3
P23

(0)(a) = ra2

Γ̂3
P23

(0)(h) = 0

Note that Γ̂2
P23

(0) = Γ̂3
P23

(0) also implies that Γ̂2
P23

(0) = Γ̂4
P23

(0) and, thus, Γ̂2
P23

(0)

is the least fixpoint of the Γ̂2
P23

(0) operator. Note also that Γ̂2
P23

(0)(p) = (∼ra2 ∗d)·r
p
1

is precisely the causal justification shown in Example 37 to be associated with p

in this scenario. Let now P24 = P23 ∪ {h}, which also has a complete well-founded

model and unique answer set: M20 = {p, d , h}. In this case, we have

Γ̂P23
(0)(p) = d ·rp1

Γ̂P23
(0)(d) = d

Γ̂P23
(0)(a) = ra2

Γ̂P23
(0)(h) = h

Γ̂2
P23

(0)(p) = (∼ra2 ∗ d)·r
p
1

Γ̂2
P23

(0)(d) = d

Γ̂2
P23

(0)(a) = ∼h·ra2

Γ̂2
P23

(0)(h) = h

Γ̂3
P23

(0)(p) = . . .

Γ̂3
P23

(0)(d) = d

Γ̂3
P23

(0)(a) = ∼h·ra2

Γ̂3
P23

(0)(h) = h

with Γ̂4
P23

(0)(p) = Γ̂3
P23

(0)(p) = (∼∼h ∗ d)·rp1 + (∼ra2 ∗ d)·r
p
1 as also mentioned in

Example 37. �

An extended causal justification is said to be inhibited when it contains a negated

label (non-double negated). Inhibited justifications point out derivations that could

have justified the truth value of the atom, but that have been prevented to do so.

The negated subterms are the inhibitors of the extended causal justification. Actual

extended causal justifications are those that only contain non-negated and double

negated subterms. In Example 38, the casual term (∼∼h∗d)·rp1 represents the actual

extended causal justification of p, while (∼ra2 ∗d)·r
p
1 is an inhibited extended causal

justification that points out that “had it not been for rule r2, then d would cause p

to be true through rule r1 (without the need of h)”. Note that the presence of the

negated subterm ∼ra2 in the inhibited extended causal justification (∼ra2 ∗ d)·r
p
1 is

similar to the attack from the argument with conclusion a to the argument with

conclusion p in the attack tree used to construct the LABAS justification.

Example 39 (Ex. 36 continued)

Continuing with the problem introduced in Example 36 (page 38), we can see

that Γ̂i
P22

(0)(on1) = (swa0 ∗ swb0)·r11 for all i ≥ 1. That is, the extended causal

justification of on1 has precisely the same graph as the (non-extended) causal jus-

tification depicted in Figure 21a (page 38). We also have that Γ̂i
P22

(0)(off1) =

(∼swa0 ∗off0)·i22+(∼swb0 ∗off0)·i22+(∼r11 ∗off0)·i22 for all i ≥ 2. This points out

that off1 would be true by inertia (rule i22) if any of the facts swa0 or swb0 or the rule

r11 had not been in the program. It can be checked that (swa0 ∗ swb0)·r11·i12 is the

extended causal justification of on2. Recall that this is the (non-extended) causal

justification of on2, whose corresponding causal graph is depicted in Figure 21b

(page 38). �

Example 40 (Ex. 38 continued)
Recall that, in the unique answer set M19 = {d , a} of program P23, the atom p is

false. Extended causal justifications also allow to justify negative literals and we

have that not p is explained by the causal value ∼∼ra2 + ∼d + ∼rp1 . Here, ∼∼ra2
is the actual extended causal justification explaining why p is false, while ∼d and

∼rp1 are inhibited extended causal justifications that point out that p would also

be false if either d or r1 were removed from the program. �

Note that in Example 40 the application operator ‘·’ does not appear in the

extended causal justification of not p. In fact, this is the general case for negative

literals and, thus, extended causal justifications for negative literals do not keep

track of the derivation order among rules. An algebraic treatment that allows to

keep track of this derivation order is still an open topic. It is also an open topic to

explain negative literals for disjunctive programs.

3.4 Why-not Provenance Justifications

Why-not provenance (Damásio et al. 2013) is a declarative logical approach, which

extracts non-graph based justifications for the truth value of atoms with respect to

the (complete) well-founded model of normal logic programs. It can furthermore

be used to explain the truth value of atoms with respect to the answer set seman-

tics. The approach has been implemented in a meta-programming tool (Damásio

et al. 2015) available at http://cptkirk.sourceforge.net. As mentioned in Sec-

tion 3.3.3, the way extended causal justifications have been defined is inspired by

this approach, therefore, we here just introduce the differences between these two

approaches, avoiding the overlapping material.

As already mentioned, the first major difference compared to extended causal

justifications (and the other justifications approaches reviewed in Section 3) is the

non-graph nature of why-not provenance. Instead, why-not provenance justifica-

tions are sets of annotations, each one expressing a possible modification of the

program to achieve a particular truth value of the justified atom w.r.t. the well-

founded model (of the modified program). In other words, why-not provenance

computes justifications expressing how the atom can be made true, false, or unde-

fined w.r.t. the well-founded model or the answer set semantics. The justifications

for the actual truth value of the atom are those that do not imply any modification

on the program. This can be achieved by adding the axiom

(t ·u) = (t ∗ v) (32)

to those defining e-values (Definition 20). That is, the non-commutative operator ‘·’

is replaced by the commutative one ‘∗’, effectively removing the order of application

of rules from the justifications.

The second difference compared to extended causal justifications is that why-not

provenance does not distinguish between productive causes and other counterfactual

dependencies, which is achieved by adding the double negation elimination axiom:

∼∼t = t (33)

Definition 25 (Why-Not Provenance Values)

A why-not provenance value (w-value for short) is each equivalence class of e-terms

(Definition 19, page 19) under axioms for a completely distributive (complete) lat-

tice with meet ‘∗’ and join ‘+’ plus the axioms of Figures 18 and 23 and the axioms

(t ·u) = (t ∗ v) and ∼∼t = t . The set of w-values is denoted WLb. �

Due to the addition of axioms (32) and (33), w-values form a free boolean alge-

bra19 generated by Lb. The definitions of w-interpretation, w-model and reduct are

analogous to the ones in Section 3.3.3, but replacing e-values by w-values. We will

use Ĩ, J̃ and their variations to denote w-interpretations. By Γ̃P (Ĩ) we denote the

least w-model of program P Ĩ and by Γ̃2
P (I)

def= Γ̃P (Γ̃P (I)) we denote the result of

applying Γ̃P to the result of its application to Ĩ. Let us denote by TP and TUP ,

the least and greatest fixpoint of the operator Γ̃2
P .

Notation 2

In order to closely follow the notation used in (Damásio et al. 2013), we will repre-

sent the meet as conjunction ‘∧’ instead of as product ‘∗’ and the joint as disjunction

‘∨’ instead of ‘+’ when representing w-values. We will also write negation as ‘¬’

instead of ‘∼’ to strengthen the fact that it now acts as classical negation and omit

the superindex of labels. �

Note that the intuition of the two former operators is as before: conjunction ‘∧’

indicates joint interaction, disjunction ‘∨’ represents alternative justifications. On

the other hand, now negation ‘¬’ denotes hypothetical changes to the program (ei-

ther removal or addition) that may lead to the literal belonging to the well-founded

model.

Example 41 (Ex. 10 continued)

Let us label each rule in the program P8 as follows

r1 : p ← not q r2 : r ← not p r3 : s ← not r

As mentioned in Example 10, this program has a complete well-founded model:

M8 = {p, s}. We also have that the following extended causal justifications:

Γ̂P8
(0)(p) = r

p
1

Γ̂P8
(0)(q) = 0

Γ̂P8
(0)(r) = r r2

Γ̂P8
(0)(s) = r s3

Γ̂2
P8
(0)(p) = r

p
1

Γ̂2
P8
(0)(q) = 0

Γ̂2
P8
(0)(r) = ∼rp1 ·r

r
2

Γ̂2
P8
(0)(s) = ∼r r2 ·r

s
3

Γ̂3
P8
(0)(p) = r

p
1

Γ̂3
P8
(0)(q) = 0

Γ̂3
P8
(0)(r) = ∼r1·r

r
2

Γ̂3
P8
(0)(s) = ∼∼r1·r

s
3 +∼r r2 ·r

s
3

and, it can be checked that, Γ̂4
P8
(0) = Γ̂2

P8
(0). Then, applying the above two ax-

19 In fact, the original definition relies on a free boolean algebra instead of causal terms and
assumes the notation of logical formulas to represent its values (see Notation 2 below).

ioms (32-33) and the rewriting of Notation 2, we have that

Γ̃4
P8
(0)(p) = r1

Γ̃4
P8
(0)(q) = 0

Γ̃4
P8
(0)(r) = ¬r1 ∧ r2

Γ̃4
P8
(0)(s) = r1 ∧ r3 ∨ ¬r2 ∧ r3

The intuition behind r1 ∧ r3 is similar to the one in extended causal justifications,

but without derivation order, distinction between productive causes and other con-

tingently counterfactual dependencies: r1 ∧ r3 means that “s is true because both

r1 and r3 are in the program”. �

In other words, the least fixpoint of Γ̃2
P can be obtained from the least fixpoint of

Γ̂2
P by replacing applications ‘·’ by products ‘∗’, removing every double negation

symbols ‘∼∼’ and, then, applying the rewriting of Notation 2. More formally, let

λ : ELb −→WLb be this transformation from e-values to w-values, that is, λ is

defined in the following recursive way:

λ(t) def=

λ(u) ∧ λ(w) if t = u ⊙ v with ⊙ ∈ {∗, ·}

λ(u) ∨ λ(w) if t = u + v

¬λ(u) if t = ∼u

l if t = l with l ∈ (Lb ∪Atext)

with t in graph normal form.

Note that, similar to LABAS justifications, there are no extended causal jus-

tifications for atoms for which there is no derivation. For instance, there is no

justification for the atom p w.r.t. to a program consisting of a single rule p ← q .

On the other hand, as in off-line justifications, there are why-not provenance justi-

fications for those atoms. In our running example, p is associated with the why-not

provenance information ¬not(p) ∨ r1 ∧ ¬not(q) where r1 is the label associated

to the rule p ← q . This difference is due to the use of an extended program to

compute why-not provenance information.

Definition 26 (Provenance Program)

Given a normal program P , the why-not provenance program is P(P) def= P ∪ P ′,

where P ′ contains a labelled fact of the form (¬not(a) : a) for each extended atom

a ∈ Atext not occurring as a fact in P . �

We write P instead of P(P) when the program P is clear from the context. To

compute the why-not provenance information of some normal program P , we will

be interested in the least and greatest fixpoints of the Γ̃2
P operator with respect to

the provenance program P (corresponding to P), instead of those of P itself. That

is, we will use the least and greatest fixpoints TP and TUP. It is also worth noting

that these fixpoints can be obtained from the fixpoints of extended causal operator

with respect to the extended program, that is, TP = λ(LP) and TUP = λ(UP).

Definition 27 (Provenance Information)

Given a normal program P , why-not provenance information is defined as a mapping

from literals20 into w-values satisfying:

WhyP (a)
def= TP(a)

WhyP (not a)
def= ¬TUP(a)

WhyP (undef a)
def= ¬WhyP (a) ∗ ¬WhyP (not a)

for each extended atom a ∈ Atext. �

Intuitively, each disjunct in the minimal disjunctive normal form of provenance

information corresponds to a justification about to why the atom does or does not

have the respective truth value w.r.t. the well-founded model. That is, the disjunct

in WhyP (a), WhyP (not a), and WhyP (undef a) respectively explain why a is (not)

true, false, and undefined w.r.t. the well-founded model. The actual truth value of a

can be spotted if a disjunct in the respective justification (WhyP (a), WhyP (not a),

or WhyP (undef a)) does not contain any negation ¬.

Example 42 (Ex. 41 continued)

Continuing with our running example, we have that P8 = P(P8) consists of the

following rules:

r1 : p ← not q

r2 : r ← not p

r3 : s ← not r

¬not(p) : p

¬not(q) : q

¬not(p) : r

¬not(s) : s

Since there is no fact q in P8, we have that (¬not(q) : q) belongs to P8. Further-

more, this is the unique rule inP8 with q in the head and, consequently, we have that

Γ̂i
P8

(0)(q) = ¬not(q) for all i ≥ 1. This implies that TP(q) = TUP(q) = ¬not(q)

and, thus, that

WhyP8
(q) = ¬not(q) (34)

WhyP8
(not q) = not(q) (35)

WhyP8
(undef q) = 0 (36)

Note that WhyP8
(q) = ¬not(q) corresponds to the off-line justification of q consist-

ing of a unique edge (q−,⊥,−). On other hand, since there is no rule in P with q

in the head, there is no LABAS nor (extended) causal justification of q . Similarly,

to the computation shown in Example 41, we also have that

Γ̃i
P8
(0)(p) = ¬not(p) ∨ r1 ∧ not(q)

Γ̃i
P8
(0)(r) = ¬not(r) ∨ r2 ∧ not(p) ∧ ¬r1 ∨ r2 ∧ not(p) ∧ ¬not(q)

Γ̃i
P8
(0)(s) = ¬not(s) ∨ r3 ∧ not(r) ∧ ¬r2 ∨ r3 ∧ not(r) ∧ ¬not(p)

∨ r3 ∧ not(r) ∧ r1 ∧ not(q)

20 In this section, we use a more general notion of ‘literal’, where an atom a may not only be
proceeded by not, but also by undef .

for all i ≥ 2. This implies that TP(p) = TUP(p) = ¬not(p) ∨ r1 ∧ not(q) and that

WhyP8
(p) = ¬not(p) ∨ r1 ∧ not(q)

WhyP8
(not p) = not(p) ∧ ¬r1 ∨ not(p) ∧ ¬not(q)

WhyP8
(undef p) = 0

Following a similar procedure, it can be checked that

WhyP8
(r) = ¬not(r) ∨ r2 ∧ not(p) ∧ ¬r1 ∨ r2 ∧ not(p) ∧ ¬not(q)

WhyP8
(not r) = not(r) ∧ ¬r2 ∨ not(r) ∧ ¬not(p) ∨ not(r) ∧ r1 ∧ not(q)

WhyP8
(undef r) = 0

that WhyP8
(s) is

¬not(s) (37)

∨ r3∧not(r)∧¬r2 (38)

∨ r3∧not(r)∧¬not(p) (39)

∨ r3∧not(r)∧r1∧not(q) (40)

and that WhyP8
(not s) is

not(s)∧¬r3 (41)

∨ not(s)∧¬not(r) (42)

∨ not(s)∧r2∧not(p)∧¬r1 (43)

∨ not(s)∧r2∧not(p)∧¬not(q) (44)

Comparing the conjunction r1 ∧ r3 obtained in Example 41 with the conjunc-

tion (40), we can observe that annotations not(r) and not(q) have been added.

This can be informally read as “s is true because both r1 and r3 are in the pro-

gram and facts r and q are not.” Note also, that not(r) ∧ r1 ∧ not(q) is one of the

disjuncts of WhyP8
(not r). This could be read as “r is false because of rule r1 and

the absence of facts r and q in the program.” �

The following definitions formalises the notion of why-not provenance justifica-

tion, i.e. a disjunct in the why-not provenance information, and the intuition behind

the meaning of each annotation in a justification. In particular, it expresses the idea

that each justification describes a modification of the program after which the atom

has the truth value of the respective justification.

Definition 28 (Why-not Provenance Justification)

Let P be a normal program, let a ∈ Atext be an extended atom and let l ∈

{a, not a, undef a} such that WhyP (l) = c1 ∨ . . . ∨ cn is the why-not provenance

information of l in minimal disjunctive normal form. Then, we say that each ci is

a why-not provenance justification of l w.r.t. P . �

Definition 29

Let P be a normal program, a ∈ Atext be an extended atom and l ∈ {a, not a, undef a}.

Let c be some why-not provenance justification of l w.r.t. P and C a set of anno-

tations such that
∧

C = c. Then, the following sets are defined, where b ∈ Atext
and r ∈ P :

KeepFacts(c) def= { b
∣

∣ b ∈ C }

RemoveFacts(c) def= { b
∣

∣ ¬b ∈ C }

MissingFacts(c) def= { b
∣

∣ ¬not(b) ∈ C }

NoFacts(c) def= { b
∣

∣ not(b) ∈ C }

KeepRules(c) def= { r
∣

∣ ri ∈ C and label(r) = ri }

RemoveRules(c) def= { r
∣

∣ ¬ri ∈ C and label(r) = ri } �

Intuitively, any disjunct cj in the why-not provenance information of some literal l

expresses a possible modification of the program such that l belongs to the well-

founded model of the resulting program. These modifications are captured by the

above sets.

For instance, MissingFacts(cj) is a set of facts that would be necessary to

add to the program in order to justify l , while NoFacts(cj) is a set of facts

that cannot be added in order to justify l . As a consequence, l will belong21 to

the well-founded model of any program resulting from adding any superset G of

MissingFacts(cj) that does not contain any fact from NoFacts(cj) (assuming that

RemoveRules(cj) = RemoveFacts(cj) = {}).

