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Low-power High Gain Observers for Wake Flow Rebuild

Javeria Ahmed, Matthieu Fruchard, Estelle Courtial and Youssoufi Touré

Abstract— This paper deals with the observation of the wake
flow behind a bluff body based on reduced order models. Two
Galerkin models with different truncation orders are considered
to capture the intermittent character of the vortex shedding.
The system output is the oscillation amplitude obtained thanks
to pression measurements on the sides and on the back of
the bluff body. For flow control purposes, the state estimation
has to be efficient and robust to noises and dynamic changes.
A high gain observer is modified i) by extending the state
with the introduction of fictitious outputs in order to avoid
an observability singularity and to ensure the existence of
the inverse jacobian matrix and ii) by integrating a high
gain parameter whose power is limited to 2 instead of n to
address the sensitivity issue of the standard high gain observer.
Simulation results illustrate the efficiency of the proposed
observers and highlight promising applications for flow control
at high Reynolds numbers.

I. INTRODUCTION

A. Context and motivation

The flow at the rear of a bluff body is a common occur-

rence such as the flows at the back of an airplane, a subma-

rine or a vehicle. The turbulent wakes downstream the bluff

body can be very complex, exhibiting coherent structures

with different scales. The strongly intermittent behavior of

the flow depends on the Reynolds number. At high Reynolds

numbers, vortex shedding occurs in the wake, leading to a

significant pressure drop on the rear surface of the body. This

phenomenon gives rise to structural vibrations, acoustic noise

and increases the drag force. The control of vortex shedding

is then of major interest for engineering applications. Active

control in fluid mechanics is a promising and challenging

research area. Promising because lower energy consumption

and better performances are expected by decreasing the drag

force. Challenging because observation and control require

both real-time tractable and robust models with respect to

dynamics changes in the wake flow [1], [2]. Fluid flows

are governed by the Navier-Stokes equations known for

their complexity (strong nonlinearities, high dimensionality

and time-delays). This kind of modeling can not be used

when real-time applications are targeted [3]. Linear models

are unable to recover unstabilities characterizing the wake

flow [4], [5]. Within this context, reduced order models

approaches have been widely used to address the extraction

of the coherent structures dynamics in fluid flows: Proper

Orthogonal Decomposition [6] and more recently Dynamic
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France. javeria.ahmed@etu.univ-orleans.fr,
matthieu.fruchard, estelle.courtial,
youssoufi.toure @univ-orleans.fr

Mode Decomposition [7], [8] using projection of the Navier-

Stokes equations onto a modal basis. Galerkin models have

proven to be a good compromise between simplicity and

robustness. They are based on a Karhunen-Loève expansion

around the steady or time-averaged Navier-Stokes solution

us. The unsteady flow u(x, t) is then approximated by an

orthonormal Galerkin series:

u(x, t)≈ us(x)+
2N

∑
i=1

ai(t)ui(x), (1)

where ui(x) denote the orthonormal spatial modes and ai(t)
are the temporal modes amplitudes. For time periodic flows,

structures are described by pairs of modes, acting as modal

oscillators. Since the first two modes (N = 1) convey 95%

of the turbulent kinetic energy, is it necessary to truncate

the equation (1) at higher order? However, one mode plays

a crucial role to robustify the low-order Galerkin model

with respect to Reynolds range and transient dynamics [9],

[10]: it’s the shift mode, noted a∆, modeling the energy

flow between the mean flow and the vortex shedding. In

the sequel, two Galerkin models are considered: a minimal

Galerkin representation [9] using the dominant von Karman

modes a1,a2 and the shift mode a∆ (the decay rate µ > 0 is

supposed to be constant):

˙







a1

a2

a∆

µ









=









(µ −a∆)a1 −a2

(µ −a∆)a2 +a1

a2
1 +a2

2 −a∆

0









(2)

and a more refined Galerkin representation including higher

damped (µ ′ > 0) modes (a3,a4) interacting with the first two

ones through the shift mode:

˙















a1

a2

a3

a4

a∆

µ

















=

















(µ −a∆)a1 −a2

(µ −a∆)a2 +a1

(−µ ′−a∆)a3 −a4

(−µ ′−a∆)a4 +a3

a2
1 +a2

2 +a2
3 +a2

4 −a∆

0

















(3)

