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NAMD is a molecular dynamics program designed for high-performance simulations of very large biological objects
on central processing unit (CPU)- and graphics processing unit (GPU)-based architectures. NAMD offers scalable
performance on petascale parallel supercomputers consisting of hundreds of thousands of cores, as well as on inex-
pensive commodity clusters commonly found in academic environments. It is written in C++ and leans on Charm++
parallel objects for optimal performance on low-latency architectures. NAMD is a versatile, multipurpose code that
gathers state-of-the-art algorithms to carry out simulations in apt thermodynamic ensembles, using the widely popular
CHARMM, AMBER, OPLS and GROMOS biomolecular force fields. Here, we review the main features of NAMD
that allow both equilibrium and enhanced-sampling molecular dynamics simulations with numerical efficiency. We
describe the underlying concepts utilized by NAMD and their implementation, most notably for handling long-range
electrostatics, controlling the temperature, pressure and pH, applying external potentials on tailored grids, leveraging
massively parallel resources in multiple-copy simulations, as well as hybrid QM/MM descriptions. We detail the vari-
ety of options offered by NAMD for enhanced-sampling simulations aimed at determining free-energy differences of
either alchemical or geometrical transformations, and outline their applicability to specific problems. Last, we discuss
the roadmap for the development of NAMD and our current efforts towards achieving optimal performance on GPU-
based architectures, for pushing back the limitations that have prevented biologically realistic billion-atom objects to
be fruitfully simulated, and for making large-scale simulations less expensive and easier to set up, run and analyze.
NAMD is distributed free of charge with its source code at www.ks.uiuc.edu.
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Keywords: Molecular dynamics simulation, high-performance computing, statistical mechanics, graphics processing
units
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I. INTRODUCTION

Grasping the function of very large biological objects, like
those of the cell machinery, necessitates at its very core not
only the structural knowledge of these organized systems,
but also their dynamical signature. However, in spite of
formidable advances on the experimental front, the intrinsic
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limitations of conventional approaches have often thwarted
access to the missing microscopic detail of these complex,
dynamic molecular constructs, restricting their observation
to static pictures. The so-called computer revolution, which
began over forty years ago, considerably modified the per-
spectives, paving the road to structural biology investiga-
tions by means of numerical simulations from first princi-
ples. Such simulations form the central idea of the compu-
tational microscope,1,2 an emerging instrument for cell biol-
ogy at atomic resolution, which the molecular dynamics (MD)
program NAMD embodies.

A. The NAMD philosophy

The goal of NAMD development since its beginning has
been to enable practical supercomputing for biomedical re-
search. This goal of practicality is reflected first by the pur-
suit of affordable hardware such as workstation clusters in the
1990s, Linux clusters in the 2000s, and GPU acceleration in
the 2010s—viewed as another computer revolution. Practi-
cality is more deeply and enduringly reflected by the attitude
of the NAMD development community that the target user of
the program is the experimentalist or their collaborator, not
the programmer or computer expert, or even the method de-
veloper.

In pursuit of this goal, NAMD has been designed to be a
single program available across all platforms, preserving the
knowledge of the users as their science grows from reproduc-
ing tutorials and case studies on a laptop, to production sci-
ence on departmental commodity clusters, to large and multi-
copy simulations on leadership-class supercomputers. NAMD
is distributed free of charge for both academic and private-
sector use as both source code and pre-compiled binaries for
most platforms. As cutting-edge biomolecular simulations are
never truly routine, user extensions that are portable without
recompilation across both platforms and NAMD releases are
supported via the Tcl and Python scripting languages.

NAMD development relies on symbiotic relationships with
multiple stakeholders. The oldest longstanding relationship is
with the computer scientist developers of the Charm++ par-
allel programming system (see section II), with which the
NAMD developers have shared both a 2002 Gordon Bell Prize
and a 2012 IEEE Fernbach award. As the most popular
Charm++ application, NAMD provides the Charm++ devel-
opers with real-world feedback from a broad community of
users, and drives access and support for Charm++ on leader-
ship platforms. In return, Charm++ supplies enhancements
that address performance, usability, and programmability is-
sues faced by both NAMD users and developers.

The second indispensable relationship is between the
NAMD and Charm++ developers and the high-performance
computing technology providers, such as Intel, NVIDIA,
AMD, IBM, Cray, and Mellanox. These corporations pro-
vide critical insights into current and upcoming technology,
as well as software engineering expertise and code contribu-
tions to improve the performance of both NAMD algorithms
and Charm++ high-speed network communication.