Example 43 (Ex. 42 continued)

Continuing with our running example, we have that not s does not belong to the

well-founded model of P8 and that c = not(s)∧¬not(r) is a why-not provenance

justification of not s, i.e. it is a disjunct (42) of the why-not provenance information

of not s. Then, we also have MissingFacts(c) = {r} and NoFacts(c) = {s}. This

expresses that not s would belong to the well-founded model of any program P ′ =

P8 ∪G with G any set of facts that includes r but does not include s. �

Similarly, KeepFacts(cj) and KeepRules(cj) point out facts and rules that

need to be kept in the program to justify the literal while RemoveFacts(cj) and

RemoveRules(cj) state facts and rules that need to be removed from the program.

Note that, if a conjunction cj contains no negation, then it does not imply any

change in the program and, thus, constitutes an actual justification for the actual

value of the literal.

Example 44 (Ex. 43 continued)

As a further example, let c′ = r3 ∧ not(r) ∧ r1 ∧ not(q) be a why-not provenance

justification of s (the conjunction corresponding to the disjunct (40) of the why-

not provenance information of s). Informally, this conjunction expresses that “s

is true because both r1 and r3 are in the program and facts r and q are not.”

Note that KeepRules(c′) = {r1, r3} and NoFacts(c′) = {r , q}, indicating that

s remains true as long as we keep these two rules and we add neither r nor q ,

21 This has been shown in (Damásio et al. 2013, Theorem 3).

even if we remove other rules or remove or add other facts. Note also that there

is no negated annotation in c′ and, thus, RemoveFacts(c′)=MissingFacts(c′)=

RemoveRules(c′) = {}. In other words, c′ points out a that no modification is

required to make s true and, thus, it is an actual justification for the truth of s. �

The following example illustrates how why-not provenance captures justifications

of programs with even-length negative dependency cycles:

Example 45 (Ex. 4 continued)

Let us define the following labelling for program P3:

r1 : p ← not q r2 : q ← not p

As we have seen, program P3 has two answer sets, namely M3 = {p} and M4 = {q},
and an empty well-founded model. The computation of the why-not provenance
information goes as follows:

Γ̃1
P3

(0)(p) = ¬not(p) ∨ r1

Γ̃2
P3

(0)(p) = ¬not(p) ∨ r1∧not(q)∧¬r2

Γ̃3
P3

(0)(p) = ¬not(p) ∨ r1∧not(q)

Γ̃4
P3

(0)(p) = ¬not(p) ∨ r1∧not(q)∧¬r2

Γ̃1
P3

(0)(not q) = not(q) ∧ ¬r2

Γ̃2
P3

(0)(not q) = not(q) ∧ (¬r2∨¬not(p)∨r1)

Γ̃3
P3

(0)(not q) = not(q) ∧ (¬r2∨¬not(p))

Γ̃4
P3

(0)(not q) = not(q) ∧ (¬r2∨¬not(p)∨r1)

Γ̃2
P3

(0) and Γ̃3
P3

(0) respectively are the least and greatest fixpoint of Γ̂2
P3

. The case

for q and not p are symmetric. Then, the why-not provenance information for p is

as follows:

WhyP3
(p) = ¬not(p) ∨ r1∧not(q)∧¬r2

WhyP3
(not p) = not(p)∧¬r1 ∨ not(p)∧¬not(q)

WhyP3
(undef p) = not(p)∧not(q)∧r1∧r2

Note that the only why-not provenance justification without negation ¬ occurs

in WhywP3
(undef p), indicating that the actual truth value of p w.r.t. the well-

founded model is undefined. The conjunction expresses that p is undefined in the

well-founded model of P3 because of the rules r1 and r2 and the absence of the facts

p and q . �

3.4.1 Answer Set Why-not Provenance

The why-not justifications reviewed so far explain the truth value of literals with

respect to the well-founded model. Why-not provenance information of a literal

w.r.t. the answer set semantics is defined in terms of the why-not provenance of

that literal being true in the well-founded model and the non-existence of undefined

atoms in it. In other words, a literal is justified w.r.t. the answer set semantics by

referring to modifications that make the literal true w.r.t. the complete well-founded

model, which implies that it becomes the unique answer set.

Definition 30 (Answer Set Provenance Information)

Given a normal program P , the answer set why-not provenance information of a lit-

eral l ∈ Litext is defined as: AnsWhyP (l)
def= WhyP (l) ∧

∧

b∈Atext

¬WhyP (undef b).�

Definition 31 (Answer Set why-not Provenance Justification)

Let P be a normal program, let a ∈ Atext be an extended atom and let l ∈

{a, not a, undef a} such that AndWhyP (l) = c1 ∨ . . .∨ cn is the answer set why-not

provenance information of l in minimal disjunctive normal form. Then, we say that

each ci is an answer set why-not provenance justification of l w.r.t. P . �

Note that Definition 30 characterises the major difference between this justifica-

tion approach and the three previous ones: there is a unique provenance information

of a literal with respect to the whole program, not with respect to each answer set.

In the case of Example 45 the answer set provenance (Definition 30) for p, q , not p

and not q coincides with their respective provenance information (Definition 27).

Note that none of the disjuncts in the why-not provenance information of p (resp. q)

is without negation, which seems to point out that p is not true (can only be made

true through modifications of the program). The reason is that, even though p

(resp. q) is true in some answer set, it is not true in the well-founded model (it

could also be due to the well-founded model not being complete). The answer set

provenance thus points out modifications that would yield a complete well-founded

model (and, thus, a unique answer set) in which p (resp. q) is true.

The following example illustrates that even if an atom is true in the unique

answer set, the answer set provenance (as given by Definition 30) may still point

out that modifications are needed to make the atom true. This is because a unique

answer set may not be a complete well-founded model.

Example 46 (Ex. 45 continued)

Let P25 be the program

r1 : p ← not q r2 : q ← not p r3 : s ← p ∧ not s

obtained by adding rule r3 to program P3. This program has a unique answer set

M21 = {q}. Furthermore, adding rule r3 to program P3 does not change the why-

not provenance information of p or q . The computation of the why-not provenance

information for s goes as follows:

Γ̃1
P25

(0)(s) = ¬not(s) ∨ r3∧¬not(p) ∨ r3∧r1

Γ̃2
P25

(0)(s) = ¬not(s)

Γ̃3
P25

(0)(s) = ¬not(s) ∨ r3∧¬not(p) ∨ r3∧r1∧not(q)

Γ̃4
P25

(0)(s) = ¬not(s)

and we obtain

WhyP25
(s) = ¬not(s)

WhyP25
(not s) = not(s)∧¬r3 ∨ not(s)∧not(p)∧¬r1 ∨ not(s)∧not(p)∧¬not(q)

WhyP25
(undef s) = r3∧not(s)∧¬not(p) ∨ r1∧r3∧not(s)∧not(q)

That is, s is undefined in the well-founded model because of rules r1 and r3 and

the absence of the facts s and q . It would also be undefined if we added the fact p

while keeping the rule r3 and the absence of s. Furthermore, AnsWhyP25
(undef p) =

AnsWhyP25
(undef q) and, thus, ¬AnsWhyP25

(undef p) ∧ ¬AnsWhyP25
(undef q) ∧

¬AnsWhyP25
(undef s) = ¬AnsWhyP25

(undef p) ∧ ¬AnsWhyP25
(undef s) which

corresponds to

¬(not(p)∧not(q)∧r1∧r2) ∧ ¬(r3∧not(s)∧¬not(p) ∨ r1∧r3∧not(s)∧not(q))

We also have that

WhyP25
(q) = ¬not(q) ∨ r2∧not(p)∧¬r1

This implies that the answer set provenance information for q is:

AnsWhyP25
(q) = ¬not(q) ∧ ¬r3

∨ ¬not(q) ∧ ¬not(s)

∨ ¬not(q) ∧ not(p)

∨ ¬r1 ∧ r2 ∧ not(p)

The disjuncts represent different modifications of the program leading to the exis-

tence of a complete well-founded model (and, thus, a unique answer set), in which

q is true. �

Example 46 can be used to illustrate how the notion of assumption, as introduced

in Section 3.1, can be applied to why-not provenance justifications. In particular, the

disjunct ¬r1∧r2∧not(p) in AnsWhyP25
(q) suggests removing all rules with p in the

head (just r1) and not adding the fact p to the program. This can be understood

as “p needs to be assumed to be false” in a similar way as done in off-line or

extended causal justifications. In order to make this informal reading about this

last disjunct, we need to know that p is actually false in the answer set that we are

considering, i.e. M21 = {q}, because AnsWhyP25
(p) contains a symmetric disjunct

¬r2 ∧ r1 ∧ not(q) whose informal reading does not correspond to an assumption

but to an actual modification. This is not a surprise because why-not provenance

(as an unsimplified formula) can be computed in polynomial time, while deciding

whether some atom is true in some answer set of some normal program is, in general,

NP-complete. Hence, unless the polynomial hierarchy collapses, it is obvious that

why-not provenance cannot contain information about whether some atom is true

or false in some answer set. Note also that, though extended causal justifications

(as an unsimplified causal term) can be computed in polynomial time, they are

construed w.r.t. a program reduced w.r.t. the set of assumptions corresponding to

this answer set. Hence, they assume the information of true atoms in an answer set

as a given. The same approach used to define extended causal justifications w.r.t.

an answer set could be applied to why-not provenance as well.

3.5 Other Justification Approaches

In this section we informally review two other approaches that deal with justifi-

cations in answer set programming, namely justifications in rule-based answer set

computation (Béatrix et al. 2016) and the formal theory of justifications (Denecker

and De Schreye 1993; Denecker et al. 2015). Despite sharing a similar purpose with

previous approaches, the formal definition of Béatrix et al. (2016) heavily relies on

p+

t+ q−

⊤ assume

−+

++

(a)

p+

t+fact not q+
asm

q−

not p−

asm

+ +

−

−

+

(b)

r
p
1

t

(c)

Fig. 24: Off-line, LABAS, and causal justifications of p w.r.t. {p, t} and P26.

the concept of ASPeRiX computation (Lefèvre et al. 2017) and is out of the scope

of this survey. On the other hand, the purpose of the works by Denecker and De

Schreye (1993) and Denecker et al. (2015) is to study different semantics of logic

programming from the point of view of justifications rather than to provide expla-

nations that are “intelligible and easily accessible” by humans, as required by the

new GDPR.

3.5.1 Justifications in Rule-Based Answer Set Computation

Béatrix et al. (2016) study the notion of justification from a rule-based point of

view of answer set computation, that is, under the assumption that the inherent

non-determinism of answer sets is due to the guessing of the application or non-

application of rules rather than the guessing of the truth value of literals. Another

interesting point to mention is that justifications in this approach, called reasons,

are sets of rules instead of graphs. The following example illustrates these two

differences.

Example 47

Consider the following program P26:

r1 : p ← t ∧ not q r2 : q ← s r3 : s ← not p t : t

which has two answer sets: M22 = {p, t} and M23 = {q , s, t}. The rule-based reason

for the truth of the atom p with respect to the answer set {p, t} of the program P26

is the set {r1, t}. �

We may use Example 47 to highlight some similarities and differences with pre-

viously discussed justification approaches. It can be checked that the causal graph

justification (Figure 24c) for p in this example has precisely vertices t and r
p
1 , cor-

responding to the rule-based reason. Correspondences with the off-line justification,

shown in Figure 24a, are also easy to see: the application of rule r1 is represented

by the two outgoing edges from p+ to t+ and to q−, where assuming q− to be

false ensures that r1 is satisfied. Similarly, the answer set why-not provenance of p

includes the disjunct r1∧ t ∧not(q)∧¬r2, where not(q)∧¬r2 can be understood to

mean that q is assumed to be false. The LABAS justification, shown in Figure 24b,

further explains that the falsity of q depends on the truth of p, thus also using rules

r2 and r3 for the explanation. Interestingly, the answer set why-not provenance of

p has another disjunct r1 ∧ t ∧ not(q) ∧ ¬r3, which also uses rule r3 to justify p.

Note that the rule-based reason for the falsity of q w.r.t. M22 is a subset of the

reason for p, namely {r1}. This contrasts with off-line and causal justifications, in

which q is assumed to be false, and LABAS justifications, in which q is explained in

the same way as in the justification of p (flipping the justification in Figure 24b so

that q is at the top coincides with the LABAS justification of q), i.e. in terms of r3
(and implicitly r2) as well as r1 and t . The answer set why-not provenance of not q

includes the disjunct not(q) ∧ ¬r2 which, as mentioned before, can be understood

as assuming that q is false.

3.5.2 Formal Theory of Justifications

Denecker and De Schreye (1993) and Denecker et al. (2015) present an abstract

theory of justifications, suitable for describing the semantics of logics in knowledge

representation and computational and mathematical logic. In this theory, each pro-

gram induces a semantic structure called justification frame, which embodies the

potential reasons why the program’s conclusions are true. Interestingly, the authors

show that differences in various semantics can be traced back to a single difference,

namely the way in which justifications with infinite branches are handled. For in-

stance, p is justified w.r.t. program P3 = {p ← not q , q ← not p} by the following

infinite branch:

p → not q → p → not q → . . .

This is evaluated as undefined under the well-founded semantics (infinite branches

altering positive and negative literals are always evaluated as undefined under the

well-founded semantics). In contrast, it takes the value of not q under the answer

set semantics (under the answer set semantics infinite branches are evaluated to

the truth value of the first positive (resp. negative) literal whose predecessors are

all negative (resp. positive) literals), which is true w.r.t. answer set {p}, but false

w.r.t. {q}.

Contrary to the other approaches surveyed here, this work focuses on exploit-

ing justifications as mathematical objects to understand different semantics (and

propose new ones) rather than as a means to answer in a compact way, why a

conclusion has been reached. The complete justifications defined in the formal the-

ory of justifications are thus structures that contain information for all literals,

even those that are not directly related to the derivation of a literal in question.

As an explanation in the sense of the new GDPR, complete justifications are thus

not suitable as they are clearly not “concise” and likely not “intelligible and easily

accessible”, as they comprise information unnecessary for a user’s understanding.

Studying how concise and intelligible justifications can be obtained from this struc-

Table 1: Comparison of explanation approaches for consistent logic programs under

the answer set semantics.

justification

approach

type of logic

program

explanation

in terms of

derivation

steps

included

explains

off-line
justifications

normal LP literal
dependency

all one literal
(not) in
answer set

LABAS
justifications

normal
extended LP

literal
dependency

some one literal
(not) in
answer set

causal
justifications

extended LP
with nested
expressions in
the body

rule-literal
dependency

all one literal in
answer set

extended causal
justifications

normal
extended LP

rule-literal
dependency

all one literal
(not) in
answer set

why-not
provenance

normal LP rule
dependency

all one literal
(not) in the
complete
well-founded
model22

rule-based
justifications

normal LP rule
dependency

all one literal
(not) in
answer set

formal theory of
justifications

normal LP literal
dependency

all whole answer
set

tures is an interesting open topic as it would be directly applicable to several logics

and knowledge representation formalisms like argumentation.

3.6 Summary and Discussion

In Sections 3.1 to 3.5 we have surveyed the most prominent approaches for jus-

tifying the solutions to consistent logic programs under the answer set semantics.

Table 2: Comparison of explanation approaches for consistent logic programs under

the answer set semantics (continued).

justification

approach

computation

uses other

models

explanation

of negative

literals

infinite ex-

planations

infinitely

many expla-

nations

off-line
justifications

well-founded
model

assumed or
further
explained

no, if the
program is
finite

no, if the
program is
finite

LABAS
justifications

no further
explained

yes yes

causal
justifications

no assumed no no, if the
program is
finite

extended causal
justifications

well-founded
model

assumed or
further
explained

no, if the
program is
finite

no, if the
program is
finite

why-not
provenance

(do not need
answer sets)

further
explained

no, if the
program is
finite

no, if the
program is
finite

rule-based
justifications

no further
explained

no, if the
program is
finite

no, if the
program is
finite

formal theory no further
explained

yes no, if the
program is
finite

Note that throughout these sections, by referencing an answer set to justify, we

implicitly assumed that logic programs are consistent. While explaining the jus-

tification approaches, we already pointed out differences and similarities between

these approaches. Some of these are reiterated in Tables 1 and 2, which provide a

comparative overview of various features of the justification approaches.

Table 1 illustrates for which types of logic programs the different justification

approaches are defined, in which terms they explain answer sets (i.e. dependencies

between rules or literals), whether all parts of a literal’s derivation are included in a

justification, and what precisely is being explained, i.e. a literal in an answer set, a

literal not contained in an answer set, or a whole answer set. Table 2 complements

this comparison, by showing whether the justification approaches make use of logic

22 The why-not provenance corresponding to each answer set can then be obtained by forcing

programming models other than the answer set in question when constructing a

justification, whether negative literals occur in justifications and, if so, how their

truth value is explained, whether justifications may be infinite, and whether there

may be infinitely many justifications.