The latter model, referred as a hybrid model [9], [11]

between the empirical Galerkin model (2) and higher di-

mensional invariant-manifold model, is expected to be more

precise. Considering the oscillation amplitudes Ai = a2
2i−1 +

a2
2i, the above models become two systems of order 3 and 4

respectively. With the notation xmin =
(

A1 a∆ µ
)

∈ X ⊂
R

3, system (2) becomes:

Smin : ẋmin =





2x1(x3 − x2)
x1 − x2

0



= f (xmin) (4)



and using the state vector xhyb =
(

A1 A2 a∆ µ
)

∈ X ⊂
R

4, system (3) becomes

Shyb : ẋhyb =









2x1(x4 − x3)
2x2(−µ ′− x3)

x1 + x2 − x3

0









= f (xhyb) (5)

For the sake of simplicity, the state vector x will be used for

both xmin and xhyb in the sequel. The only state component

accessible to measurement is the oscillation amplitude A1.

So the output is y = h(x) = x1 in both cases.

B. Problem statement

Rebuilding the unmeasured states is mandatory to i)

understand the macro-physics at work in the wake, i.e.

the dominant structure dynamics, and ii) synthesize control

laws aiming at stabilizing the wake around some desired

trajectory. A first prerequisite is to study the conditions

guaranteeing the observability of the sytem.

Proposition 1 Systems Smin and Shyb respectively given by

(4) and (5) are observable on Ωmin = {x∈X ⊂R
3 : |x1|> ε}

and Ωhyb = {x ∈ X ⊂ R
4 : |x1| > ε , |x2 + x3 + µ ′| > ε ′} for

any ε ,ε ′ > 0, respectively.

Proof: Let O denote the smallest vector space contain-

ing h and closed under the Lie derivative L f . A system

is said weakly observable if dimdO(x) = dimX where

dO = Span{dτ ,τ ∈ O} is the observability co-distribution.

Computing the differentials of the successive Lie deriva-

tives of the output y = h(x) along the system vector field f

leads to the observability co-distributions dOmin and dOhyb

for systems Smin and Shyb respectively, whose determinants

are:
|dOmin| = −4x2

1

|dOhyb| = −16x3
1(x2 + x3 +µ ′).

(6)

An observability singularity appears in particular when x1 =
0, whereas the control aims at forcing the oscillation ampli-

tude to zero. The designed observer should be able to handle

this singularity in order to synthesize control laws based on

the estimated states.

Among the observer approaches, the High Gain Observer

(HGO) is well-adapted to estimate nonlinear system states

and exploits a fast error convergence depending on the high

gain parameter. However, it has some flaws which need to

be addressed properly. The power of its high gain parameter

increases up to the dimension of the system causing some

sensitivity issues. Besides, a non-singular diffeomorphism

between the system expressed in natural coordinates and the

system in its normal form is required.

C. Contribution

The present paper proposes a solution for the aforemen-

tioned issues. The first issue is addressed by limiting the

power of the high gain parameter. As suggested by [12] for

high dimensional physical systems, the proposed observer

limits the high gain parameter power to two instead of n at

the expense of the increased observer dimension from n to

2n−2. In order to deal with the singularity issue that happens

during the inversion of the jacobian matrix to get back the

observer in original coordinates, the HGO is modified by

extending the state with the introduction of fictitious outputs

[13]. In this way, we avoid the singularity by making the

system observable and ensuring the existence of the inverse

jacobian matrix everywhere in space R
n.

This paper is organized as follows: we briefly recall the

design of high gain observers in section 2. Then the design

of the proposed observer is detailed in section 3. Section

4 is devoted to the simulation results of the observation of

the wake flow behind a bluff body. The observer efficiency

for the two reduced order models are compared. Finally

concluding remarks and on-going work are discussed in

section 5.

II. RECALL ON HIGH GAIN OBSERVERS

High gain observers [14], [15] are widely used since

their arbitrarily fast exponential decay and practical stability

arbitrary bound, in case of unmodeled dynamics, make

possible to synthesize real-time output feedback stabilizing

control laws for systems with few state measurements. We

briefly recall the standard high gain observer, the low-power

high gain observer and the observer in natural coordinates.

Proposition 2 (High gain observer) Consider the nonlin-

ear system ẋ = f (x),y = h(x) fulfilling the observability

condition with x ∈ X ⊂ R
n,y ∈ R. There exists an injective

immersion φ from X ⊂ R
n to R

m with m ≥ n such that the

nonlinear system can be rewritten in the observability normal

form with z = φ(x) as:

ż = Amz+BmF(z), y =Cmz = z1 (7)

where the matrices Am, Bm and Cm are in prime form: Am is

a (m×m) square matrix whose non null entry is the unitary

superdiagonal, Bm(C
T
m) is a m-dimensional column vector

whose non null entry is its unitary last (first) component.