The third relationship that drives NAMD development is
with computing resource providers, at both the various Na-
tional Science Foundation (NSF) centers and Department of
Energy (DOE) national laboratories that lead the United States
exascale program. Early development and science access to
leadership platforms ensures NAMD users of a smooth tran-
sition to new technologies and biomolecular applications of
a generous share of high-performance computing resources,
which could be readily consumed by other fields of science
with less potential impact on human health and well-being. In
return, the centers can promote the early scientific impacts of
their machines, such as the all-atom model of the HIV-1 virus
capsid3 solved during the early science period of the National
Center for Supercomputing Applications (NCSA) Blue Wa-
ters machine.

The final symbiotic relationship driving NAMD is with the
broad community of computational scientists who are ever ex-
panding and furthering the scope of simulation methods. The
NAMD core developers in Urbana together with other NAMD
contributors scattered across the world maintain a strong in-
tellectual connection with this community. The team of core
developers and contributors meet yearly to coordinate ongo-
ing efforts, discuss new methodological advances, and plan
future changes to the program. In recent years, these joint
efforts have facilitated the implementation of important ad-
vanced techniques, including integration algorithms,4 polar-
izable force fields,5 free-energy calculations, and enhanced-
sampling strategies.6,7 Nevertheless, some tensions are to be
expected between performance and innovation—NAMD was
never designed to serve as a virtual laboratory platform for
method development, and hence sacrifices in modularity and
modifiability have been made in the interest of scalability and
performance. Regardless, NAMD offers today a mature and
complete set of simulation capabilities, incorporating many
features that have proven of general utility and continue to be
extended and improved in response to both feedback from the
NAMD user community and innovation by the method devel-
opers, who appear as coauthors on this new reference paper.

B. Perspective

To this date, NAMD has been downloaded by over 110,000
registered users, over 30,000 of whom have downloaded mul-
tiple releases. The 2005 NAMD reference paper8 has been
cited over 13,000 times and the NAMD user email list has over
1,000 subscribers. NAMD is also typically reported as one of,
if not the most utilized program at the NSF supercomputing
centers. For a code developed for over two decades to en-
able leading-edge simulations on emerging platforms, NAMD
serves a surprisingly large community of researchers. This
can be attributed to the leadership of the late Klaus Schulten,
who sought to share not only his scientific achievements with
the world, but also the tools with which they were accom-
plished, and gathered a team of software and method develop-
ers that shared this vision.

Most users obtain NAMD by downloading a pre-compiled
binary from www.ks.uiuc.edu. Current and multiple pre-
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vious NAMD releases are available for download, along with
the most recent nightly build. The download process requires
creating an account by completing a brief registration form,
which provides the NAMD developers with user statistics to
justify future funding. The download process also asks the
user to agree to a license that prohibits redistribution, and re-
quires attribution and citation of NAMD in publications re-
sulting from its use. The standard license allows NAMD to
be employed by both academic and private-sector researchers,
but prohibits commercialization of the program. Derived
work may utilize up to 10% of the NAMD source code with-
out restriction when combined with an equal amount of orig-
inal code, allowing for substantial reuse by the biomolecular
simulation community. All releases include the source code
for both NAMD and the specific version of the Charm++ par-
allel runtime with which it was built. NAMD and Charm++
source code are also available via separate public Git reposito-
ries, and binaries for both releases and recent builds are main-
tained publicly on several NSF and DOE supercomputers. Of-
ficial NAMD releases occur approximately annually, and are
each preceded by a series of beta releases to aid in bug discov-
ery. The NAMD source code is intended to be of production
quality at all times, and, hence, bug fixes implemented after
the beta period are not back-ported to the previous release.

The size of the NAMD user community both necessitates
and enables a community support model. Basic training in
MD simulation concepts and their application in NAMD is
provided in a series of hands-on workshops, which can be at-
tended in person, or streamed at any time, and the pedagogical
material, i.e., tutorials and case studies, used in the workshops
is available for download. The tutorials require only a lap-
top, allowing them to be done without access to external re-
sources, and possibly continued after the workshop. The ped-
agogical team of the workshops is formed of faculty members
and teaching assistants, who are experienced NAMD users.
Questions regarding the use of the program are directed to
the public NAMD mailing list both because the collective ex-
perience of the user community will generally produce more
useful and varied responses than the developers could, and to
provide a publicly searchable record of previous questions and
answers. End-users are encouraged to search the mailing list
archives along with the manual and other training materials
before asking their questions on the mailing list. Reports of
suspected bugs along with logs, and ideally a reproducing in-
put set for the latest NAMD release are regularly sent to the
developer mailing list. Furthermore, high-level personal sup-
port is provided for selected driving projects that are testing
or co-developing new NAMD capabilities.