In the following, we discuss some of the differences between the justification ap-

proaches in more detail and highlight some of their advantages and disadvantages.

In particular, we focus on the philosophical ideas underpinning the different jus-

tifications approaches (Section 3.6.1), the problem of having exponentially many

justifications (Section 3.6.2), how different approaches deal with negation-as-failure

(Section 3.6.3), and the issues faced when dealing with large logic programs (Sec-

tion 3.6.4).

3.6.1 Explanatory Elements

Due to the usage of different definitions of answer set, the different justifications

embody distinct ideas. For instance, the intuition of off-line justifications (Sec-

tion 3.1) can be traced back to Prolog tabled justifications (Roychoudhury et al.

2000), LABAS justifications (Section 3.2) have an argumentative flavour and are

based on a correspondence between logic programs and their translation into argu-

mentation frameworks (Schulz and Toni 2015; Schulz and Toni 2016), while causal

justifications (Section 3.3) rely on a causal interpretation of rules and the idea of

causal chain (Lewis 1973). Despite their differences, these three approaches share

the fact that they explain why a literal belongs to some answer set using a “con-

cise” graph structure (in the sense that these graphs do not contain information

not related to the literal in question).

The why-not provenance (Section 3.4), which is based on the concept of prove-

nance inherited from the database literature (Green et al. 2007), shares with these

approaches the idea of building concise justifications for each literal. However, why-

not provenance justifications are set-based (instead of graph-based) and are built

without referring to a specific answer set, so justifications are answer set indepen-

dent. The justifications for a particular answer set can be obtained by “forcing” the

appropriate assumptions as done in extended causal justifications.

A similar point of view is also shared by rule-based justifications (Section 3.5.1),

which are based on the concept of an ASPeRiX computation (Lefèvre et al. 2017).

Conceptually, the major difference between this and the previously mentioned ap-

proaches lies in what is considered as assumptions, i.e. as elements that do not need

to be further justified: rules in the case of rule-based justifications and literals in

the case of the other approaches.

Finally, the formal theory of justifications (Section 3.5.2) aims to explain the

differences between different logic programming semantics by identifying how their

conclusions are justified. Contrary to the other approaches, it provides justifications

for a whole answer set instead of concise justifications for each literal. This is similar

the atoms not in the answer set as assumptions, similarly as done done for extended causal
justifications.

on+

1

swa+0 swb+0

⊤

+ +

+ +

(a)

on+

1

swa+0 fact
swb+0 fact

+ +

(b)

r
on1
11

swa0 swb0

(c)

Fig. 25: Off-line, LABAS, and causal justifications of the truth of on1.

to debugging systems (which we will overview in Section 4), which explain why a

whole set of literals is not an answer set, rather than explaining a specific literal.

3.6.2 The Problem of Exponentially Many Justifications

As mentioned in the introduction, a key point for a human-understandable answer

to the question of why some conclusion is reached is its conciseness. Most justifi-

cation approaches reviewed here have tackled this issue and provide justifications

that only contain information related to the literal in question. However, a second

issue related to conciseness is how many justifications there are. In this section, we

show that the number of justifications is in general exponential w.r.t. the size of

the program. Let us start by continuing here the discussion about the light bulb

scenario introduced in Example 36 (page 38).

Example 48 (Ex. 36 continued)

Recall that the program P22 representing this scenario consists of the following

rules:

r1t+1 : ont+1 ← swat ∧ swbt

r2t+1 : offt+1 ← swct ∧ swdt

i1t+1 : ont+1 ← ont ∧ not offt+1

i2t+1 : offt+1 ← offt ∧ not ont+1

plus the integrity constraint ← ont ∧ offt for t ≥ 0 and the facts off0, swa0 and

swb0. Recall also that this program has a complete well-founded model and, thus,

a unique answer set, in which ont holds for every time t > 0. Figures 25a, 25b

and 25c respectively depict the off-line, the LABAS and the causal justification

explaining why the light is on in situation 1. We also have that the answer set

why-not provenance of on1 corresponds to the following propositional formula:

AnsWhyP22
(on1) = ¬not(on1) ∨ ¬not(on0) ∧ not(off1) ∧ i12 ∨ swa0 ∧ swb0 ∧ r11

where swa0 ∧ swb0 ∧ r11 points out that on1 is true w.r.t. the unique answer set

(which, here, coincides with the complete well-founded model) because of facts swa0
and swb0 and rule r11. It is easy to see the similarity with Figures 25a, 25b and 25c,

in particular that swa0∧ swb0∧ r11 is precisely the conjunction of the three vertices

in these justifications. Informally, these justification can be read as “because both

switches a and b have been pushed in situation 0”.

Let us now consider the justifications for the atom on2, which is true w.r.t. the

on+

2

off−

2

off−

1

on+

1 swd−1

swa+0 swb+0 swc−0

⊤ ⊥

+

−

+ +

+ +

+
−

−

−
−

−

(a)

on+

2

off−

2

on+

1 swd−1

swa+0 swb+0

⊤ ⊥

+

−

+ +

+ +

−

−

−

(b)

Fig. 26: Off-line justifications of on2 w.r.t. the unique answer set of Example 48.

unique answer set. Figure 26 depicts two of the six possible off-line justifications

for on2. Furthermore, by replacing swd−1 with swc−1 in Figures 26a and 26b, we

obtain another two off-line justifications. Similarly, by replacing swc−0 with swd−0
in Figure 26a, we obtain another off-line justification and, by replacing both swc−0
and swd−1 respectively with swd−0 and swc−1 , we obtain the sixth one. Figure 27

on+

3

on+

2 off−

3

off−

2

off−

1 swc−2

on+

1 swc−1

swa+0 swb+0 swc−0

⊤ ⊥

+

+

−

−

+ +

+ +

+

+
−

−

−

−
−

−

−

Fig. 27: Off-line justification of on3 w.r.t. the unique answer set of Example 48.

depicts one of the off-line justifications of on+3 and, by replacing any subset of

{swc−1 , swc
−
2 , swc

−
3 } by its corresponding subset of {swd−1 , swd

−
2 , swd

−
3 }, we obtain

another 7 alternative off-line justifications. That is, the number of off-line justifica-

tions grows exponentially with the number of situations in which nothing happens.

on2
+

A1

swa0
+

fact swb0
+

fact not off2
+

asm

off2
−

A2

not on1
−

asm

on1
+

A3

+ + +

−

−

+

+ +

(a)

on2
+

A1

swa0
+

fact swb0
+

fact not off2
+

asm

off2
−

A2

not on2
−

asm

+ + +

−

−

+

(b)

Fig. 28: LABAS justifications of on2 w.r.t. the unique answer set of Example 48.

i
on2
12

r
on1
11

swa0 swb0

Fig. 29: The unique causal justification of on2 w.r.t. the unique answer set of Ex-

ample 48.

Similarly, the number of why-not justifications23 (i.e. disjuncts in the answer set

provenance information) of ont grows exponentially, because the conjunction of all

atoms in an off-line justification plus the rules used to derive those atoms form a

why-not justification (Damásio et al. 2013, Theorem 4). The number of LABAS

justifications also grows exponentially. There are two LABAS justifications for on2,

displayed in Figures 28a and 28b. The reason for the exponential explosion is that

ont can be justified through any oni with i < t . On the other hand, as explained

in Section 3.3 (page 38) (extended) causal justifications are somehow preserved by

inertia in the sense that, at any situation t + 1, if nothing happens, then the jus-

tification of ont+1 can be obtained by adding to the justification of ont an edge

from iont

1t to i
ont+1

1t+1 . For instance, Figure 29 shows the unique (extended) causal

justification of on2. �

23 Why-not information can be obtained in polynomial time and size w.r.t. the program. However,
rewriting it as a disjunction of minimal conjuncts may require exponential space.

Despite the fact that understanding negation-as-failure as a default allows to

exponentially reduce the number of causal justifications on some knowledge rep-

resentation scenarios as illustrated by the above example, there still exist logic

programs that produce an exponential number of causal justifications:

Example 49

Consider the following logic program adapted from (Cabalar et al. 2014):

p1 ← q1

p1 ← u1

pi ← pi−1 ∧ qi for i ∈ {2, . . . ,n}

pi ← pi−1 ∧ ui for i ∈ {2, . . . ,n}

qi for i ∈ {1, . . . ,n}

ui for i ∈ {1, . . . ,n}

whose unique answer set is {p1, q1, u1 . . . , pn , qn , un}. Note that p1 can be justified

using the facts q1 or u1; the atom p2 can be justified using the sets of facts {q1, q2},

{q1, u2}, {u1, q2} or {u1, u2}; and so on. It is easy to see that atom pn can be

justified using 2n different sets of facts and, thus, that the number of justifications

grows exponentially with respect to the size of the program. �

Although this logic program has no deeper knowledge representation meaning,

it points out a potential problem regarding the human-readability of the answers

provided by current justification approaches. The issue of an exponential num-

ber of justifications illustrated by Example 49 holds for any justification approach

that records minimal sets of facts used to derive the justified atom, in particular, all

justification approaches reviewed here. This does not mean that other kinds of poly-

nomial justifications can be used. For instance, for causal justifications or why-not

provenance, a non-simplified formula could be returned and, if we consider such a

formula as the justification, then it would be polynomial. In our running example,

we would have that pn is justified by the causal term (q1+u1)∗(q2+u2)∗. . .∗(qn+un)

or the why-not provenance formula (q1∨u1∨¬not(p1))∧ (q2∨u2∨¬not(p2))∧ . . .∧

(qn ∨ un ∨ ¬not(pn)). On the other hand, these non-simplified expressions are not

minimal and, thus, they do not adhere to the desired conciseness criterion for jus-

tifications. Another alternative is to provide simplified justifications, but selecting

only some of them in case a some imposed preferences (Cabalar et al. 2014). For

instance, approaches in databases (Specht 1993) and Prolog (Roychoudhury et al.

2000) implicitly impose such preferences by selecting only the first negative literal

of a rule that fails as its unique justification.

3.6.3 Interpreting Negation-as-Failure

Related to the above exponentiality problem is the way in which different ap-

proaches interpret negative literals. The definition of answer sets (Gelfond and

Lifschitz 1988; Gelfond and Lifschitz 1991) is inherently non-deterministic: a can-

didate set is (non-deterministically) selected and then checked against the program

to see whether it is the minimal model of the reduct with respect to this candi-

date. For normal logic programs, the checking part can be done deterministically

in polynomial time, for instance, by iterating the well-known direct consequences

operator introduced by van Emden and Kowalski (1976); but the non-determinism

is still present in the selection of the candidate. This non-determinism is handled

by most justification approaches by considering some part of the justification as as-

sumptions: negative literals in the case of off-line, LABAS and causal justifications;

and rules in the case of rule-based justifications (formal theory of justifications

takes a different approach, representing this by infinite branches). Regarding the

approaches that use negative literals as assumptions, a remarkable difference is

how they do or do not justify those negative literals. As the two extremes we have

LABAS and causal justifications: the former justifies all negative literals (intro-

ducing cycles in the justifications when even-length negative dependency loops are

present in the program), while the latter treats all negative literals as assumptions,

or rather defaults, that need no further explanation. In the middle, we have off-

line and extended causal justifications, which further explain some negative literals,

while treating others as assumptions (when the set of assumptions is minimised,

these approaches justify all negative literals that can be explained without intro-

ducing cycles in the justifications).

We have seen that treating negative literals as assumptions may help to (ex-

ponentially) reduce the number of justifications of some knowledge representation

problems in which negation is used to express defaults. Let us now illustrate the

opposite case, with the following example from (Schulz and Toni 2016), where jus-

tifications for negative literals are as important as those for positive literals:

Example 50

The logic program P27 in Figure 30 represents the decision support system used by

an ophthalmologist. It encodes some general world knowledge as well as an ophthal-

mologist’s specialist knowledge about the possible treatments of shortsightedness.

P27 also captures the additional information that the ophthalmologist has about

his shortsighted patient Peter. Program P27 has a unique answer set

M24 = { shortSighted, afraidToTouchEyes, student, likesSports, tightOnMoney,

correctiveLens, caresAboutPracticality, intraocularLens }

Focusing on the positive dependencies on facts and not considering dependencies

on negative literals, we can only say that Peter has been recommend to use an

intraocularLens because he is shortSighted. However, this reasoning could also lead

to the recommendation of other treatments that have the same positive dependen-

cies: glasses, contactLens or laserSurgey. Negative dependencies, on the other hand,

tell us that intraocularLens was recommended because all the other alternatives

were discarded for different reasons: glasses because Peter likesSports, contactLens

because he is afraidToTouchEyes and laserSurgey because he is a student without

richParents. �

The informal reading shown in the above example can be extracted from off-

line, LABAS, extended causal, why-not provenace and rule-based justifications, but

not from (non-extended) causal justifications. A general approach to justifications

should be able to effectively combine both interpretations of negation-as-failure,

tightOnMoney ← student ∧ not richParents

caresAboutPracticality ← likesSports

correctiveLens ← shortSighted ∧ not laserSurgery

laserSurgery ← shortSighted ∧ not tightOnMoney ∧ not correctiveLens

glasses ← correctiveLens ∧ not caresAboutPracticality∧

not contactLens

contactLens ← correctiveLens ∧ not afraidToTouchEyes∧

not longSighted ∧ not glasses

intraocularLens ← correctiveLens ∧ not glasses ∧ not contactLens

shortSighted ←

afraidToTouchEyes ←

student ←

likesSports ←

Fig. 30: Program P27 from Example 50.

something which to the best of our knowledge has not been studied in the litera-

ture yet.

3.6.4 Large Programs and Application-Oriented Considerations

Our comparison so far has concentrated on the theoretical, or even philosophical,

nature of justification approaches. Another important, and distinguishing, aspect

of justification approaches is their applicability when solving real-world problems.

In such situations, various challenges arise.

Firstly, representing a real-world problem may result in a large logic program,

where literals may have long derivations, i.e. their truth value depends on a large

number of rules. It is then not clear, which information a justification should com-

prise in order to be, on the one hand, succinct enough for humans to understand,

but, on the other hand, complete enough to provide all important information.

For example, justification approaches where all derivation steps are included in the

justification, that is all approaches other than LABAS justifications, may struggle

with the succinctness when explaining a large logic program, as explanations grow

with longer derivations. In contrast, LABAS justifications are independent of the

derivation length. However, a large logic program may also comprise more depen-

dencies on negative literals, thus increasing the size of LABAS justifications. More

generally, it is an open problem how to effectively deal with the growing size (as

well as the previously mentioned exponential number) of justifications.

In order to use justifications in real-world problems, they need to be automatically

constructed. Currently, only LABAS, causal and why-not provenance justifications

have been implemented in working prototypes.24 A related issue is which type of

logic programs can be explained. The only approach able to handle non-normal

logic programs, i.e. logic programs with disjunctive heads, is the causal justification

approach, which can also deal with nested expressions in the body.25 Furthermore,

in practice logic programs are rarely normal and often use additional language

constructs, such as weight constraints, aggregates, and choice rules, which extend

the syntax and/or semantics of logic programs under the answer set semantics.

Choice rules are handled by off-line justifications and in a limited way by causal

justifications (Cabalar and Fandinno 2016). Note that explanations of additional

language constructs have not been investigated so far.

As a last challenge, we mention variables. Even though the theory of most justi-

fication approaches can easily be applied to programs with variables by considering

the complete grounding of the program, it is questionable if this method yields

meaningful justifications in practice. The difficulty of handling variables in expla-

nations of inconsistent programs is a further indication that justifications involving

variables are non-trivial, and therefore an interesting consideration for future work.

4 Debugging of Inconsistent Logic Programs

In this section, we review the most prominent approaches for explaining inconsistent

logic programs. i.e. logic programs that have no answer set. Note that various

approaches discussed in this section are not only applicable to inconsistent logic

programs, but also to consistent ones. More specifically, they can also be used to

explain why a set of atoms of a consistent logic program is not an answer set,

or even why a set of atoms is an answer set, and are thus closely related to the

previously reviewed justification approaches.

Finding errors that lead to a logic program being inconsistent is often referred

to as debugging. Errors can be roughly divided into syntactic and semantic ones.26

The first category, comprising for example misspelled literals and wrong rule layout,

are handled by most IDEs (Integrated Development Environments) for ASP such as

SeaLion (Busoniu et al. 2013), ASPIDE (Febbraro et al. 2011), and APE (Sureshku-

mar et al. 2007).

Semantic errors are more difficult to identify due to the inherent declarative

nature of the answer set semantics. In procedural programming languages, the cause

of wrong program behaviour can be found by investigating the program procedure

step-by-step. This cannot be straightforwardly done for logic programs, as answer

sets are computed in a ‘guess and check’ fashion rather than procedurally. Various

approaches tackle this problem by searching for known error classes for inconsistent

logic programs, for example unfounded loops, unsupported atoms, and unsatisfied

24 There also used to be an implementation of off-line justifications (El-Khatib et al. 2005), but
this is not available anymore.

25 In this survey, we have limited ourselves to normal extended logic programs. For a the defi-
nition of causal justifications for logic programs with nested expressions in the body, we refer
to (Fandinno 2016b).