Then a high gain observer is given by

˙̂z = Amẑ+BmFs(ẑ)+∆mK(y−Cmẑ) (8)

with ∆m = diag(θ , ...,θ m) where the high gain parameter

θ > θ0 ≥ 1 is related to the Lipschitz constant of Fs, Fs is a

saturated function of F and K is chosen such that the matrix

(Am −KCm) is Hurwitz.

Remark 1 Two well-known limitations of the high gain

observer are related to the increasing powers of the high gain

θ and to the inversion of φ . First, as dimension increases,

so does θ m, and it may result in an innovation term that

dominates the observer dynamics and an increased sensitivity

to noise on the last states, especially at high frequencies.

Second, since the observer is built in the z-space, recovering

an estimation useful for control purposes often requires to

go back to the natural coordinates x, meaning that φ has to

be inverted. This inversion is in general not easy, especially

if m > n.



In a recent study [12], the authors proposed a new

observer of dimension (2m− 2) using a high gain limited

to power 2 instead of designing an observer of dimension

m with a gain that grows up to power m. The limited gain

to power 2 reduces the numerical implementation problems

of the classic high gain observer and also reduces the

sensitivity to noise measurements.

Proposition 3 (Low-power high gain observer) Under

assumptions and notations of Proposition 2, let

ζ̇i = A2ζi +Nζi+1 +∆2Kiei, i ≥ 1
...

ζ̇m−1 = A2ζm−1 +B2Fs(ζ )+∆2Km−1em−1

(9)

with ζi ∈ R
2, ζ0,2 = y given by convention, ei = ζi−1,2 −ζi,1

and Ki =
(

ki1 ki2

)T
.

Let N =
(

02,1 B2

)

, Ei =
(

−Ki CT
2

)

and Qi =
(

02,1 Ki

)

. Choosing the high gain θ > θ0 as in Proposition

2 and gains Ki such that the matrix M

M =































E1 N 0 . . . . . . 0

Q2 E2 N
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . . Qi Ei N

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . Qm−2 Em−2 N

0 . . . . . . 0 Qm−1 Em−1































(10)

is Hurwitz then

ζ̇ = ϒ(ζ ,y) (11)

with ϒ given by (9) provides a low-power high gain observer

for system (7). We can use either ẑ = Pζ or ẑ′ = P′ζ with the

block diagonal projectors P given by I2 and (m−1) matrices

BT
2 , and P′ given by (m−1) matrices C2 and I2.

Remark 2 Despite this dimension increase, the low-power

(∆2 depends only on θ ,θ 2) high gain observer advantage

is twofold: innovation term predominance is limited and

sensitivity to output noise is consequently reduced, especially

at high frequencies which is of particular interest considering

wake flow dynamics.

Both aforementioned observers make use of a generically

nonlinear mapping φ : x 7→ z whose inversion is required to

infer the observed state x̂ in the original coordinates of the

system dynamics. Such an inversion can be obtained through

optimization but often at the price of costly computations.

Furthermore, the non unicity of the inverse when m > n may

raise numerical issues. An alternative approach is to build the

observer in the natural coordinates x as suggested initially by

[16].

Proposition 4 (Observer in natural coordinates) If the

transformation φ : X ⊂R
n → Π ⊂R

q mapping the original

system ẋ = f (x) to a target system admitting an observer

in the form π̇ = ϕ(π, x̂,y) is a diffeomorphism, then an

observer in natural coordinates is given by:

˙̂x =
∂φ

∂x
(x̂)−1ϕ(φ(x̂), x̂,y). (12)

Remark 3 Obviously, building an observer in natural coor-

dinates is more difficult when q = m > n using a high gain

observer [17], or when q = 2(m− 1) for low-power high

gain observer, even if m = n.

III. MAIN RESULTS

To address the observability singularity avoidance, we

follow the core idea initiated in [18] and then enhanced and

structured in [13]. We follow a three steps procedure. The

first step consists in augmenting the initial n dimensional

domain of the mapping φ to equal the dimension q =
2(m−1) of the low-power observer. The resulting augmented

mapping φa is now a diffeomorphism on a subset of R
q.