NAMD software engineering practices are based on two
decades of experience in ensuring correctness with minimal
overhead. Both NAMD and Charm++ use Git for revision
control, with Charm++ also employing formal issue tracking
due to its larger numbers of both active developers and mi-
nor enhancement requests. NAMD has a smaller number of
developers, with more differentiated expertise and goals, and
this separation of responsibilities makes formal centralized is-
sue tracking less beneficial. Moreover, due to the dynamic
nature of development and changing priorities, schedules of

planned enhancements are not reliable, and are not advertised.
It is better that the user make progress with the currently avail-
able version of the code than delay work based on the promise
of an unproven feature. Separate developer documentation is
avoided with the intent that the source code itself be legible
and discoverable on its own.

NAMD development is guided by a small set of driving
projects, which are scientifically important, and require en-
hanced NAMD capability. While the driving project provides
the essential eager end-user to test and provide feedback on
the implementation of the new capability, it is important to
note that no single-user or single-project features are imple-
mented in NAMD itself. Instead, the goal of the develop-
ment process is either to extend an existing capability to en-
able the driving project, or, if necessary, to implement some
new general-purpose and scalable feature that will enable both
the specific driving project, and a larger class of related sim-
ulations. Necessary project-specific code may be segregated
outside of the NAMD code base through a Tcl scripting inter-
face. Capabilities enabled via scripting in NAMD include top-
level protocols such as equilibration, annealing, and replica-
exchange or multiple-copy strategies, as well as application of
long-range steering forces onto small numbers of atoms, and
application of independent boundary forces to each atom in
the molecular system. While an optional Python scripting in-
terface is available, Tcl remains the recommended choice due
to its stable interface, compact and embeddable interpreter,
simple and flexible syntax, and shell-like appearance, which
appeals to non-programmers.

NAMD quality assurance practices are adapted to the
unique challenges of feature-rich scientific software running
at scale on a wide variety of platforms. All-platform builds
and installs are automated, and record both default and op-
tional modules loaded during compilation, as well as the spe-
cific version of Charm++ utilized. Extensive testing of each
build on the different platforms is prohibitively complex to
manage, and expensive in terms of computer time. Still,
the most likely sources of observed defects in reviewed and
merged code are compiler bugs and rare unanticipated edge
cases in new end-user input sets. For this reason, NAMD con-
tains multiple internal consistency checks, which are active
at all times, including in production runs. The goal of con-
sistency checks is not so much to prevent crashes, which are
often easily diagnosed and relatively harmless, but to avoid
silently generating flawed simulation outputs, which would
waste both computer and human time, and leave bad science
in their wake. Consistency-check failures raise fatal errors,
both in order to halt the program without wasting future cy-
cles, and because, in our experience, end-users ignore warning
messages—and often barely read error messages.

C. Key features

NAMD supports classical MD simulations, most com-
monly of full atomistic nature, in explicit solvent, with pe-
riodic boundary conditions and particle-mesh Ewald (PME)
full electrostatics (see section V) in a variety of thermo-
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dynamic ensembles (see section IV), including constant–
pH (see section XI), although coarse-grained models, im-
plicit solvent, and non-periodic, or semi-periodic boundary
conditions can also be employed. CHARMM,9 and sim-
ilar academic force fields, e.g., AMBER,10 OPLS–AA11,
and GROMOS,12 are supported, including the CHARMM
Drude polarizability model.5,13 A flexible interface for
quantum-mechanical/molecular-mechanical (QM/MM) cal-
culations connects NAMD to external quantum-chemistry
codes (see section XII), namely ORCA14 and MOPAC,15

thereby allowing physical phenomena that are not captured
by classical models to be captured, e.g., chemical reactions
involving bond formation and rupture. NAMD also supports
alchemical free-energy calculations (see section IX).16

Built on this foundation are a variety of features to add
external forces in the simulations, including the Colvars
module,6 which allows the end-user to define collective vari-
ables as control parameters for biased MD and free-energy
calculations (see section VI). Flexible fitting17 of structures to
electron density maps from cryo-electron microscopy (cryo-
EM) can be performed via grid potentials18 (see section XIII).
Methods for accelerating sampling include user-customizable
multiple-copy algorithms (see section X) for both parallel-
tempering strategies and free-energy calculations of geomet-
rical and alchemical nature.16 The workflow architecture of a
NAMD simulation is summarized in Fig. 1.
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FIG. 1. Workflow architecture of a NAMD simulation. The blue
boxes denote the core physical details of the simulation, the orange
boxes, the features that are embedded in the code (written in C++),
and the green boxes, the features that are fully implemented through
user scripts (written in Tcl or Python).