26 Note that we here use these terms differently than e.g. Syrjänen (2006).

rules. We review these approaches in Sections 4.1 to 4.3. Another approach makes

use of the unsatisfiable core feature of the ASP solver wasp, which we review

in Section 4.4, and Section 4.5 outlines an approach for finding semantic errors

that indeed applies a step-by-step procedure. Finally, Section 4.6 concludes the

section with a discussion about similarities and differences between these debugging

approaches. Throughout this section, we will use the term ‘debugging’ to refer to

the task of finding and explaining semantic errors in logic programs.

4.1 The spock System – Debugging with a Meta Program

The spock system explains why a potential answer set, i.e. some set of atoms, is not

an answer set of a the given program P . This is achieved by transforming P into

a meta (logic) program, expressing, for example, conditions for the applicability of

rules in P . Each answer set of this meta program contains the atoms of a potential

answer set of P along with special atoms indicating reasons why this potential

answer set is not an actual answer set of P . Thus, spock uses answer sets of a meta

logic program for explaining the inconsistency of a given logic program.

The spock system is a command line tool27 usable with either the DLV (Leone

et al. 2006) or Smodels (Syrjänen and Niemelä 2001) ASP solver.28 It implements

two different approaches to transform P into a meta-program, where the second

(Gebser et al. 2008) was developed as a successor of the first (Brain et al. 2007a).

Both transformations distinguish three types of reasons for explaining why a set

of atoms is not an answer set. These reasons are different ways of violating the

definition of answer sets as given by Lin and Zhao (2004) and extended by Lee

(2005). Note that this definition of answer sets is equivalent to the one given in

Section 2.

Definition 32 (Answer Set)

A set of atoms M ⊆ At is an answer set of a program P iff

1. each rule r ∈ P is satisfied by M , i.e.

• head(r) ∩M 6= {} if r is applicable;

2. each atom a ∈ M is supported w.r.t. M , i.e.

• there exists r ∈ P such that r is applicable w.r.t. M and head(r)∩M = {a};

3. each (positive dependency) loop L ⊆ M is founded w.r.t. M , where

• L is a loop iff for all a ∈ L there is a chain of rules r1, . . . , rn ∈ P (n ≥ 1)

such that a ∈ head(r1) ∩ body+(rn), and if n > 1 then it holds for all ri
(1 ≤ i < n) that ∃bi ∈ body+(ri) ∩ head(ri+1) with bi ∈ L, and

• L is founded w.r.t. M iff there exists r ∈ P such that r is applicable and

satisfied w.r.t. M , head(r) ∩M ⊆ L, and body+(r) ∩ L = {}. �

27 http://www.kr.tuwien.ac.at/research/systems/debug/index.html
28 Smodels is not maintained anymore and may thus not work on new systems. However, spock

should work fine on most systems using DLV.

The third condition defines a loop as a set of atoms that positively depend on

themselves, possibly via positive dependencies on other atoms in the loop. Such

a positive dependency loop is founded w.r.t. M if there exists an applicable and

satisfied rule that allows to derive some loop atoms without using other atoms in

this loop. An atom contained in an unfounded loop is said to be unfounded.

Both transformation approaches of spock generate reasons why a set of atoms M

is not an answer set in terms of violations of the three conditions in Definition 32.

These reasons are:29

1. a rule r ∈ P is not satisfied,

2. an atom a ∈ M is not supported,

3. there exists an unfounded loop in M .

In the following, we illustrate how the two transformation approaches generate

these three reasons and point out some differences between the approaches.

4.1.1 Transformation 1

The first transformation approach (Brain et al. 2007b; Brain et al. 2007a), defined

for normal logic programs, can be used to explain

1. why a set of atoms is an answer set, by referring to the applicability and non-

applicability of rules, and

2. why a set of atoms is not an answer set, by referring to the violation (i.e. non-

satisfaction) of rules, the unsupportedness of atoms, or the unfoundedness of

atoms.

To achieve the first, each rule r : h ← b1 ∧ . . . ∧ bn ∧ not c1 ∧ . . . not cm of a

normal program P is transformed into two new rules30

applicable(r) ← b1 ∧ . . . ∧ bn ∧ not c1 ∧ . . . not cm (45)

h ← applicable(r) (46)

They respectively express that r is applicable if the body of r is true and that the

head of r can be deduced if r is applicable. Similarly, rules expressing conditions

under which rule r is ‘blocked’ are added, namely if one of its positive body literals b

or negative body literals not c are false (c∗ /∈ At is a new atom).

blocked(r) ← not b (47)

blocked(r) ← not c∗ (48)

c∗ ← not c (49)

These transformed rules are added for each rule in the given program and each of

its body literals.

29 Lloyd (1987) discusses a similar idea for diagnosing errors in Prolog programs in terms of
incorrect rules (analogous to unsatisfied rules) and uncovered atoms (analogous to unsupported
atoms).

30 The transformed rules as originally defined also have body literals ok(r) and ko(r) for fine-tuning
the debugging process, which we omit as they do not play a role at this point.

The transformation given by rules (45)-(49) is called kernel transformation of

P and denoted Tk [P]. For a consistent program P , the answer sets of Tk [P] co-

incide with the answer sets of P , but additionally contain the new tagging-atoms

applicable(r) and blocked(r) (Brain et al. 2007a). This ‘explains’ why a set of atoms

is an answer set in the sense that it gives an insight into the rules that were used

to derive the answer set.

Example 51 (Ex. 36 continued, page 38)

The rules of the logic program from Example 36 can be grounded for the first time

step as follows, obtaining the logic program P28:

r1 : on1 ← swa0 ∧ swb0

r2 : off1 ← swc0 ∧ swd0

r3 : on1 ← on0 ∧ not off1

r4 : off1 ← off0 ∧ not on1

r5 : off0 ←

r6 : swa0 ←

r7 : swb0 ←

The only answer set of P28 is {swa0, swb0, off0, on1}. In comparison, the only answer

set of Tk [P28] is {swa0, swb0, off0, on1, applicable(r1), applicable(r5), applicable(r6),

applicable(r7), blocked(r2), blocked(r3), blocked(r4)}, pointing out that this answer

set was obtained due to the applicability of rules r1, r5, r6, and r7, whereas the

applicability of the other rules was blocked. �

For explaining the inconsistency of a logic program, three additional extrapo-

lation transformations are performed (rules (50)-(55)), denoted Tex [P]. They al-

low to generate potential answer sets, i.e. sets of atoms, that violate Definition 32

and thus provide an explanation of the inconsistency. To generate potential an-

swer sets choice-rules are used, which allow to choose whether or not the head

of this rule should be true if the rule is applicable. These rules have the form

{head(r)} ← body(r) and are shorthand notation for

head(r) ← body(r) ∧ not x

x ← not head(r)

where x /∈ At is a new atom.

Concerning the first inconsistency reason – the violation of rules – a new abnor-

mality tagging-atom unsatisfied(r) is introduced and used to transform each rule r ,

where head(r) = h.31

{h} ← applicable(r) (50)

unsatisfied(r) ← applicable(r) ∧ not h (51)

31 We use the more intuitive naming unsatisfied(r) instead of the original abp(r) (Brain et al.
2007a) (similarly for the tagging-atoms described in the rest of this section).

When used for explaining inconsistent programs, rule (50) substitutes rule (46) from

the kernel transformation. This allows to exclude h from an answer set, even if r is

applicable. This choice rule allows to generate potential answer sets and rule (51)

derives a respective reason why they may not be actual answer sets. In particular,

this is the case if a rule is applicable w.r.t. a potential answer set but it head is not

contained in this set.

The second extrapolation transformation is concerned with the supportedness

of atoms. It introduces a new abnormality tagging-atom unsupported(a) for each

a ∈ At, used in a transformation as follows:

{a} ← blocked(r1) ∧ . . . ∧ blocked(rk) (52)

unsupported(a) ← a, blocked(r1) ∧ . . . ∧ blocked(rk) (53)

where r1, . . . , rk are all the rules with head a. Similarly to the first extrapolation

transformation, rule (52) allows to choose if a is or is not included in a potential

answer set being explained. Rule (53) derives unsupported(a) whenever a is in the

answer set without any rule to support it.

The third extrapolation transformation deals with unfounded atoms. A new ab-

normality tagging-atom unfounded(a) is introduced for each atom a ∈ At and used

as follows:

{unfounded(a)} ← not unsupported(a) (54)

a ← unfounded(a) (55)

This transformation gives a choice to include or exclude the abnormality atom

unfounded(a), given that there is no other reason for ato be causing the inconsis-

tency, namely being unsupported. This is different from the previous transforma-

tions, where abnormality atoms are only derived if there is an actual violation of a

condition in Definition 32. Here, the abnormality atom may be derived even if the

third condition in Definition 32 is not violated. This means that unfounded loops

cannot be identified with certainty.

Example 52

Consider the following inconsistent logic program P29:

r1 : a ← not b

r2 : b ← not b

The answer sets of Tk [P29] ∪ Tex [P29] (where rule (46) is not included since deriv-

ability of the head is expressed through rule (50) as previously explained) indicate

potential answer sets and explain why these potential answers sets are not actual

answer sets by pointing out violations concerning the definition of answer sets.

• M25 = {a, b, unsupported(a), unsupported(b), blocked(r1), blocked(r2)}

• M26 = {b, unsupported(b), blocked(r1), blocked(r2)}

• M27 = {a, unfounded(a), unsatisfied(r2), applicable(r1), applicable(r2)}

• M28 = {a, unsatisfied(r2), applicable(r1), applicable(r2)}

• M29 = {unsatisfied(r1), unsatisfied(r2), applicable(r1), applicable(r2)}

M25 expresses that {a, b} is not an answer set because neither of the two atoms are

supported by an applicable rule. This is because both r1 and r2 are blocked w.r.t.

{a, b}. In contrast M29 explains that w.r.t. {} both r1 and r2 are applicable, but

the head of neither rule is included in {}. M27 illustrates the guessing of unfounded

atoms. It states that {a} is not an answer set because a may be unfounded and

because r2 is violated. Note that this guess is redundant, since answer set M28

explains {a} by only referring to the violation of r2. In fact, a is not unfounded

here, as it is not part of an unfounded loop w.r.t. {a} (it is not part of a loop at

all). �

As shown by Example 52, there may be many explanations for the inconsistency

of a logic program and some of them may be redundant. It is thus advisable to only

consider explanations with a minimal number of abnormality tagging-atoms. This

also ensures that unfounded(a) only occurs if a is indeed unfounded (Brain et al.

2007a). In Example 52, minimisation narrows the explanations down to sets M26

and M28.

Example 53

Let P30 be the logic program P29 with the two additional rules:

r3 : a ← b

r4 : b ← a

These rules induce an unfounded loop w.r.t. the set {a, b}. Tk [P30] ∪ Tex [P30] has

three answer sets explaining why {a, b} is not an answer set: one in terms of a

being an unfounded atom (comprising unfounded(a)), one in terms of b being an

unfounded atom (comprising unfounded(b)), and one in terms of both atoms being

unfounded (comprising both unfounded(a) and unfounded(b)). Similarly to Exam-

ple 52, the last of these three answer sets provides a redundant explanation com-

pared to the first two. However, here the explanations in terms of unfoundedness of

atoms are correct, as there exists an unfounded loop. In addition, Tk [P30]∪Tex [P30]

has four answer sets stating the same reasons as M26 −M29. �

Note that spock does not suggest how to change an inconsistent logic program to

make it consistent. However, based on the abnormality tagging-atoms in an answer

set M of Tk [P] ∪ Tex [P] there is a straightforward way of turning the inconsistent

program P into a consistent logic program:

• if unsatisfied(r) ∈ M , then delete r from P ;

• if unsupported(a) ∈ M or unfounded(a) ∈ M , then add a ← to P .

If this is done for all abnormality-tagging atoms in M , the changed logic program

has an answer set M ∩At. Note that even though this change results in a consistent

program, there is no guarantee that this program captures the originally intended

meaning.

Example 54 (Ex. 52 continued)

Consider adding b ← to P29, based on M26. This turns P29 into a consistent

logic program with answer set {b}. However, the intended meaning of the program

may have been a choice between answer set {a} and {b}, with the programmer’s

mistake being that not b in r2 should have been not a. In this case, the change does

not capture the original meaning. �

In addition to giving explanations of inconsistent programs with respect to au-

tomatically generated potential answer sets, the spock system also allows for more

user-directed explanations. Among others, a user can specify a set of rules and

atoms from which the explanations are drawn (Brain et al. 2007b). For example, in

P29 we may be sure that rule r2 is correct and thus restrict32 abnormality tagging-

atoms unsatisfied(r) to rule r1. This prevents the construction of answer set M28,

thus resulting in M26 as the only explanation (when using minimisation). Further-

more, an atom a that should be included in an answer set can be specified by adding

the constraint ← not a to the kernel transformation of the given logic program.

4.1.2 Transformation 2

In the first transformation approach of spock, an ASP solver is merely used to

compute the answer sets of the kernel and extrapolation transformations, thus gen-

erating explanations. That is, the kernel and extrapolation transformations are

constructed externally (from the ASP solver). In contrast, the second transforma-

tion approach of spock (Gebser et al. 2008) uses an ASP solver to both construct

a transformation and compute explanations. This is achieved by using a static

non-ground meta-program Pmeta , which expresses violation conditions that can be

instantiated with any given logic program. The second transformation approach

is furthermore defined for any logic program, i.e. the head of rules is a (possibly

empty) disjunction of atoms.

In order to instantiate the meta-program with the rules and atoms of a given

logic program P , an input transformation Pinp [P] is generated, containing facts

that express which rules r and atoms a are contained in P . More specifically, for

every atom a ∈ At, every rule r ∈ P (where r is the label of the rule), and every

h ∈ head(r), b ∈ body+(r), and c ∈ body−(r) the following facts are included in

Pinp [P]:

atom(a) ← (56)

rule(r) ← (57)

head(r , h) ← (58)

bodyP(r , b) ← (59)

bodyN(r , c) ← (60)

This input transformation Pinp [P] is combined with the static meta-program Pmeta

to compute explanations for inconsistent logic programs using an ASP solver. The

meta-program uses a more explicit way of constructing potential answers sets than

32 In the spock implementation this is achieved by using flags exrules and exatoms for specifying
rules and atoms to be debugged. This restricts the transformations to these rules and atoms.

the extrapolation transformations, namely, for every atom(a) there is the choice to

include or not include it in a potential answer set.33

in(A) ← atom(A) ∧ not out(A) (61)

out(A) ← atom(A) ∧ not in(A) (62)

Thus, an answer set of Pinp [P] ∪ Pmeta comprises for each atom a ∈ At either

in(a) or out(a). In contrast, an answer set of Tk [P]∪Tex [P] either does or does not

contain a ∈ At.

The other parts of the meta-program Pmeta are similar to the kernel and extrap-

olation transformations. The rule applicability conditions of the kernel transforma-

tion (rules (45)-(49)) are expressed in Pmeta as follows:

blocked(R) ← bodyP(R,B) ∧ out(B) (63)

blocked(R) ← bodyN(R,C) ∧ in(C) (64)

applicable(R) ← not blocked(R) (65)

In contrast to the first transformation approach, the applicability of a rule is here

expressed in terms of the rule not being blocked.

The following rules of the meta-program Pmeta generalise the extrapolation trans-

formations for rule satisfiability from normal rules to rules whose head may be

empty or a disjunction of atoms.34 In contrast to normal rules, here we check if at

least one of the head atoms of an applicable rule is satisfied.

headSatisfied(R) ← head(R,A) ∧ in(A) (66)

unsatisfied(R) ← applicable(R) ∧ not headSatisfied(R) (67)

For logic programs that are not normal, an atom may be unsupported even if

there exists a rule with a in the head that is not blocked. As stated in the second

condition of Definition 32, a is supported if some rule is applicable and a is the

only head atom that is in the potential answer set being explained. Thus, for an

atom to be unsupported, this condition has to be false.

oHeadTrue(R,A) ← head(R,A2) ∧ A 6= A2 ∧ in(A2) (68)

supported(A) ← head(R,A) ∧ applicable(R) ∧ not oHeadTrue(R,A) (69)

unsupported(A) ← in(A) ∧ not supported(A) (70)

The biggest difference between the first and second transformation approach

concerns unfounded loops. Just like the first approach, the second includes a choice

as to whether or not an atom that is part of the potential answer set being explained

is unfounded (see rules (71) and (72)). The difference is that if an atom is guessed

to be unfounded, there is a check (see rule (73)) of the foundedness condition in

Definition 32. That is, for an unfounded atom a it is checked if there is an applicable

33 Throughout this section, we use uppercase letters to denote variables.
34 The meta-program also contains rules explicitly handling unsatisfied constraints, tagging them

with a different abnormality atom. For simplicity, and since rule (67) also applies to constraints,
we do not report these constraint rules.

rule r with a in the head (if so, r is also satisfied since unfounded(a) only holds if

in(a)) that has no head atom that is founded (in the same loop) and no positive

body atom that is unfounded (in the same loop). If such a rule exists, a is by

Definition 32 founded, which is why this check is implemented as a constraint in

Pmeta (rule (73)). This ensures that unfounded(a) is only part of an answer set of

Pinp [P] ∪ Pmeta , if a is actually unfounded.

unfounded(A) ← in(A) ∧ supported(A) ∧ not founded(A) (71)

founded(A) ← in(A) ∧ not unfounded(A) (72)

← unfounded(A) ∧ head(R,A) ∧ applicable(R)∧ (73)

not headNotinLoop(R) ∧ not BodyPInLoop(R)

headNotinLoop(R) ← head(R,A) ∧ founded(A) (74)

BodyPInLoop(R) ← bodyP(R,A) ∧ unfounded(A) (75)

Furthermore, there are rules ensuring that only one loop is considered at a time,

i.e. unfounded(a) and unfounded(b) only hold if a and b are part of the same loop.