We then proceed to an extension of φa into an injective

immersion φe on R
q using fictitious outputs to artificially

remove the observability singularity. The third step lies in the

augmentation of φe into a global diffeomorphism φφφ where we

augment the natural coordinates by the coordinate τ ⊂R
N−n

so that φφφ(x,0) = φe(x).

A. A meaningful example

Let us illustrate the previous section results as well as

the observability singularity issue on the simple empirical

Galerkin system (4). First we define φ ∈ C 1(Ωmin ⊂X ,R3)
using

z = φ(x) =





x1

2x1(x3 − x2)
2x1(2(x3 − x2)

2 − x1 + x2)



 (13)

so φ maps (4) on the observability canonical form (7) with

m = 3 and F3(x) = 2x1[4(x3 − x2)
3 −2(x3 − x2)(4x1 −3x2)+

x1 − x2]. One can build an observer using Proposition 2

and get back to natural coordinates through the explicit

expression of φ−1:

x̂ = φ−1(ẑ) =









ẑ1

ẑ1 ẑ3−ẑ2
2+2ẑ3

1

2ẑ2
1

ẑ1 ẑ2+ẑ1 ẑ3−ẑ2
2+2ẑ3

1

2ẑ2
1









(14)

which is undefined at the singularity ẑ1 = x̂1 = 0. One

can also get an observer in the natural coordinates using

Propositions 2 and 4:

˙̂x =
∂φ

∂x
(x̂)−1 (A3φ(x̂)+B3Fs(x̂)+∆3K(y−C3x̂)) (15)

as long as φ is a diffeomorphism. Yet we know from

Proposition 1 that φ is singular at x̂1 = 0 and there is no

guarantee that the observer will not leave Ωmin.



Now using Propositions 2 and 3, we get a low-power high

gain observer

ζ̇ = ϕ(ζ , x̂,y) =









ζ12 +θk11(y−ζ11)
ζ22 +θ 2k21(y−ζ11)
ζ22 +θk12(ζ12 −ζ21)

F3s(ζ )+θ 2k22(ζ12 −ζ21)









(16)

and we can get back to the natural coordinates using either

ẑ = Pζ or ẑ′ = P′ζ combined with (14). Note that such an

observer exhibits the same redundancy as in using the low-

power high gain observer since we can use either x̂ = Px̂a or

x̂′ = P′x̂a. This observer also faces the problem linked with

the observability singularity at x̂1 = 0.

B. Augmentation of the mapping φ

Since the low-power high gain observer underlies a map-

ping φ from x ∈ R
n to ζ ∈ R

q with q = 2(m− 1) > m ≥ n,

the mapping is not surjective for m > 2. A first step is to

augment the mapping into a diffeomorphism by augmenting

the mapping domain. Since the state of the observer of

Proposition 3 is redundant in the form (using ẑ = Pζ and

ẑ′ = P′ζ )

ζ =































ζ1

ζ2

...

ζn−2

ζn−1































=































(

ζ1 1

ζ1 2

)

(

ζ2 1

ζ2 2

)

...
(

ζn−2 1

ζn−2 2

)

(

ζn−1 1

ζn−1 2

)































=































(

ẑ1

ẑ2

)

(

ẑ3

)

...
(

ẑn−1

)

(

ẑn

)































=































(

ẑ′1
)

(

ẑ′2
)

...
(

ẑ′n−2

)

(

ẑ′n−1

ẑ′n

)































,

(17)

a natural way of addressing a diffeomorphism augmenta-

tion is to merge the two states ẑ and ẑ′ defining a new

augmented state ẑa =
(

ẑ1 ẑ2 ẑ′2 ẑ3 . . . ẑ′n−1 ẑn

)T
as-

sociated with a natural coordinate augmented state xa =
(

x1 x2 x′2 x3 . . . x′n−1 xn

)T ∈ R
q.