Support for setup, analysis, and visualization of NAMD
simulations is implemented in the co-developed program
VMD19. In VMD, molecular structures can be assembled ei-
ther with the low-level Psfgen module, or via the QwikMD
plugin,20 which provides a graphical interface and guides the
user through the stages of the standard MD workflow (see sec-
tion XV). A large number of VMD plugins are available to aid
in analysis tasks. Guidance on the use of NAMD and VMD
is provided by a variety of tutorials and case studies available

on the www.ks.uiuc.edu website.
NAMD supports most computational platforms, ranging

from MacOS– and Windows–operated laptops to leadership-
class supercomputers. NVIDIA GPU acceleration has been
implemented since 2009 (see section III),21 and support for
AMD and Intel GPUs is being developed as part of readi-
ness programs for the Oak Ridge Frontier and Argonne Au-
rora exascale machines. Simulation sizes of up to two billion
atoms are possible when the program is compiled in memory-
optimized mode, which is recommended above one million
atoms.

Most users will have no need to compile NAMD from
the source code. NAMD achieves cross-platform extensibil-
ity through scripting in Tcl, a language familiar to the end-
users, notably from its use in VMD, allowing custom simula-
tion protocols to be implemented without recompiling the pro-
gram. Pre-compiled binaries are available for laptops, desk-
tops, and clusters, both with or without high-speed Infini-
Band networks. No MPI library is required, but the standard
mpiexec program may be leveraged to simplify launching
NAMD within the batch environment of the cluster.

II. THE PARALLEL, OBJECT-ORIENTED
PROGRAMMING LANGUAGE CHARM++

NAMD is implemented on top of Charm++,22,23 an adap-
tive, asynchronous, distributed, message-driven, task-based
parallel programming model, using C++.

A. Underpinnings of Charm++

In Charm++, computations are partitioned into migratable
objects called chares, each with its own data. Chares commu-
nicate by sending messages that invoke methods on other ob-
jects, which can be located locally or remotely, on a different
node than the sender. An example of chare layout and mes-
saging is shown in Figure 2. Charm++ also features a power-
ful introspective runtime system (RTS), which measures and
tunes the performance of applications at runtime. Put together,
these properties allow for dynamic load balancing, in which
the runtime relocates chares to different processors to evenly
distribute computational load. These aspects of Charm++ al-
low high performance and scalability to be achieved on a wide
variety of applications and large-scale computer architectures.
Charm++ has also been carefully crafted to maximize porta-
bility, so that applications can be executed on virtually any
hardware, from laptops to supercomputers.

a. Over-decomposition. Most parallel programming
paradigms partition a problem into the number of processors
that are being used to execute the application. This approach
tries to minimize overhead, while placing the onus on the
programmer to provide an even distribution of work to the
processors. However, in Charm++, applications are intended
to be over-decomposed, or broken into many more pieces
than there are processors in the system. Using this finer
decomposition may increase overhead, but it also provides
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FIG. 2. Overview of a Charm++ application on four processor el-
ements (PEs). The solid line indicates an object on PE 3 sending a
message to an object on PE 1, and the dashed line shows how the
message is sent via per-PE schedulers.

scope for the runtime system to perform optimizations
outweighing it, especially for dynamic, irregular applications.
One virtue of this approach is communication-computation
overlap. Since there are many small objects on a processor,
as opposed to fewer large objects, the RTS can schedule
the computation of an object while it awaits communication
required by another. In doing so, Charm++ more effectively
uses both the processors and network, thereby reducing
starvation of processors due to network delays.

b. Load balancing. Another key facet of the Charm++
model is dynamic load balancing.24 Over-decomposition cre-
ates many high-granularity objects, giving the RTS scope to
finely control distribution of load via chare migration. The
Charm++ RTS actively measures the per-object load at run-
time, which it then feeds into one of many different, customiz-
able algorithms to determine a new and improved distribution
of chares based on this empirical data. This design implies
that load balancing retains efficacy even for applications with
load properties that are difficult to predict a priori. Native
support for general load balancing in the Charm++ RTS con-
stitutes a dramatic improvement over frameworks like MPI,
which require end-users to write application-specific load-
balancing code. In general, load balancing is critical to
achieve high scalability, as the likelihood of significantly over-
loading some processor grows as more processors are added
to a job.