Another main difference between the two spock approaches is that the second

transformation approach only explains sets of atoms that are not answer sets of the

given logic program, whereas the first also explains actual answer sets of the given

logic program (if any exist). This is due to the following rules in the meta-program

Pmeta , ensuring that at least one abnormality tagging-atom is part of an answer set:

noAS ← unsatisfied(r) (76)

noAS ← unsupported(r) (77)

noAS ← unfounded(r) (78)

← not noAS (79)

Example 55 (Ex. 52 continued)

Applying the second transformation approach to P29, spock computes the answer

sets of Pinp [P29] ∪ Pmeta , yielding the following:

• M30 = {in(a), in(b), founded(a), founded(b), unsupported(a), unsupported(b),

blocked(r1), blocked(r2), headSatisfied(r1), headSatisfied(r2),

headNotinLoop(r1), headNotinLoop(r2)}

• M31 = {in(b), out(a), founded(b), unsupported(b), blocked(r1), blocked(r2),

headSatisfied(r2), headNotinLoop(r2)}

• M32 = {in(a), out(b), founded(a), supported(a), supported(b), unsatisfied(r2),

applicable(r1), applicable(r2), headSatisfied(r1), headNotinLoop(r1)}

• M33 = {out(a), out(b), supported(a), supported(b), unsatisfied(r1), unsatisfied(r2),

applicable(r1), applicable(r2)}

Note that all answer sets also comprise the facts in Pinp [P29], such as atom(a),

head(r1, a), and rule(r1), as well as the atom noAS, which we omitted above for

readability. Since the second transformation approach does not generate explana-

tions containing unfoundedness as a reason when an atom is in fact founded, there

is no equivalent of answer set M27 from the first transformation approach. All other

answer sets of Tk [P29] ∪ Tex [P29] report the same reasons as the answer sets given

above. �

Example 56 (Ex. 53 continued)

For the program P29, which comprises an unfounded loop w.r.t. {a, b}, even more re-

dundant explanations are omitted when using the second transformation approach.

More precisely, as for P29 there is one explanation for each possible set of atoms, i.e.

{}, {a}, {b}, and {a, b}. The explanation as to why the last set is not an answer set

is given by unfounded(a) and unfounded(b). The explanations concerning the other

three sets are analogue to the explanations of P29 in Example 55. �

Similarly to the first transformation approach, the user can specify constraints

for debugging. An atom a can, for example, be forced to (not) be a part of an

answer set by adding the constraint ← out(a) (respectively ← in(a)) to the input

transformation of the given logic program. In the same way, constraints on the

abnormality tagging-atoms can be specified, e.g. ← unsatisfied(r) enforces that

rule r is satisfied.

In conclusion, the second transformation approach requires less processing of the

given logic program P performed outside the ASP solver than the first transfor-

mation approach. Furthermore, the two transformation approaches differ in the

number of explanations given, since the first approach may yield redundant expla-

nations and explanations where unfoundedness is given as a reason even though the

atom in question is founded.

4.2 The Ouroboros System – Debugging Non-ground Programs

The two spock approaches do not explicitly deal with variables occurring in the

given logic program. However, variables are important to consider for debugging

approaches, since, in practice, logic programs under the answer set semantics often

contain first-order predicates and variables. Handling variables when debugging

thus requires an efficient grounding strategy.

Building upon the second spock transformation, Oetsch et al. (2010) develop a

meta-program able to construct explanations of inconsistent extended logic pro-

grams possibly comprising variables. In contrast to the approach taken by spock,

which constructs various sets of atoms and explains why these are not answer sets,

Ouroboros requires an intended answer set. It thus assumes that the user already

has a solution in mind. An explanation is then constructed for this anticipated

solution.

Efficiently constructing explanations for logic programs with variables is non-

trivial as it requires grounding (i.e. substituting variables with constants). First

grounding a given logic program and then constructing explanations, for exam-

ple using the spock approach, requires exponential space and double-exponential

time. Instead, the Ouroboros approach requires only polynomial space and single-

exponential time, as it applies grounding to the input transformation and meta-

program during the solving process rather than grounding the given logic program

before transforming and solving it.

Similarly to the input transformation Pinp [P] of the second spock approach,

Ouroboros constructs an input transformation ̺inp [P] of a given logic program P ,

expressing which extended literals are part of the head and body of each rule.

Additionally, ̺inp [P] includes facts expressing which predicates occur in P , what the

position of variables and constants is in each predicate, and which variables occur in

which rules. Since Ouroboros requires a given set of atoms M ⊆ At to be explained,

this set is also transformed to make it applicable to the input transformation and

the meta-program. The interpretation transformation ̺int [M] includes facts in(a)

for each atom a ∈ M as well as facts stating which predicates occur in M and what

the position of constants is in predicates in M .

The meta-program ̺meta of Ouroboros follows the same ideas as spock, express-

ing conditions under which a rule is unsatisfied or a loop is unfounded. Note that

in contrast to spock, Ouroboros does not explicitly point out unsupported atoms.

Instead, unsupported atoms are handled as singleton loops that are unfounded. The

exact encoding of ̺meta with its more than 160 rules can be found online35.

When applying an ASP solver to ̺inp [P]∪̺int [M]∪̺meta to compute explanations

as to why M is not an answer set, the automatic grounding of the solver allows for

the efficient computation of ground answer sets if P contains variables.

Just like spock, Ouroboros only gives explanations as to why a set of atoms is not

an answer set. The subsequent changing of the program to make it consistent is left

to the user. In addition to explicit negation, Ouroboros can also handle arithmetic

operations with integers (+ and ∗) and allows for comparison predicates (=, 6=, ≥,

≤, >, <). Polleres et al. (2013) further extend Ouroboros to deal with choice rules

and cardinality and weight constraints by translating these constructs into normal

rules (possibly containing variables). Frühstück et al. (2013) integrate Ouroboros

into the SeaLion IDE.36

4.3 Interactive Debugging Based on spock

No matter which of the two transformations is used, the spock approach may

generate many different explanations, since for every set of atoms that is not an

answer set at least one explanation is constructed. Even for the small logic program

in Example 52, which has only two atoms, four explanations are generated using

the second transformation (see Example 55). Ouroboros tackles this problem by

requiring the user to specify an intended answer set. However, a user may not have a

truth assignment for every atom in mind. Shchekotykhin (2015) therefore proposes

an interactive method on top of the second spock approach, where the user is

queried whether or not an atom should be contained in an answer set. The user’s

answer narrows down the sets of atoms for which explanations are constructed to

the ones relevant to the user and relieves the user of the burden to specify the whole

intended answer set upfront.

As mentioned in previous sections, the user can force atoms to be contained or not

35 www.kr.tuwien.ac.at/research/projects/mmdasp/encoding.tar.gz
36 Note that a special setup of ASP solvers is needed to make this integration work.

contained in explanation answer sets of spock (using the second transformation) by

adding facts in(a) or out(a). In the interactive debugging approach, such statements

are explicitly used as test cases.

Definition 33 (Test Case and Background Theory)

Given a program P , its input transformation Pinp [P], and the meta-program Pmeta

• Pos,Neg ⊆ { in(a), out(a)
∣

∣ a ∈ At } are sets of positive and negative test

cases,

• B ⊆ P is a background theory. �

Positive test cases are atoms that have to be contained in (in(a)) or excluded from

(out(a)) all answer sets. In contrast, negative test cases are atoms that have to

be contained in (in(a)) or excluded from (out(a)) some answer set. A background

theory consists of rules in the logic program that are assumed to be satisfied.

In contrast to the spock approach, answer sets of Pinp [P] ∪ Pmeta that con-

tain the same abnormality tagging-atoms are considered as the same explanation,

even if the atoms in the respective explained answer sets are different. The aim

is to find sets of abnormality tagging-atoms that satisfy all given test cases and

the given background theory. In other words, we want to compute all answer sets

of Pinp [P] ∪ Pmeta containing only abnormality tagging-atoms satisfying the test

cases and the background theory. Sets of abnormality tagging-atoms satisfying this

condition are called diagnoses.

Definition 34 (Diagnosis)

Let Er(P) be the set of all abnormality tagging-atoms over a program P , that is,

Er(P) def= { unsatisfied(r)
∣

∣ r ∈ P } ∪ { unsupported(a), unfounded(a)
∣

∣ a ∈ At }

A set D ⊆ Er(P) is a diagnosis for the problem instance 〈P ,B, Pos,Neg〉 if

1. P∗ = Pinp [P] ∪ Pmeta ∪ { ← d
∣

∣ d ∈ Er(P) \ D } ∪ { ← unsatisfied(r)
∣

∣ r ∈

B } ∪ { p ←
∣

∣ p ∈ Pos } has an answer set and

2. for each n ∈ Neg, P∗ ∪ {n ← } has an answer set. �

Note that due to the constraints of the form ← d , any answer set of P∗ will only

contain abnormality tagging-atoms from D.

Diagnoses can be found by computing answer sets of the program Pinp [P] ∪

Pmeta ∪{ ← unsatisfied(r)
∣

∣ r ∈ B } and then verifying whether the respective sets

of abnormality tagging-atoms contained in these answer sets satisfy the conditions

for being a diagnosis. Usually, only (subset) minimal diagnoses will be considered.

Example 57

Consider the logic program P28 (see Example 51; page 67) with the additional

constraint r8 : ← not off1. This program, called P31, is inconsistent. Using the

second translation approach of spock, 256 answer sets are computed for Pinp [P31]∪

Pmeta , each explaining a different set of atoms that is not an answer set. Let us

now specify B = {r1, r2, r6, r7}, in other words, we are sure that the first two rules

are correct and that switches a and b are on in situation 0. This narrows down the

answer sets; program Pinp [P31] ∪ Pmeta ∪ { ← unsatisfied(r1), ← unsatisfied(r2),

← unsatisfied(r6), ← unsatisfied(r7)} has only 28 answer sets. Given positive test

cases Pos = {out(swc0), out(swd0)}, only eight out of the 28 answer sets satisfy

these, namely :

• M34 = {out(on0), out(off0), in(on1), out(off1)} ∪ {unsatisfied(r5), unsatisfied(r8)}

• M35 = {in(on0), out(off0), in(on1), out(off1)} ∪ {unsatisfied(r5), unsatisfied(r8),

unsupported(on0)}

• M36 = {out(on0), out(off0), in(on1), in(off1)}∪{unsatisfied(r5), unsupported(off1)}

• M37 = {in(on0), out(off0), in(on1), in(off1)} ∪ {unsatisfied(r5), unsupported(off1),

unsupported(on0)}

• M38 = {out(on0), in(off0), in(on1), out(off1)} ∪ {unsatisfied(r8)}

• M39 = {in(on0), in(off0), in(on1), out(off1)} ∪ {unsatisfied(r8), unsupported(on0)}

• M40 = {out(on0), in(off0), in(on1), in(off1)} ∪ {unsupported(off1)}

• M41 = {in(on0), in(off0), in(on1), in(off1)}∪{unsupported(off1), unsupported(on0)}

Note that each answer set also contains in(swa0), in(swb0), out(swc0), and out(swd0),

as well as the further tagging-atoms discussed in Section 4.1.2. Taking a closer look

at these 8 answer sets, each of them defines a diagnosis when Neg = {}, namely

the second part of each answer set. Only M38 and M40 induce minimal diagnoses.

Now consider that Neg = {in(on0), in(off0)}. This rules out half of the diagnoses,

leaving only the following four:

• D1 = {unsatisfied(r5), unsatisfied(r8), unsupported(on0)} (cf. M35)

• D2 = {unsatisfied(r5), unsupported(off1), unsupported(on0)} (cf. M37)

• D3 = {unsatisfied(r8), unsupported(on0)} (cf. M39)

• D4 = {unsupported(off1), unsupported(on0)} (cf. M41)

Even though in(off0) /∈ M35, D1 is a diagnosis of the given problem instance since

there are two answer sets of P∗ w.r.t. D1, namely M35 and M39, and in(off0) ∈ M39,

thus satisfying the negative test case in(off0) w.r.t. D1. �

As illustrated in Example 57, positive and negative test cases can considerably

reduce the number of diagnoses and, thus, of explanations as to why sets of atoms

are not answer sets of P . If the user does not specify any test cases, it is therefore

desirable to produce them automatically by querying the user. That is, the user is

asked whether an atom is expected to be contained in or excluded from all or some

answer sets. Ideally, the debugging system chooses an atom as a query that helps

to reduce the number of diagnoses as much as possible.

Definition 35 (Query and Diagnosis Splitting)

Let D be the set of all diagnoses of the problem instance 〈P ,B, Pos,Neg〉 and let

Q ⊆ At be a query. Q splits the diagnoses in D into three sets, where for each

D ∈ D:

• D ∈ DP if for all a ∈ Q, in(a) is in every answer set of P∗;

• D ∈ DN if for all a ∈ Q, out(a) is in every answer set of P∗;

• D ∈ D∅ if D /∈ (DP ∪DN).

This means that DP and DN contain all diagnoses that are still diagnoses if the

atoms in the query are added as positive test cases so as to force them to be,

respectively, included in or excluded from all answer sets. Thus, if the user’s reply

to a query is that the atoms should be included, then the diagnoses in DN can be

disregarded. Likewise, if the user replies that the atoms should be excluded, the

diagnoses in DP can be disregarded.

Example 58 (Ex. 57 continued)

Consider the two atoms that are not part of positive or negative test cases yet,

namely on1 and off1. For Q1 = {on1}, all four diagnoses are in DP, so DN =

D∅ = {}. For example, the answer sets of P∗ w.r.t. D1 are M35 and M39, and both

comprise in(on1). This means that if the user replies to the query, that on1 should

be in the desired answer set, then no diagnoses can be disregarded. However, if the

user replies that on1 should not be in the desired answer set, then all diagnoses

would be disregarded and therefore no explanations given. This would imply, that

the test cases specified could not be satisfied. In contrast, for Q2 = {off1} we get

DP = {D2,D4}, D
N = {D1,D3}, and D∅ = {}. Note that if one of the negative

test cases was used as a query, then D∅ 6= {}. For instance, for Q3 = {off0} we get

D1 ∈ D∅ since out(off0) ∈ M35 but in(off0) ∈ M39. �

There may be a large number of queries, so queries that yield a large information

gain are desirable, i.e. queries that allow to disregard as many diagnoses as possible,

independent of the user’s answer, which clearly is not known when generating a

query. Thus, a useful query should at least yield a partition with DP,DN 6= {} so

that independent of the user’s answer, some diagnoses can be disregarded.

A straightforward selection method is the myopic strategy, which prefers queries

yielding setsDP andDN that have similar size and whereD∅ is as small as possible.

That is, a query that minimises

| | DP | − | DN | | + | D∅ |

Example 59 (Ex. 58 continued)

According to the myopic strategy, Q2 is preferable to Q1 since independent of the

answer of the user, the number of possible queries is reduced to two. �

The idea of this interactive debugging approach is that queries are generated and

presented to the user until only one diagnosis, or a specified maximal number of

diagnoses, is left.

4.4 The dwasp System – Interactive Debugging of Non-ground

Programs

The interactive debugging approach discussed in the previous section only applies

to logic programs without variables. Dodaro et al. (2015) and Gasteiger et al. (2016)

extend the idea, of querying the user to find relevant explanations of inconsistency,

to non-ground programs. Instead of using an elaborate meta-program expressing

possible reasons for inconsistencies as in spock, they use the solving process of the

ASP solver wasp (Alviano et al. 2013; Alviano et al. 2015) to find inconsistencies

in a logic program. Their ASP debugger is thus called dwasp.

Like Shchekotykhin (2015), dwasp allows to define a background theory. If the

background theory is not explicitly specified, the set of facts of the given logic

program P is used. Instead of applying abnormality tagging-atoms to indicate in-

consistencies, the dwasp system adds to each rule in P that is not part of the

background theory a debug atom, stating the name of the rule and the variables

occurring in it.