Proposition 5 For systems Smin and Shyb, defining respec-

tively the natural coordinate augmented state xa and φa as

φa : xa =









x1

x2

x′2
x3









7→ za =









x1

2x1(x3 − x2)
2x1(x3 − x′2)

2x1(2(x3 − x2)
2 − x1 + x2)









(18)

and φa : xa =
(

x1 x2 x′2 x3 x′3 x4

)T 7→ za given by

za =





















x1

2x1(x4 − x3)
2x1(x4 − x′3)

4x1(x4 − x3)
2 −2x1(x1 + x2 − x3)

4x1(x4 − x3)
2 −2x1(x1 + x′2 − x3)

2x1

(

4(x4 − x3)
3 +(x1 + x2 − x3)−2x2(−µ ′− x3)

−2(x4 − x3)(3(x1 + x2 − x3)− x1(x4 − x3))

)





















(19)

φa is a diffeomorphism on Ωa,min = {xa ∈ R
4 : |x1| > ε},

respectively on Ωa,hyb = {xa ∈ R
6 : |x1| > ε , |x2 + x3 + µ ′| >

ε ′}.

Proof: To lighten notations, one can write

∂φa

∂xa

(xa) =

(

1 01,q−1

∗ J

)

. (20)

For system Smin, differentiating φa leads to

Jmin = 2





−x1 0 x1

0 −x1 x1

x1 −4x1q0 0 4x1q0



 (21)

with q0 = x3 − x2, so we have

∣

∣

∣

∣

∂φa

∂xa

(xa)

∣

∣

∣

∣

= x3
1

and φa is a diffeomorphism on Ωa,min.

Similarly for the system Shyb, differentiating φa leads to

Jhyb = 2













0 0 −x1 0 x1

0 0 0 −x1 x1

−x1 0 −4x1q1 + x1 0 4x1q1

0 −x1 −4x1q1 + x1 0 4x1q1

x1q2 0 x1q3 0 x1q4













(22)

with q1 = x4 − x3, q2 = 1− (−µ ′− x3)−6q1, q3 =−12q2
1 +

6q1+8x2+8x1−6x3−1 and q4 = 12q2
1−2(4x1+3x2−3x3).

The determinant is given by

∣

∣

∣

∣

∂φa

∂xa

(xa)

∣

∣

∣

∣

= x5
1(x2 + x3 +µ ′),

so φa is a diffeomorphism on Ωa,hyb.

Invertibility of the jacobian matrix of φa is now possible

as long as the estimated augmented state remains away from

the observability singularity. Yet there is no guarantee that

the estimated state stays in this set. The next step addresses

this concern.

C. Extension of φa into an injective immersion on R
q

To avoid loosing any access to some unmeasured states be-

cause of the observability rank loss pinpointed in Proposition

1, for instance the loss of information about x2 and x3 when

x1 = 0 for system Smin, a way to get around the observability

singularity is to provide fictitious outputs aiming at getting

information about these states around the singularity.

Proposition 6 For systems Smin and Shyb, adding respec-

tively fictitious outputs y f ∈ R
p

y f (x) =





ρ(x)x2

ρ(x)x′2
ρ(x)x3



 , y f (x) =

















ρ(x)x2

ρ(x)x′2
ρ(x)x3

ρ(x)x′3
ρ(x)x4

ρ ′(x)

















(23)



, where ρ and ρ ′ are differentiable functions that satisfy for

all positive δ :

ρ(x1) : ρ(x1)+δx2
1 > 0,∀x1 ∈ R

ρ ′(x2,x3) :
∂ρ ′
∂x2

+ ∂ρ ′
∂x3

+ x2 + x3 +µ ′ > 0,
(24)

to the state za results in an extended state ze =

(

za

y f

)

.

Extending the transformation φe mapping xa ∈ R
q to ze ∈

R
q+p results in an injective immersion on the domain R

q.

Proof: The Jacobian matrix of φe is given by

∂φe

∂xa

(xa) =





1 01,q−1

∗ J

∗ J f



 (25)

where J is Jmin given by (21) (Jhyb given by (22)) for system

Smin (Shyb) respectively, and J f is given by

J f ,min = ρI3, J f ,hyb =

(

ρI5

ρ ′
2 0 ρ ′

3 0 0

)

(26)

where ρ ′
i =

∂ρ ′
∂xi

. Since by construction 2x2
1 + ρ(x) > 0 and

x2 + x3 + µ ′ + ρ ′
2(x) + ρ ′

3(x) > 0, it is straightforward that
∂φe

∂xe
(xe) has a constant rank q for any xa ∈ R

q.

D. Augmentation of φe into a global diffeomorphism

The observability singularity has been solved, but using

Proposition 4 requires a diffeomorphism to get an observer

in natural coordinates. This last step consists in augmenting

the immersion φe defined on the full domain R
q to R

q+p

into a global diffeomorphism φφφ on R
q+p, which requires

an augmentation of the natural coordinates xa ∈ R
q to xxx =

(

xa

τ

)

∈ R
q+p. We follow here the Jacobian completion

initially proposed in [18].