c. Modern Charm++ features. While currently unused
by NAMD, Charm++ has many other features to tune applica-
tions. Remaining within certain power and temperature bud-
gets has become vital, as supercomputers grow ever denser
and larger. Charm++ includes modules that work with pro-
cessor and system controls over these properties while still
retaining high performance.25 For instance, it can leverage the
load balancer to migrate away chares from overheated proces-
sors to avoid slowdowns when the system underclocks them
to reduce their temperatures. Charm++ features a checkpoint-
restart facility, which makes applications fault tolerant.26 In
case of system-level hardware or software failures, rather than
crashing, potentially wasting hours of computer time, the RTS
can automatically recover and continue execution, using the
non-failed parts of the system. Charm++ also has a module
to integrate GPU data and task management with the RTS.27

Programming models that are built on top of Charm++ also
exist, such as Adaptive MPI, which allows MPI applications
to execute atop Charm++, and gain several of its advantages,28

as well as charm4py, a Python interface to Charm++.29

B. Parallel structure of NAMD and its use of Charm++

The various features of Charm++ described previously
have contributed to the success of NAMD in achieving high
performance, scalability, and portability.30–32 NAMD and
Charm++ share a long history, having been synergistically
codeveloped since 1994. In fact, NAMD was the first large,
driving application for Charm++, and many features and de-
sign decisions of Charm++ were inspired by the needs and
challenges presented by NAMD. The architecture of NAMD
maps very naturally to Charm++, allowing the structure and
parallelism of the code to be easily and cleanly expressed
without sacrificing speed.

MD simulations involve calculating and applying forces,
bonded and nonbonded, that simulated atoms exert onto each
other. NAMD takes as input a molecular structure, iteratively
computes these bonded and nonbonded forces, and integrates
the equations of motion to update atomic positions and ve-
locities. NAMD implements this process using a unique hy-
brid approach, decoupling the distribution of data from the
distribution of computation. The simulation space is spatially
divided into small boxes called “patches” — objects contain-
ing simulation data, while force calculations are done by ob-
jects called “computes,” which operate on data received from
patches. After the force calculation is completed by the com-
putes, the forces are sent back to patches, which update their
constituent atoms. Hydrogen atoms are stored on the same
patch as the heavy atom they are bonded to, and atoms are
reassigned to different patches as they move in space.

An overview of the parallel structure of NAMD is de-
picted in Fig. 3. There are three different kinds of computes,
namely bonded, nonbonded, and PME, respectively respon-
sible for bonded forces, short-range nonbonded forces, and
long-range nonbonded electrostatic forces using the PME al-
gorithm (see section V). Naïve computation of all nonbonded
forces would result in a computational complexity in O(N2),
where N stands for the number of particles, whereas the PME
approach of only computing pairwise nonbonded forces ex-
plicitly for atoms within some cutoff radius, and interpolating
the reciprocal-space Ewald sums for more distant atoms im-
proves the overall complexity to O(N logN).33 Patches are
sized such that only the twenty-six neighbors of the three-
dimensional patch are involved in the bonded and short-range
nonbonded interactions, or, formally, that non-neighboring
patches are separated by at least the cutoff radius. Each non-
bonded compute is responsible for calculating the forces be-
tween a given pair of neighboring patches, including self-
pairs, and, correspondingly, each patch sends its data to the
twenty-seven non-bonded computes that use its atoms. PME
computes are done using a two-dimensional pencil decompo-
sition of the charge grid, and consist of three different sub-
types, x, y, z, one for each of the three directions of the Carte-
sian space. This step involves performing several fast Fourier
transforms (FFTs) and transpositions between the different di-
mensions, making PME relatively light in terms of compu-
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FIG. 3. NAMD software architecture. “Computes” are objects re-
sponsible for force calculations, operating on data received from
“patches,” small boxes generated by the spatial decomposition of the
computational assay. Long-range electrostatic forces are handled by
the PME algorithm.

tation, but heavy in terms of communication. It is notewor-
thy that Charm++ supports message priorities, which are set
to high in the case of PME, since communication is crucial
here. Bonded computes are also relatively light computation-
ally, since they only operate on the bonded components, so
the majority of the computational load comes from the non-
bonded computes.