Definition 36 (Debugging Program)

Given a logic program P and a background theory B ⊆ P , the debugging program

is defined as:

Pdeb [P] = B ∪ { h1 ∨ . . . ∨ hk ← b1 ∧ . . . ∧ bn ∧ debug(r ,varsr) (80)

∧not c1 ∧ . . . not cm
∣

∣ r ∈ P \ B, head(r) = {h1 ∨ . . . ∨ hk},

body(r) = {b1, . . . , bn , not c1, . . . , not cm} }

where varsr is a tuple consisting of all variables in body(r). �

When applying the wasp solver to the debugging program Pdeb [P], atoms can

be assumed to hold when computing answer sets. That is, these assumed atoms do

not need to be derived from rules or facts, they are true by default. Assumed atoms

are thus similar to positive test cases in the approach of Shchekotykhin (2015).

If a debugging atom is not assumed to hold, this amounts to “blocking” the

respective rule specified in the atom, i.e. the rule is no longer applicable when

computing answer sets, since a debugging atom cannot be derived using the rules

in Pdeb [P]. If all debugging atoms are assumed to hold, the answer sets of Pdeb [P]

(minus the debugging atoms) coincide with the answer sets of P . If P is inconsistent,

it therefore follows that Pdeb [P] is also inconsistent.

To find rules causing the inconsistency of a program, the wasp solver allows to

compute unsatisfiable cores, i.e. sets of atoms such that if they are assumed to hold,

no answer set exists. In the dwasp system, only debugging atoms are considered

for unsatisfiable cores. Thus, an unsatisfiable core points out a combination of rules

causing the inconsistency.

Definition 37 (Unsatisfiable Core)

Let PG
deb [P] be the grounding of Pdeb [P] and let Atdeb(P) be the set of all (ground)

debugging atoms occurring in PG
deb [P]. C ⊆ Atdeb(P) is an unsatisfiable core iff

PG
deb [P] is inconsistent when all debugging atoms in C are assumed to hold. �

Note that this definition does not make any assumptions about other atoms assumed

to hold. Therefore, an unsatisfiable core is such that, no matter which other atoms

are assumed to hold, PG
deb [P] is inconsistent.

If P is inconsistent, clearly Atdeb(P) is an unsatisfiable core. However, there

may be other unsatisfiable cores, which are subsets of Atdeb(P), and thus more

useful for identifying the source of inconsistency. Therefore, only (subset) minimal

unsatisfiable cores are of interest in dwasp.

If there is only one unsatisfiable core, then deleting any of the atoms in the core

from the atoms assumed to hold results in the existence of an answer set. However, if

there are various unsatisfiable cores, only a combination of atoms from the different

cores will lead to the existence of an answer set. dwasp finds such sets of debugging

atoms that, when no longer assumed to hold, ensure the existence of an answer set.

Such sets thus express which rules need to be “blocked” to obtain an answer set.

Definition 38 (dwasp Diagnosis)

Let PG
deb [P] be the grounding of Pdeb [P] and let Atdeb(P) be the set of all (ground)

debugging atoms occurring in PG
deb [P]. Ddwasp ⊆ Atdeb(P) is a diagnosis iff

PG
deb [P] is consistent when none of the debugging atoms in Ddwasp is assumed

to hold. �

The dwasp system only considers minimal diagnoses. Even though the definition

of diagnosis does not reference unsatisfiable cores, diagnoses are computed from

unsatisfiable cores in dwasp.

Note the difference between the notions of diagnosis used in dwasp and in the

approach of Shchekotykhin (2015). In both cases, a diagnosis comprises atoms iden-

tifying the reason for inconsistency. The difference is that in dwasp a diagnosis is

a set of atoms such that the debugging program is consistent if the atoms are not

contained in answer sets. In contrast, a diagnosis according to Definition 34 is a set

of abnormality tagging-atoms such that the transformed logic program is consistent

if these are the only abnormality tagging-atoms contained in answer sets.

As in the approach by Shchekotykhin (2015), there may be a large number of

diagnoses and not all of them may be relevant to the user. Thus, dwasp uses the

same strategy for querying the user as discussed in the previous section for the

approach by Shchekotykhin (2015). That is, a query atom q ∈ At is determined,

i.e. a ground (non-debugging) atom, which partitions the set of all diagnoses into

DP, DN, and D∅, where:

• Ddwasp ∈ DP if q is in every answer set of PG
deb [P] when none of the debugging

atoms in Ddwasp is assumed to hold;

• Ddwasp ∈ DN if q is in no answer set of PG
deb [P] when none of the debugging

atoms in Ddwasp is assumed to hold;

• Ddwasp ∈ D∅ if Ddwasp /∈ (DP ∪DN).

The only difference in the usage of queries in dwasp as compared to the approach

of Shchekotykhin (2015) is that, rather than adding test cases, the user’s answer

determines if q (in case q should hold) or not q (in case q should not hold) is added

to the set of assumed atoms.

4.5 Stepping

The debugging approach of Oetsch et al. (2018), which extends previous work by

Oetsch et al. (2011) and Pührer (2014), tackles the problem of explaining why a

set of atoms is or is not an answer set of a logic program in a procedural manner.

Inspired by debugging in procedural programming languages, where the step-wise

Fig. 31: The first rule of P28 is chosen for stepping. The ‘truth assignment’ tab

shows the assignment of truth values to the atoms a and b if a step is performed

on the chosen rule.

execution of a program can be traced, the stepping approach allows to apply rules

and assign literals to be true or false with respect to a potential answer set step by

step. In contrast to the execution of a procedural program, the sequence of steps

in the execution of a logic program is not predetermined, due to the declarative

nature of the answer set semantics. Thus, the user chooses the step sequence in

the stepping approach. This debugging approach has been implemented in the

SeaLion IDE (Busoniu et al. 2013), a logic programming plugin of the Eclipse

platform.

Starting with the empty set as the potential answer set, in each computation step

the user is presented with all rules that are applicable w.r.t. the current potential

answer set. To satisfy the chosen rule, a head of the rule is then added to the current

potential answer set and any atoms that thus cannot be in the potential answer set

(because they occur in the negative body of the rule) are recorded as being false

w.r.t. the potential answer set.

Example 60 (Ex. 52 continued, page 68)

Recall the logic program P28:

r1 : a ← not b

r2 : b ← not b

The stepping starts with no atoms recorded as being true or false w.r.t. the potential

answer set. Thus, both r1 and r2 are applicable since b is not recorded as being in

the potential answer set, so not b may be true w.r.t. the current potential answer set.

The user can therefore choose which of the two rules to apply. Figure 31 illustrates

this scenario in the stepping component of SeaLion, where all applicable rules are

marked in blue. The user chooses r1 to proceed, so r1 is the only ‘active instance’ of

the chosen rule shown in the respective tab (if r1 contained variables, all applicable

grounded versions would be shown in this tab). The active instance r1 is then used

Fig. 32: After the first step, the second rule is active but a step cannot be performed.

for the ‘truth assignment’, which is performed by clicking the ‘step’ button. This

records a as being true and b as being false w.r.t. the potential answer set M ,

as illustrated in the ‘state’ tab at the bottom of Figure 32. After this first step,

rule r2 is still applicable, so it is chosen for the next ‘truth assignment’. However,

as indicated by the red X in Figure 32, the truth assignment that would satisfy r2
cannot be performed. Thus, the stepping computation fails before being completed,

indicating to the user that the assignment of truth values performed so far does

not lead to an answer set. Note that the reason why r2 cannot be used for the next

step is not pointed out to the user explicitly, i.e. that b is recorded as false, but

to satisfy r2 it would also have to be true. If r2 was chosen in the first step, the

stepping would fail straight away, i.e. the scenario from Figure 32 would apply, but

without the truth assignments shown in the ‘state’ tab at the bottom. �

As illustrated in Example 60, the stepping approach gives the user an insight

into the answer set computation in terms of truth assignments to atoms, rather than

providing an explicit explanation of the cause of inconsistency like the previously

discussed debugging approaches. It also does not make any suggestions on how

to change the logic program to make it consistent. Whereas in Ouroboros the user

needs to explicitly specify an intended answer set, the stepping approach indirectly

allows this but does not require it. In other words, if a user expects a certain answer

set, but the logic program is inconsistent or has different answer sets, the stepping

can be targeted towards the intended answer set, until it becomes clear why certain

atoms in the intended answer set are false or why atoms not expected to be in

the answer set are true. However, the stepping approach can also be applied if

a logic program is inconsistent and the user does not know what the answer set

should be. In this case, the user can simply step through applicable rules until the

stepping computation fails, thus providing an insight into how the inconsistency of

the logic program arises. Note that the stepping approach can also be used to find

out how consistent answer sets are derived, in line with the approaches discussed

in Section 3.

Like Ouroboros and dwasp, the stepping system can handle logic programs

with variables and supports language constructs such as constraints, choice rules,

and aggregates. Furthermore, it can easily be used with different ASP solvers.

The theory behind the stepping approach is based on an extension of the

FLP-semantics (Faber et al. 2011) by Oetsch et al. (2012), which coincides with the

answer set semantics. This guarantees that the computation of answer sets using

stepping is sound and complete, that is, any answer set can be reached through

the step-wise application of rules and truth assignment of atoms, and any success-

fully terminated step-wise computation results in an assignment of truth values to

atoms forming an answer set. Thus, if the step-wise computation does not termi-

nate successfully, the current assignment of truth values cannot be extended to an

answer set.

To speed up the step-wise computation, especially in large logic programs with

variables, where rules have various groundings that can be applied in different steps,

the user can perform jumps. A jump is the automatic application of various specified

rules in such a way that they are satisfied. This is useful if the user is not interested

in the exact workings of these rules and their influence on a potential answer set.

Note that it only makes sense to use a jump if the chosen rules can be satisfied given

the current truth assignment, so the user should be sure that the chosen jumping

rules do not pose a problem.

Fig. 33: The user chooses r4 as a rule for jumping.

Example 61 (Ex. 36 continued, page 38)

Consider again the logic program about a light bulb and the four switches to turn

the light on and off. We encode this in P32 for the time steps t = 0 . . . 3. Figure 33

illustrates P32 and the scenario where the user chose the fact off(0) in the first step

and now decides to perform a jump on r4 (see the ‘jump’ tab). Since the jump

only considers the current assignment of truth values and the chosen rule(s), it

makes off(1), off(2), and off(3) true and on(1), on(2), and on(3) false by repeatedly

applying r4. This automatic assignment is shown in the ‘state’ tab in Figure 34,

along with the grounded rules used in the automatic steps of the jump. As illustrated

Fig. 34: Truth assignment and applicable facts (highlighted blue) after the jump.

by the blue highlighting, at this point only facts swa(0) and swb(0) are applicable.

Performing steps on these two facts results in r1 being applicable, but the rule

Fig. 35: Failure of the stepping computation.

cannot be satisfied w.r.t. the current truth assignment, as shown in Figure 35.

The failure provides insights as to why there is no answer set in which the bulb is

turned off at t ≥ 0. Namely, the reason it may be turned off is inertia (application

of rule r4), however, since switches swa and swb are pushed, it follows that the light

bulb must be turned on at t = 1. This conflicts with the previous inertia assumption

that the light is not turned on (not on(1) in r4 when deriving off(1)). �

4.6 Summary and Discussion

In Sections 4.1 to 4.5, we outlined the most prominent approaches to ASP debug-

ging, i.e. the explanation of non-existence of answer sets in terms of semantic errors.

In contrast to the justification approaches discussed Section 3, where the truth value

of literals is explained in detail by referring to truth values of other literals used

in their derivation, the explanations provided by debugging approaches can seem

rather minimalistic. Indeed, debugging aims at providing a pointer to the cause of

inconsistency rather than a full-fledged explanation. Furthermore, we have seen that

these approaches follow different ideas as to what an explanation should encompass

and that they use different methodologies to achieve this. Tables 3 and 4 provide a

comparative overview of the differences and similarities of the surveyed debugging

approaches. In particular, Table 3 compares debugging approaches concerning the

type of logic programs that can be debugged, whether or not logic programs with

variables as well as with language constructs such as aggregates or arithmetic terms

can be debugged, and whether the approach can also be used to explain consistent

logic programs. Table 4 complements this by illustrating whether the debugging

approaches require an intended answer set, or rather, whether they detect mistakes

with respect to potentially intended answer sets, which types of errors in a logic

program the debugging approaches distinguish, and whether the user can or has to

interact with the debugger.

In the following, we discuss some of the distinguishing features in more detail, to

facilitate users to choose the appropriate debugging approach for their application.

4.6.1 Knowledge Representation versus Programming

As discussed by Cabalar (2011), logic programs under the answer set semantics are

seen as a pure knowledge representation and reasoning formalism by some and as

a programming language by others. It is therefore not surprising that explanation

and debugging approaches reflect this difference. Seeing ASP as a knowledge rep-

resentation formalism, a user represents knowledge in terms of a logic program and

uses the answer set semantics to find out which conclusions can be drawn from

this knowledge. The user may also represent a problematic situation and compute

answer sets to find a solution to the problem. Especially in the latter of these two

cases, the user most likely has no idea what the solution may be, in other words,

there is no answer set intended by the user. On the other hand, if ASP is seen as

a programming language, the user may well have an idea as to what the solution,

i.e. the answer sets, should look like.

Taking these considerations into account, the spock approach (Section 4.1) may

be more suitable for knowledge representation applications, as it does not require

that the user specifies an intended answer set. Sets of literals are generated au-

tomatically as potential answer sets, which are then justified as to why they are

37 The earlier version of the stepping approach (Oetsch et al. 2011) uses extended normal pro-
grams.

Answering the “why” in Answer Set Programming

Table 3: Comparison of explanation approaches for inconsistent logic programs.

debugging

approach

type of logic

program

variables

supported

additional

language

constructs

explains

consistent

LPs

spock

transformation 1
normal LP no no yes

spock

transformation 2
LP no no only non

answer sets

Ouroboros extended LP yes arithmetic,
comparison

only non
answer sets

interactive spock LP no no only non
answer sets

dwasp LP yes no no

stepping LP37 yes aggregates,
weight
constraints,
external atoms

yes

not actual answer sets. Similarly, the stepping approach (Section 4.5) does not

require the user to have an answer set in mind as applicable rules are automatically

determined and the user can then freely choose which one to use. However, both

approaches allow the user to guide the explanation towards specific literals that

may be expected in an answer set.

The interactive debugging approaches (Sections 4.3 and 4.4) take a programming

language rather than a knowledge representation view on ASP, as they assume that

the user has at least some idea as to what an answer set should look like, querying

the user about the expected truth values of some literals. The user can certainly

choose these truth values at random, making the interactive approaches applicable

even if the user has no answer set in mind. However, this is not their intended

usage. Note also that in order to know the truth value of a literal chosen by the

debugging approach, the user essentially has to have an answer set in mind, as the

user does not know upfront which literal will be chosen as a query.

The Ouroboros approach (Section 4.2) is clearly on the programming language

end of the spectrum as it requires the user to specify a complete intended answer

set. The user could of course choose an ‘intended’ answer set at random, but, again,

this is not the usage envisaged by this approach.

Table 4: Comparison of explanation approaches for inconsistent logic programs

(continued).

debugging

approach

intended answer

set
error types

user

interaction

spock

transformation 1
possible but not
required
(automatically
generated)

unsatisfied rule,
unsupported atom,
unfounded atom

possible

spock

transformation 2
possible but not
required
(automatically
generated)

unsatisfied
rule/constraint,
unsupported atom,
unfounded atom

possible

Ouroboros required unsatisfied
rule/constraint,
unfounded atom

required for
intended answer
set

interactive spock possible but not
required

unsatisfied
rule/constraint,
unsupported atom,
unfounded atom

required

dwasp possible but not
required

minimal
unsatisfiable core

required

stepping not required but
(indirectly) possible

unsatisfiability of
rules, conflicting
truth value of atoms

required

4.6.2 Error Classification

As in the case of justifications for consistent logic programs, the debugging ap-

proaches also differ regarding the elements used for explaining the inconsistency.

More precisely, they identify different types of ‘errors’ causing a set of literals to

not be an answer set. Broadly speaking, two different ideas towards errors can be

distinguished: the classification of errors into different classes or the reduction of

all errors two one ‘class’.

dwasp and the stepping approach do not use any named error classes, thus

following the latter idea. In dwasp errors are sets of rules that, when blocked,

make the program consistent. However, there is no further explanation as to why

this is the case. On the other hand, errors in the stepping approach are only

indirectly specified. They are indicated by (partial) truth assignments to literals,

which lead to a contradiction. Again, there is no further explanation, other than

the rule causing the contradiction. In contrast, the other approaches reviewed here

distinguish different classes of errors.

The spock system and the two approaches based on it (interactive debugging

and Ouroboros) use mostly the same classes of errors. As previously explained,

these are violations of the definition of answer sets by Lin and Zhao (2004) and

Lee (2005) (see Definition 32 on page 65), namely unsatisfied rules, unsupported

atoms, and unfounded atoms.