Proposition 7 Let τ ∈ R
p and xxx =

(

xa

τ

)

∈ R
q+p. Defining

φφφ : xxx 7→ zzz = ze +Ψ(xa)τ = φe(xa)+Ψ(xa)τ (27)

with matrix Ψ(xa), the completion of the jacobian matrix
∂φe

∂xa
:

∂φφφ

∂xxx
=
(

∂φe

∂xa
+ ∂Ψ

∂xa
Ψ(xa)

)

(28)

is fulfilled for systems Smin and Shyb using

Ψmin(xa) =









01,3

H1

−BT
3

x1I3









with H1 =
(

I2 −12,1

)

(29)

and

Ψhyb(xa) =













01,4 0

H2 04,1

−BT
5 −2x1

x1I5 05,1

01,4 1













with H2 =

(

02 I2 −12,1

I2 02 −12,1

)

.

(30)

Then φφφ defines a global diffeomorphism.

Proof: Since Ψ depends only on x1, differentiating φφφ
using (25) leads to

∂φφφ

∂xxx
(xxx) =





1 01,q−1

∗ J

∗ J f

Ψ(x1)



 (31)

Due to expressions (29) and (30), it follows that
∣

∣

∣

∂φφφ
∂xxx

(xxx)
∣

∣

∣
= (ρ +2x2

1)
3

∣

∣

∣

∂φφφ
∂xxx

(xxx)
∣

∣

∣ = (ρ +2x2
1)

4(2x2
1(ρ

′
2 +ρ ′

3 +2(x2 + x3 +µ ′))+ρ)

(32)

for Smin and Shyb, respectively. By construction of functions

ρ and ρ ′, these Jacobian determinants are strictly positive for

all xxx ∈ R
q+p.

E. Low-power high gain observer in natural coordinates

Proposition 8 The dynamic system

˙̂xxx =

(

∂φφφ

∂xxx
(x̂xx)

)−1(
ϒ(φφφ(x̂xx),y)
−Kpφφφ p(x̂xx)

)

(33)

is a converging observer for system Smin (Shyb) in their

natural coordinates on any bounded subset of R
q+p with

(q, p) = (4,3) (with (q, p) = (6,6)). ϒ is defined by Propo-

sition 3, φφφ is defined by Propositions 5, 6 and 7, Kp is

a positive definite diagonal matrix of dimension p and the

notation φφφ p stands for the last p components of φφφ .

Proof: It can be checked that φφφ−1 ∈ C 1, hence it is

L-Lipschitz on any compact of R
q+p. It follows that, using

zzz∗ = φφφ(xa,0) = φe(xa):

‖xa(t)− x̂a(t)‖+‖τ(t)‖ ≤
√

2

∥

∥

∥

∥

xa − x̂a

τ

∥

∥

∥

∥

≤
√

2

∥

∥

∥

∥

(

xa

0

)

−
(

x̂a

τ

)∥

∥

∥

∥

≤
√

2‖φφφ−1(zzz∗)−φφφ−1(ẑzz)‖
≤ L

√
2‖zzz∗− ẑzz‖

≤ L
√

2‖φe(xa)−φφφ(x̂a,τ)‖.
(34)

Since φe is injective and (9) defines a converging observer

from Proposition 3, it follows that

lim
t→∞

‖xa(t)− x̂a(t)‖+‖τ̂(t)‖= 0. (35)

IV. SIMULATION RESULTS

x0

(

0 0.51 0.8
)T

x̂0

(

0.1 0.1 0.2
)T

K1,K2

(

0.18
0.1

)

,

(

0.18
0.02

)

Kp I3

ε 0.5
θ 2

TABLE I

INITIAL CONDITIONS AND PARAMETERS FOR SYSTEM Smin
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Fig. 1. Estimation using the low-power high gain observer in natural coordinates. From top to bottom, on the subfigures: (a)-(b) the states of the physical
systems Smin (Shyb): x1,x2,x3 (and x4) are depicted in black, red, green and blue solid lines; (c)-(d) state estimation x̂T

a = (x̂1 x̂2 x̂′2 . . . x̂4) is plotted with
x̂1 in black solid line, (x̂2, x̂

′
2) in red solid and dash dotted lines, (x̂3, x̂

′
3) in green solid and dash dotted lines, and x̂4 in blue; (e)-(f) the estimation error

is drawn using the previous color convention. Due to the low-power high gain observer redundancy, there are two estimates x̃i and x̃′i for 2 ≤ i ≤ n−1.