Interestingly, one reason for inconsistency of logic programs often discussed in the

literature (You and Yuan 1994; Syrjänen 2006; Costantini 2006; Schulz et al. 2015)

is not explicitly pointed out by spock, namely odd-length (negative dependency)

cycles. In Examples 52 and 55 (see pages 68 and 72), the odd-length cycle in r2
of P29 is only indirectly pointed out: M26 expresses that {b} is not an answer set

of P29 since all rules with head b are blocked by {b}. Taking a closer look at P29,

we realise that the only rule with head b is r2 and that the reason for it being

blocked is that not b is in the body of r2. However, if P29 was a large logic program,

it would be infeasible to check all rules with head b to find out that one of them

may comprise an odd-length cycle, causing the rule to be blocked. Similarly, M28

indirectly points out the odd-length cycle by stating that r2 is applicable but its

head is not contained in the set {a}. We then realise that the reason for r2 not

being satisfied is the odd-length cycle.

Example 62

Let P33 be the inconsistent logic program with:

r1 : a ← b r2 : b ← not a (81)

The answer sets of Tk [P33] ∪ Tex [P33] (when using minimisation) are:

• M42 = {a, b, unsupported(b), applicable(r1), blocked(r2)}

• M43 = {a, unsupported(a), blocked(r1), blocked(r2)}

• M44 = {b, unsatisfied(r1), applicable(r1), applicable(r2)}

• M45 = {unsatisfied(r2), blocked(r1), applicable(r2)}

None of the answer sets captures the fact that there is an odd-length cycle a ← not a.

For a similarly structured logic program with more rules and derivation steps be-

tween a and not a it would therefore be difficult to identify that the reason of the

inconsistency is an odd-length cycle. �

A debugging approach related to spock (Syrjänen 2006) explicitly points out

inconsistencies due to odd-length cycles. The approach also uses the input transfor-

mation Pinp [P] of a logic program together with a meta-encoding of two types of

errors: odd-length cycles and violated constraints. However, all odd-length cycles

are considered as faulty, even though some odd-length cycles do not cause a logic

program to be inconsistent. In contrast to the spock system, faults are pointed out

independent of intended or potential answer sets.

Another class of ‘errors’ not considered in any of the debugging approaches are

those of contradictory answer sets. In fact, none of the debugging approaches re-

viewed here deals with contradictory atoms in an answer set. Schulz et al. (2015)

show that logic programs with contradictory answer sets include different types of

semantic errors than inconsistent logic programs. This is also taken into account in

the inconsistency measurements of Ulbricht et al. (2016).

4.6.3 Large and Real-World Logic Programs

We already hinted at the fact that the different debugging approaches require var-

ious levels of user interaction to obtain an explanation. In particular, some ap-

proaches require the user to specify an intended answer set before starting the

debugging process, especially the Ouroboros system. This can be difficult if faced

with a large logic program, potentially comprising hundreds of atoms. Furthermore,

using the stepping approach, the user has to step through every single applica-

ble rule, unless being sure that some rules are not problematic, in which case the

jumping feature can be used. Assuming that the user does not have any idea why

the logic program is inconsistent, thus ruling out jumping, the stepping approach

can take a long time and also be prone to errors for these large programs.

In contrast, for approaches requiring only little user interaction, first and foremost

the spock system, the amount of interaction does not increase when dealing with

large logic programs. However, note that the more literals occur in a program, the

more explanations are computed by spock, namely one for each potential answer

set. The user interaction is thus implicitly required after explanations are computed,

since the user then has to decide which explanations to take into account. It follows,

that, just like the Ouroboros and stepping approaches, using spock with large logic

programs may take a long time.

The two interactive approaches (the one based on spock and the dwasp system)

are the ones that require least user interaction when handling large logic programs.

This is because queries are determined in such a way that the user’s answer provides

maximal information gain. Consequently, the total number of queries generated is

as small as possible. From a user’s point of view, answering a query on the expected

truth value of a single literal may furthermore be easier than specifying the truth

value of all literals at once or choosing a meaningful explanation from all the ones

generated.

When using ASP in practice, logic programs often include additional language

constructs, make use of variables, and are seldom limited to normal rules. These are

important consideration when choosing a debugging approach. Currently, Ouroboros

and the stepping approach are the only ones to handle both negation-as-failure

and explicit negation, variables, and additional language constructs, where the

stepping approach supports more constructs than Ouroboros. dwasp supports

variables, but to the best of our knowledge no explicit negation or additional lan-

guage constructs. Nevertheless, is to be assumed that these will be supported in

the future since dwasp is implemented in terms of the ASP solver wasp, which is

able to handle these.

5 Related Work

In this survey, we focussed on justification and debugging approaches for logic

programs under the answer set semantics. Historically, the concept of justifications

can be traced back to the works of Shapiro (1983) and Sterling and Lalee (1986),

where they have been used as a means for identifying bugs in programs. Later, Lloyd

(1987) introduced the notions of uncovered atoms and incorrect rules under the

completion semantics (Clark 1978) while Sterling and Yalçinalp (1989) explained

Prolog expert systems using a meta-interpreter.

An important notion for understanding errors in ASP is the concept of a sup-

ported set of atoms, which was introduced by Pereira et al. (1991) and further elab-

orated by Pereira et al. (1993). Another important concept is the notion of assump-

tions, which was introduced for truth maintenance systems by de Kleer (1986) and

developed for logic programming by Pereira et al. (1993). Specht (1993) presented

one of the first techniques to compute complete proof trees for bottom-up evaluation

of database systems by means of a program transformation. Further techniques for

computing justifications or explanations for Prolog by means of meta-interpreters or

program transformations can be found in (Sterling and Shapiro 1994) and (Bratko

2001). Furthermore, explanation approaches have been developed for knowledge

representation paradigms related to ASP. For instance, Arora et al. (1993) present

explanations for deductive databases and Ferrand et al. (2006) for constraint logic

programs and constraint satisfaction problems.

Regarding justifications for logic programs under the answer set semantics, Brain

and De Vos (2005) were one of the first to tackle this issue, by presenting two algo-

rithms for producing natural language explanations as to why a (set of) literal(s)

is or is not part of an answer set. In the first case, applicable rules are provided

as an explanation, whereas in the second case contradictions (concerning the truth

values of atoms) are pointed out.

Off-line justifications (Pontelli and Son 2006; Pontelli et al. 2009), as reviewed

in Section 3.1, use graphs as justifications, expressing why an atoms is (not) con-

tained in a given answer set. This approach can be traced back to tabled justifi-

cations for Prolog (Roychoudhury et al. 2000; Pemmasani et al. 2003). Albrecht

et al. (2013) further show how off-line explanation graphs can be constructed from

a graphical representation of logic programs called extended dependency graph.

The root of causal justifications can be traced back to (Cabalar 2011), where an

extension of the stable semantics with causal proofs was introduced, and (Cabalar

and Fandinno 2013), where an algebraic characterisation of this semantics was de-

veloped. Argumentation-based answer set justifications (Schulz et al. 2013) are

a predecessor of LABAS justifications. They share the argumentative flavour of

LABAS justifications but use a slightly different way of constructing arguments

and justifications.

Erdem and Öztok (2015) use ASP to construct explanations for biomedical

queries. These explanations have a tree structure expressing derivations of a lit-

eral in question and have a close relationship with off-line justifications. Lifschitz

(2017) introduces a methodology that facilitates the design of encodings that are

easy to understand and provably correct. In addition to the implementations of

justification and debugging approaches reviewed here, Perri et al. (2007) integrate

an explanation and debugging component into the DLV solver.

As we saw throughout this survey, many justification approaches construct a

graphical explanation. Graph representations of logic programs have also been ex-

tensively studied for other purposes (Costantini et al. 2002; Costantini and Provetti

2010). Graphs can for instance be useful for the computation of answer sets, as is

the purpose of attack graphs (Dimopoulos and Torres 1996), rule graphs (Dimopou-

los 1996), and block graphs (Linke 2001) and their extensions (Linke and Sarsakov

2004; Konczak et al. 2006). Furthermore, Costantini (2001) and Costantini and

Provetti (2011) study desirable properties of graphs representing logic programs

and Costantini (2006) uses cycle graphs to prove conditions for the existence of

answer sets.

Various IDEs for ASP also make use of graphical representations of logic programs

or visualise dependencies between literals to help the user understand a problem

represented as a logic program. For example, for the DLV solver a visual computation

tracing feature (Calimeri et al. 2009) as well as a dependency graph feature (Feb-

braro et al. 2011) have been developed. Furthermore, the VIDEAS system (Oetsch

et al. 2011) uses entity relationship graphs of logic programs for model-driven en-

gineering in ASP and, in the ‘Visual ASP’ system (Febbraro et al. 2010), the user

can draw a graph, which is then translated into a logic program.

6 Conclusion

Lifschitz (2010) lists thirteen different definitions of the concept of answer set (and

points out that even more exist). These definitions are equivalent (at least for nor-

mal programs), but provide alternative points of view on the intuitive meaning of

logic programs or lead to different algorithms for generating answer sets. In this

sense, it is not surprising that there exist several ways of explaining the solutions

to consistent programs and the errors in inconsistent ones. In this survey, we have

reviewed and compared the most prominent explanation approaches for both con-

sistent and inconsistent logic programs under the answer set semantics and pointed

out their differences and similarities. These approaches try to answer important

‘why’-questions regarding answer sets, namely why a set of literals is or is not an

answer set, or why a logic program is inconsistent. Approaches aiming at answer-

ing the first question for consistent logic programs are referred to as justification

approaches, while explanation approaches trying to answer the second question for

inconsistent logic programs are referred to as debugging approaches. The latter

take a more global view than justification approaches: in debugging approaches the

explanation is w.r.t. a whole set that is not an answer set, whereas in most justi-

fication approaches the explanation is w.r.t. one literal that is (not) in an answer

set.

As we have seen in Sections 3.6 and 4.6, the different justification and debug-

ging approaches suffer from various issues. Building upon these observations, in

the following we suggest some considerations for future research that are mainly

independent of philosophical choices made by different approaches. These are partic-

ularly important in the light of the European Union’s new General Data Protection

Regulation (GDPR), which states that explanations should consist of “meaningful

information about the logic involved” and be “concise, intelligible and easily accessi-

ble” (Goodman and Flaxman 2016). Since the approaches discussed here construct

explanations based on the logical connection between rules and literals leading to

the existence of a particular answer set or to inconsistency, at least the first part

of the first GDPR condition, i.e. “information about the logic involved”, can be

deemed satisfied by these approaches. The proposed directions of research are as

follows:

• Number of explanations (tackling the conciseness and intelligibility required

by the GDPR): As previously discussed, most justification and debugging ap-

proaches suffer from a large number of possible explanations when dealing with

large programs with, potentially, many (and long) dependencies between liter-

als. This is not feasible in practice, so a method for choosing the most suitable

explanation(s) is needed. This could for example be tackled by querying the

user as in dwasp and the interactive spock approach.

• Size of explanations (tackling meaningfulness of information, conciseness, intel-

ligibility, and easy accessibility required by the GDPR): A related problem is

the growth in size, from which many of the justification approaches suffer. Large

explanations are infeasible in many practical applications, since they make it dif-

ficult for the user to understand the explanation. The development of techniques

for collapsing less important parts of an explanation provides a challenging topic

for the future.

• Language constructs and variables: We have seen that, especially among the jus-

tification approaches, there is little support for logic programs that contain lan-

guage constructs such as aggregates, weight constraints, etc. Many approaches

are not even able to efficiently handle variables. In order to apply explanations

in practice, these issues will have to be addressed.

• Cross-fertilisation of justification and debugging: Most current approaches ei-

ther focus on justifying consistent programs or debugging inconsistent pro-

grams. A first step towards the cross-fertilisation of the two was made by

Damásio et al. (2015), who combine the second spock transformation approach

with why-not provenance justifications.

• Going beyond debugging: Current debugging approaches merely point out errors

in a program, leaving the fixing of these errors to the user. The automatic

revision of inconsistent logic programs is thus an interesting, and challenging,

topic for future investigations. A first step in this direction was made by Li

et al. (2015), who use inductive logic programming to achieve a semi-automatic

revision of logic programs.

Meeting the requirements of the GDPR will be a challenging task, especially since

conditions like meaningfulness and intelligibility of information may have to be re-

alised differently for ASP experts and non-experts. Applications of ASP explanation

approaches will thus determine whether or not they meet the required conditions. In

this sense, an exciting prospect for the future is the combination of the advantages

and minimisation the disadvantages of all the different approaches for answering a

‘why’-question in answer set programming.

Acknowledgements We are thankful to the anonymous reviewers for their valuable

feedback, which helped to improve the paper.

References

Albrecht, E., Krümpelmann, P., and Kern-Isberner, G. 2013. Construction of
Explanation Graphs from Extended Dependency Graphs for Answer Set Programs. In
Revised Selected Papers of the Kiel Declarative Programming Days (KDPD’13). 1–16.

Alviano, M., Dodaro, C., Faber, W., Leone, N., and Ricca, F. 2013. WASP: A
Native ASP Solver Based on Constraint Learning. In Proceedings of the 12th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’13).
54–66.

Alviano, M., Dodaro, C., Leone, N., and Ricca, F. 2015. Advances in WASP. In
Proceedings of the 13th International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’15). 40–54.

Arora, T., Ramakrishnan, R., Roth, W. G., Seshadri, P., and Srivastava, D.

1993. Explaining Program Execution in Deductive Systems. In Proceedings of the 3rd
International Conference on Deductive and Object-Oriented Databases (DOOD’93).
101–119.

Balduccini, M. and Girotto, S. 2010. Formalization of Psychological Knowledge in
Answer Set Programming and its Application. Theory and Practice of Logic Program-
ming 10, 4-6, 725–740.

Béatrix, C., Lefèvre, C., Garcia, L., and Stéphan, I. 2016. Justifications and Block-
ing Sets in a Rule-Based Answer Set Computation. In Technical Communications of
the 32nd International Conference on Logic Programming (ICLP’16). 6:1–6:15.

Boenn, G., Brain, M., De Vos, M., and Fitch, J. P. 2011. Automatic Music Composi-
tion Using Answer Set Programming. Theory and Practice of Logic Programming 11, 2-
3, 397–427.

Brain, M. and De Vos, M. 2005. Debugging Logic Programs under the Answer Set
Semantics. In Proceedings of the 3rd Workshop on Answer Set Programming, Advances
in Theory and Implementation (ASP’05).

Brain, M. and De Vos, M. 2008. Answer Set Programming - a Domain in Need of
Explanation: A Position Paper. In Proceedomgs of the 3rd International Workshop on
Explanation-aware Computing (ExaCt’08). 37–48.

Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., and Woltran, S.

2007a. Debugging ASP Programs by Means of ASP. In Proceedings of the 9th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’07).
31–43.

Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., and Woltran, S.

2007b. ”That is illogical captain!” - The debugging support tool spock for answer-set
programs: System description. In Proceedings of the 1st International Workshop on
Software Engineering for Answer Set Programming (SEA’07). 71–85.

Bratko, I. 2001. Prolog programming for artificial intelligence. Pearson education.

Brewka, G., Eiter, T., and Truszczynski, M. 2011. Answer Set Programming at a
Glance. Communications of the ACM 54, 12, 92–103.

Busoniu, P.-A., Oetsch, J., Pührer, J., Skocovsky, P., and Tompits, H. 2013.
SeaLion: An Eclipse-Based IDE for Answer-Set Programming with Advanced Debugging
Support. Theory and Practice of Logic Progrmming 13, 4-5, 657–673.

Cabalar, P. 2011. Answer Set; Programming? In Logic Programming, Knowledge Rep-
resentation, and Nonmonotonic Reasoning - Essays Dedicated to Michael Gelfond on
the Occasion of His 65th Birthday. 334–343.

Cabalar, P. and Fandinno, J. 2013. An algebra of causal chains. CoRR abs/1312.6134.

Cabalar, P. and Fandinno, J. 2016. Justifications for programs with disjunctive and
causal-choice rules. Theory and Practice of Logic Programming 16, 5-6, 587–603.

Cabalar, P. and Fandinno, J. 2017. Enablers and Inhibitors in Causal Justifications
of Logic Programs. Theory and Practice of Logic Programming 17, 1, 49–74.

Cabalar, P., Fandinno, J., and Fink, M. 2014. Causal Graph Justifications of Logic
Programs. Theory and Practice of Logic Programming 14, 4-5, 603–618.

Cabalar, P., Fandiño, J., and Fink, M. 2014. A complexity assessment for queries
involving sufficient and necessary causes. In Proceedings of the 14th European Confer-
ence on Logics in Artificial Intelligence (JELIA’14). Lecture Notes in Computer Science,
vol. 8761. Springer, 297–310.

Calimeri, F., Leone, N., Ricca, F., and Veltri, P. 2009. A Visual Tracer for DLV.
In Proceedings of the 2nd International Workshop on Software Engineering for Answer
Set Programming (SEA’09). 79–93.

Clark, K. L. 1978. Negation as failure. In Logic and data bases. Springer, 293–322.

Costantini, S. 2001. Comparing Different Graph Representations of Logic Programs
under the Answer Set Semantics. In Proceedings of the 1st International Workshop on
Answer Set Programming: Towards Efficient and Scalable Knowledge Representation
and Reasoning (ASP’01).

Costantini, S. 2006. On the Existence of Stable Models of Non-Stratified Logic Programs.
Theory and Practice of Logic Programming 6, 1-2, 169–212.

Costantini, S., D’Antona, O., and Provetti, A. 2002. On the Equivalence and
Range of Applicability of Graph-based Representations of Logic Programs. Information
Processing Letters 84, 5, 241–249.

Costantini, S. and Provetti, A. 2010. Graph Representations of Logic Programs:
Properties and Comparison. In Proceedings of the 6th Latin American Workshop on
Non-Monotonic Reasoning. 1–14.

Costantini, S. and Provetti, A. 2011. Conflict, Consistency and Truth-Dependencies
in Graph Representations of Answer Set Logic Programs. In Revised Selected Papers
of the 2nd International Workshop on Graph Structures for Knowledge Representation
and Reasoning (GKR’11). 68–90.

Damásio, C. V., Analyti, A., and Antoniou, G. 2013. Justifications for Logic Pro-
gramming. In Proceedings of the 12th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’13). 530–542.

Damásio, C. V., Moura, J., and Analyti, A. 2015. Unifying Justifications and Debug-
ging for Answer-Set Programs. In Technical Communications of the 31st International
Conference on Logic Programming (ICLP’15).

Damásio, C. V., Pires, J. M., and Analyti, A. 2015. Unifying justifications and
debugging for answer-set programs. In Proceedings of the Technical Communications
of the 31st International Conference on Logic Programming (ICLP’15), M. D. Vos,
T. Eiter, Y. Lierler, and F. Toni, Eds. CEUR Workshop Proceedings, vol. 1433. CEUR-
WS.org.

de Kleer, J. 1986. An assumption-based tms. Artificial Intelligence 28, 2, 127 – 162.

Denecker, M., Brewka, G., and Strass, H. 2015. A Formal Theory of Justifica-
tions. In Proceedings of the 13th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’15). 250–264.

Denecker, M. and De Schreye, D. 1993. Justification Semantics: A Unifiying Frame-
work for the Semantics of Logic Programs. In Proceedings of the 2nd International
Workshop on Logic Programming and Non-monotonic Reasoning (LPNMR’93). 365–
379.

Dimopoulos, Y. 1996. On Computing Logic Programs. Journal of Automated Reason-
ing 17, 3, 259–289.

Dimopoulos, Y. and Torres, A. 1996. Graph Theoretical Structures in Logic Programs
and Default Theories. Theoretical Computer Science 170, 1-2, 209–244.

Dodaro, C., Gasteiger, P., Musitsch, B., Ricca, F., and Shchekotykhin, K. M.

2015. Interactive Debugging of Non-ground ASP Programs. In Proceedings of the
13th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’15). 279–293.

Dung, P. M., Kowalski, R. A., and Toni, F. 2009. Assumption-Based Argumentation.
In Argumentation in Artificial Intelligence, G. R. Simari and I. Rahwan, Eds. Springer
US, 199–218.

El-Khatib, O., Pontelli, E., and Son, T. C. 2005. Justification and Debugging of
Answer Set Programs in ASP - Prolog. In Proceedings of the 6th International Workshop
on Automated Debugging (AADEBUG’05). 49–58.

Erdem, E. and Öztok, U. 2015. Generating Explanations for Biomedical Queries. The-
ory and Practice of Logic Programming 15, 1, 35–78.

Faber, W., Pfeifer, G., and Leone, N. 2011. Semantics and Complexity of Recursive
Aggregates in Answer Set Programming. Artificial Intelligence 175, 1, 278–298.

Fandinno, J. 2016a. Deriving conclusions from non-monotonic cause-effect relations.
Theory and Practice of Logic Programming 16, 5-6, 670–687.

Fandinno, J. 2016b. Towards deriving conclusions from cause-effect relations. Funda-
menta Informaticae 147, 1, 93–131.

Febbraro, O., Reale, K., and Ricca, F. 2010. A Visual Interface for Drawing ASP
Programs. In Proceedings of the 25th Italian Conference on Computational Logic
(CILC’10).

Febbraro, O., Reale, K., and Ricca, F. 2011. ASPIDE: Integrated Development
Environment for Answer Set Programming. In Proceedings of the 11th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’11). 317–
330.

Ferrand, G., Lesaint, W., and Tessier, A. 2006. Explanations and Proof Trees.
Computers and Informatics 25, 2-3, 105–122.

Frühstück, M., Pührer, J., and Friedrich, G. 2013. Debugging Answer-Set Programs
with Ouroboros - Extending the SeaLion Plugin. In Proceedings of the 12th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’13).
323–328.

Gasteiger, P., Dodaro, C., Musitsch, B., Reale, K., Ricca, F., and Schekotihin,

K. 2016. An integrated Graphical User Interface for Debugging Answer Set Programs. In
Proceedings of the Workshop on Trends and Applications of Answer Set Programming
(TAASP’16).

Gebser, M., Pührer, J., Schaub, T., and Tompits, H. 2008. A meta-programming
technique for debugging answer-set programs. In Proceedings of the 23rd AAAI Con-
ference on Artificial Intelligence (AAAI’18), D. Fox and C. P. Gomes, Eds. AAAI Press,
448–453.

Gebser, M., Schaub, T., Thiele, S., and Veber, P. 2011. Detecting Inconsistencies
in Large Biological Networks with Answer Set Programming. Theory and Practice of
Logic Programming 11, 2-3, 323–360.

Gelfond, M. 2008. Answer Sets. In Handbook of Knowledge Representation. 285–316.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic program-
ming. In Logic Programming: Proceedings of the 5th International Conference and
Symposium (Volume 2).

Gelfond, M. and Lifschitz, V. 1991. Classical Negation in Logic Programs and Dis-
junctive Databases. New Generation Computing 9, 3/4, 365–386.

Goodman, B. and Flaxman, S. 2016. European union regulations on algorithmic
decision-making and a ”right to explanation”. arXiv preprint arXiv:1606.08813.

Green, T. J., Karvounarakis, G., and Tannen, V. 2007. Provenance semirings. In
Proceedings of the 26th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, L. Libkin, Ed. ACM, 31–40.

Hall, N. 2004. Two concepts of causation. In Causation and counterfactuals, J. Collins,
N. Hall, and L. A. Paul, Eds. Cambridge, MA: MIT Press, 225–276.

Hall, N. 2007. Structural equations and causation. Philosophical Studies 132, 1, 109–136.

Halpern, J. Y. 2008. Defaults and normality in causal structures. In Proceedings of the
11th International Conference on Principles of Knowledge Representation and Reason-
ing (KR’08), G. Brewka and J. Lang, Eds. AAAI Press, 198–208.

Hitchcock, C. and Knobe, J. 2009. Cause and norm. Journal of Philosophy 11, 587–
612.

Inclezan, D. 2015. An Application of Answer Set Programming to the Field of Second
Language Acquisition. Theory and Practice of Logic Programming 15, 01, 1–17.

Konczak, K., Linke, T., and Schaub, T. 2006. Graphs and Colorings for Answer Set
Programming. Theory and Practice of Logic Programming 6, 1-2, 61–106.

Lee, J. 2005. A Model-Theoretic Counterpart of Loop formulas. In Proceedings of the
19th International Joint Conference on Artificial Intelligence (IJCAI’05). 503–508.

Lefèvre, C., Béatrix, C., Stéphan, I., and Garcia, L. 2017. Asperix, a first-order
forward chaining approach for answer set computing. Theory and Practice of Logic
Programming 17, 3, 266–310.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scar-

cello, F. 2006. The DLV System for Knowledge Representation and Reasoning. ACM
Transactions on Computational Logic 7, 3, 499–562.

Lewis, D. K. 1973. Causation. The journal of philosophy 70, 17, 556–567.

Li, T., De Vos, M., Padget, J., Satoh, K., and Balke, T. 2015. Debugging ASP
using ILP. In Proceedings of the Technical Communications of the 31st International
Conference on Logic Programming (ICLP’15).

Lifschitz, V. 2008. What Is Answer Set Programming? In Proceedings of the 23rd AAAI
Conference on Artificial Intelligence (AAAI’08). 1594–1597.

Lifschitz, V. 2010. Thirteen definitions of a stable model. In Fields of Logic and
Computation, Essays Dedicated to Yuri Gurevich on the Occasion of His 70th Birthday,
A. Blass, N. Dershowitz, and W. Reisig, Eds. Lecture Notes in Computer Science, vol.
6300. Springer, 488–503.

Lifschitz, V. 2017. Achievements in answer set programming. Theory and Practice of
Logic Programming 17, 5-6, 961–973.

Lin, F. and Zhao, Y. 2004. ASSAT: Computing Answer Sets of a Logic Program by
SAT Solvers. Artificial Intelligence 157, 1-2, 115–137.

Linke, T. 2001. Graph Theoretical Characterization and Computation of Answer Sets.
In Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJ-
CAI’01). 641–648.

Linke, T. and Sarsakov, V. 2004. Suitable Graphs for Answer Set Programming. In
Proceedings of the 11th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’04). 154–168.

Lloyd, J. W. 1987. Declarative error diagnosis. New Generation Computing 5, 2 (Jun),
133–154.

Maudlin, T. 2004. Causation, counterfactuals, and the third factor. In Causation and
Counterfactuals, J. Collins, E. J. Hall, and L. A. Paul, Eds. MIT Press.

McCarthy, J. 1977. Epistemological problems of Artificial Intelligence. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI). MIT Press,
Cambridge, MA, 1038–1044.

McCarthy, J. 1998. Elaboration tolerance. In Proceedings of the 4th Symposium on
Logical Formalizations of Commonsense Reasoning (Commonsense’98). London, UK,
198–217. Updated version at
http://www-formal.stanford.edu/jmc/elaboration.ps.

Oetsch, J., Pührer, J., Seidl, M., Tompits, H., and Zwickl, P. 2011. VIDEAS: A
development tool for answer-set programs based on model-driven engineering technol-
ogy. In Proceedings of the 11th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’11). 382–387.

Oetsch, J., Pührer, J., and Tompits, H. 2010. Catching the ouroboros: On debugging
non-ground answer-set programs. Theory and Practice of Logic Programming 10, 4-6,
513–529.

Oetsch, J., Pührer, J., and Tompits, H. 2011. Stepping through an Answer-Set Pro-
gram. In Proceedings of the 11th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’11). 134–147.

Oetsch, J., Pührer, J., and Tompits, H. 2012. An FLP-Style Answer-Set Semantics
for Abstract-Constraint Programs with Disjunctions. In Technical Communications of
the 28th International Conference on Logic Programming (ICLP’12). 222–234.

Oetsch, J., Pührer, J., and Tompits, H. 2018. Stepwise Debugging of Answer-Set
Programs. Theory and Practice of Logic Programming 18, 1, 30–80.

Parliament and Council of the European Union. 2016. Regulation (EU) 2016/679:
General Data Protection Regulation.

Pemmasani, G., Guo, H., Dong, Y., Ramakrishnan, C. R., and Ramakrishnan,

I. V. 2003. Online justification for tabled logic programs. In Proceedings of the 19th
International Conference on Logic Programming (ICLP’03), C. Palamidessi, Ed. Lecture
Notes in Computer Science, vol. 2916. Springer, 500–501.

Pereira, L. M. and Alferes, J. J. 1992. Well founded semantics for logic programs
with explicit negation. In Proceedings of the 10th European Conference on Artificial
Intelligence (ECAI’92). 102–106.

Pereira, L. M., Alferes, J. J., and Apaŕıcio, J. N. 1991. Contradiction removal
within well founded semantics. In Proceedings of the 1st International Workshop on
Logic Programming and Non-monotonic Reasonin (LPNMR’91).

Pereira, L. M., Aparcio, J. N., and Alferes, J. 1993. Non-monotonic reasoning with
logic programming. The Journal of Logic Programming 17, 2, 227 – 263. Special Issue:
Non-Monotonic Reasoning and Logic Programming.

Pereira, L. M., Damásio, C. V., and Alferes, J. J. 1993. Debugging by diagnosing
assumptions. In International Workshop on Automated and Algorithmic Debugging.
Springer, 58–74.

Perri, S., Ricca, F., Terracina, G., Cianni, D., and Veltri, P. 2007. An Integrated
Graphic Tool for Developing and Testing DLV Programs. In Proceedings of the 1st In-
ternational Workshop on Software Engineering for Answer Set Programming (SEA’07).
86–100.

Polleres, A., Frühstück, M., Schenner, G., and Friedrich, G. 2013. Debugging
Non-ground ASP Programs with Choice Rules, Cardinality and Weight Constraints.
In Proceedings of the 12th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’13). 452–464.

Pontelli, E. and Son, T. C. 2006. Justifications for Logic Programs Under Answer Set
Semantics. In Proceedings of the 22nd International Conference on Logic Programming
(ICLP’06). 196–210.

Pontelli, E., Son, T. C., and El-Khatib, O. 2009. Justifications for Logic Programs
under Answer Set Semantics. Theory and Practice of Logic Programming 9, 1, 1–56.

Pührer, J. 2014. Stepwise Debugging in Answer-Set Programming: Theoretical Founda-
tions and Practical Realisation. Ph.D. thesis.

Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., and Leone,

N. 2012. Team-Building with Answer Set Programming in the Gioia-Tauro Seaport.
Theory and Practice of Logic Programming 12, 3, 361–381.

Roychoudhury, A., Ramakrishnan, C. R., and Ramakrishnan, I. V. 2000. Justifying
proofs using memo tables. In Proceedings of the 2nd ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming (PPDP’00). 178–
189.

Schulz, C. 2017. Developments in abstract and assumption-based argumentation and
their application in logic programming. Ph.D. thesis, Imperial College London.

Schulz, C., Satoh, K., and Toni, F. 2015. Characterising and Explaining Inconsis-
tency in Logic Programs. In Proceedings of the 13th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’15). 467–479.

Schulz, C., Sergot, M., and Toni, F. 2013. Argumentation-Based Answer Set Justifi-
cation. In Proceedings of the 11th International Symposium on Logical Formalizations
of Commonsense Reasoning (Commonsense’13).

Schulz, C. and Toni, F. 2013. ABA-Based Answer Set Justification. Theory and
Practice of Logic Programming 13, 4-5-Online-Supplement.

Schulz, C. and Toni, F. 2015. Logic Programming in Assumption-Based Argumentation
Revisited - Semantics and Graphical Representation. In Proceedings of the 29th AAAI
Conference on Artificial Intelligence (AAAI’15). 1569–1575.

Schulz, C. and Toni, F. 2016. Justifying Answer Sets using Argumentation. Theory
and Practice of Logic Programming 16, 01, 59–110.

Shapiro, E. Y. 1983. Algorithmic Program DeBugging. MIT Press, Cambridge, MA,
USA.

Shchekotykhin, K. M. 2015. Interactive Query-Based Debugging of ASP Programs. In
Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI’15). 1597–
1603.

Specht, G. 1993. Generating explanation trees even for negations in deductive database
systems. In Proceedings of the 5th Workshop on Logic Programming Environments
(LPE’93), M. Ducassé, B. L. Charlier, Y. Lin, and L. Ü. Yalçinalp, Eds. IRISA, Campus
de Beaulieu, France, 8–13.

Sterling, L. and Lalee, M. 1986. An explanation shell for expert systems. Computa-
tional Intelligence 2, 1, 136–141.

Sterling, L. and Shapiro, E. Y. 1994. The art of Prolog: advanced programming
techniques. MIT press.

Sterling, L. and Yalçinalp, L. Ü. 1989. Explaining prolog based expert systems using
a layered meta-interpreter. In Proceedings of the 11th International Joint Conference
on Artificial Intelligence (IJCAI’89). 66–71.

Sureshkumar, A., De Vos, M., Brain, M., and Fitch, J. 2007. APE: An AnsProlog*
environment. In Proceedings of the 1st International Workshop on Software Engineering
for Answer Set Programming (SEA’07). 101–115.

Syrjänen, T. 2006. Debugging Inconsistent Answer Set Programs. In Proceedings of the
11th International Workshop on Non-Monotonic Reasoning (NMR’06). 77–84.

Syrjänen, T. and Niemelä, I. 2001. The Smodels System. In Proceedings of the 6th
International Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’01). 434–438.

Ulbricht, M., Thimm, M., and Brewka, G. 2016. Measuring Inconsistency in Answer
Set Programs. In Proceedings of the 15th European Conference on Logics in Artificial
Intelligence (JELIA’16). 577–583.

van Emden, M. H. and Kowalski, R. A. 1976. The semantics of predicate logic as a
programming language. Journal of the ACM 23, 4, 733–742.

Van Gelder, A. 1989. The alternating fixpoint of logic programs with negation. In
Proceedings of the 8th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems. ACM, 1–10.

Van Gelder, A., Ross, K., and Schlipf, J. S. 1988. Unfounded sets and well-founded
semantics for general logic programs. In Proceedings of the 7th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems. ACM, 221–230.

Van Gelder, A., Ross, K. A., and Schlipf, J. S. 1991. The well-founded semantics
for general logic programs. Journal of the ACM (JACM) 38, 3, 619–649.

You, J.-H. and Yuan, L. Y. 1994. A Three-Valued Semantics for Deductive Databases
and Logic Programs. Journal of Computer and System Sciences 49, 2, 334–361.