Simulations are performed using the low-power high gain

observer in natural coordinates given by Proposition 8. The

first simulation is led on system Smin and illustrates the

robustness with respect to noise. The x1 dynamics and the

output y are corrupted by the addition of zero mean Gaussian

white noises of standard deviations 0.2 and 0.1 respectively.

The former noise is intended to model turbulence and

impact of other unmodeled dynamics on the main mode

x1. System Smin given by (4) has been simulated with the

initial conditions and observer parameters given in Table

I. Fictitious outputs required to get a full-ranked Jacobian

matrix in Proposition 6 are defined using

ρ : x 7→ max(0,ε2 − x2
1)

2. (36)

Despite the initial condition x1(0) = 0, the proposed

observer is well defined and exhibits a good convergence

property irrespective of the singularity. However, some

peaking phenomenon can be noticed at the beginning of

the simulation on Figure 1(e) because of the inappropriate

choice for initial conditions that ”activates” the fictitious

outputs. It implies changes in the dynamics of the extension

τ , and in turn on the estimates since the observer aims at

making φφφ(x̂xx) = φe(x̂a) + Ψ(x̂a)τ converge, whilst φe(x̂a)
is a better representation of the estimates. Then the error

asymptotically converges to zero and the role of fictitious

outputs vanishes outside the x̂1 > |ε |, hence displaying the

effectiveness of the proposed observer, particularly with

respect to noise filtering.

Simulation parameters for system Shyb described by (5)

are given in Table II. As highlighted in Proposition 1, the

system Shyb can face an additional observability singularity

for x2 + x3 +µ ′ = 0, so we use functions ρ defined by (36)

and ρ ′(x) = (1/(x2 + x3 + µ ′)− 1/ε ′)2 in order to maintain

x̂2 + x̂3 + µ ′ > 0. As it can be noticed on Figure 1(b), the

initial dynamics of Shyb are driven by the growth rate

parameter x4 = µ , here assumed to be a constant. Shyb

behaves as a double oscillator whose main mode amplitude



x0

(

0.6 0.5 0.8 1
)T

x̂0

(

0.1 0.1 0.1 0.1
)T

K1,K2,K3

(

1.8
1

)

,

(

2.4
0.4

)

,

(

2
0.2

)

Kp 0.1I6

θ 2
ε,ε ′ 0.1, 0.5

TABLE II

INITIAL CONDITIONS AND PARAMETERS FOR SYSTEM Shyb

x1 asymptotically follows a transcritical bifurcation, whilst

the enslaved mode amplitude x2 is damped thanks to the term

(−µ ′). During the time interval [10s;16s], a control input is

applied on the dynamics of the second mode as suggested

in [11] in order to excite this oscillator. As expected the

coupling –through the shift mode x3 in the third equation of

(5)– results in an energy flow from the main mode x1 to the

mode x2, forcing x1 to go to zero. During the transient phase,

Figure 1(d) illustrates the convergence of the state estimates

to the real states despite initial values close to zero. As in

the first simulation, avoiding the singularity induces some

peaking: it is expected since the observer is then built on a

system that does not represent exactly the physical model.

The estimation tracking is ensured as x1 goes to zero due to

the control input.

V. CONCLUSIONS AND FUTURE WORKS

We have proposed an observer capable of being suffi-

ciently robust with respect to noises and efficient to rebuild

the system states while avoiding singularities as shown by

the simulation results. The modified low-power high gain

observer has provided a solution to many challenges : i)

a rebuild of turbulent wake flow from an unique measured

output based on reduced order models, ii) an observability

singularity avoidance, iii) a robustness in regard to high

frequency noises and sudden changes of the dynamics. It

would be interesting to study if the redundancy induced by

the low-power high gain observer may be exploited to reduce

the proposed observer dimension. The on-going works are on

one hand, the experimental validation of the observer in real

conditions (the experimental setup is being fully equipped by

sensors and actuators) to get a better knowledge of physical

phenomena and, on the other hand, the design of feedback

laws based on the estimated state to control the flow in

order to reduce the drag force. Both perspectives are of great

interest for applications in fluid mechanics.
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