At runtime, these compute objects in NAMD are distributed
throughout the available processors for the job. Notably, only
nonbonded computes are relocatable, as they represent most
of the load. Patches and the other computes are statically as-
signed to the available processors at startup. Loads and com-
munication patterns of the various objects, whether relocat-
able or not, are empirically measured and fed to the load bal-
ancer, which redistributes the nonbonded computes to mini-
mize communication and equalize load between processors.

Generally, the above descriptions are equally valid for the
central processing unit (CPU)-based and graphics processing
unit (GPU)-based versions of NAMD. However, there are a
few extra considerations in the GPU version, chiefly that of
aggregating data and work requests. GPUs are computation-
ally extremely powerful, but since they are physically sepa-
rated from the CPUs, and, thus, have high communication
latency, performing many small transfers of data, or starting
many small kernels, is relatively expensive. In order to avoid
this bottleneck, NAMD aggregates data and work requests for
the GPU, sending the data of several patches, or invoking a
kernel corresponding to several computes at once. While this
strategy limits in some way the ability of Charm++ to perform
optimizations, it also allows NAMD to leverage the immense

power of GPUs without inordinate penalties due to latency,
making it a worthwhile trade-off.

III. GPU CAPABILITIES AND PERFORMANCE

Historically, NAMD was designed for optimal performance
on large arrays of computing units interconnected by low-
latency, high-bandwidth networks. As use of GPUs in
high-performance computing gained steam, NAMD has been
adapted to novel, GPU-based architectures. In this section, we
first review the performance of the code on a variety of plat-
forms, prior to describing ongoing efforts toward more fully
utilizing GPU acceleration.

A. NAMD performance

From its inception, NAMD was designed for high-
performance classical simulations of large atomic models of
biomolecular systems, often comprising 100,000 atoms or
more. Through pervasive use of parallel computing tech-
nologies, the system size scales and simulation timescales
amenable to NAMD have grown by orders of magnitude, as
the program evolved from being able to handle a few nanosec-
onds of simulated time on hundreds of thousands of atoms,34

to a hundred nanoseconds for millions of atoms,3 finally ar-
riving at where we stand today, namely being able to simulate
hundreds of nanoseconds on hundred-million atom systems.35

The growth in performance achieved by NAMD can be pri-
marily attributed to its ability to harness the computational
power of tens of thousands to millions of processing ele-
ments in parallel. Over the past decade, computer architec-
tures have undergone a paradigm shift toward hardware de-
signs that favor parallelism as the primary mechanism for im-
proved performance, e.g., by increasing core counts from one
processor generation to the next. NAMD supports diverse
computing hardware architectures, including multicore and
many-core CPUs with wide single-instruction-multiple-data
(SIMD) vector arithmetic units, and heterogeneous comput-
ing platforms containing massively parallel GPU accelerators.
NAMD decomposes MD simulation algorithms into very fine
grained data-parallel operations, that can be executed by the
available pool of computing resources, maximizing the use of
hardware-optimized functions, or so-called “kernels,” on CPU
vector units or GPU accelerators. These kernels parallelize
operations on individual atoms using a hardware-specific ap-
proach, thereby maximizing arithmetic performance and sim-
ulation throughput for the target hardware.

NAMD distributes work to shared memory CPU cores
and distributed memory compute nodes using a three-
dimensional decomposition of interactions among patches
(see section II), spatial subvolumes sized such that inter-
actions with the 26 nearest neighbor patches embrace all
of the bonded, van der Waals, and short-range electro-
statics force contributions. Decomposition of the simula-
tion into patch–patch interactions affords a large amount
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of parallelism for shared- and distributed-memory paral-
lelism, and enables NAMD to maintain load balance by shift-
ing work from overloaded to underloaded cores or nodes
over the course of the simulation. Building on these de-
sign points, extensive use of asynchronous message pass-
ing techniques and Charm++ runtime system features have
allowed state-of-the-art NAMD simulations to run at high
performance on petascale supercomputers,36–40 as well as
pre-exascale supercomputers.32 Figure 4 summarizes the
distributed-memory scaling performance of NAMD simulat-
ing two benchmark systems, each consisting of a tiled array of
a one-million-atom satellite tobacco mosaic virus (STMV),41

on two contemporary leadership supercomputers with CPU-
based (Frontera), and GPU-accelerated (Summit) hardware
platforms.
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FIG. 4. NAMD distributed memory parallel scaling benchmarks per-
formed on satellite tobacco mosaic virus (STMV) in water on lead-
ership supercomputers, Summit, using up to 1,024 nodes containing
6,144 GPUs (upper panel) and Frontera, using up to 512 CPU-based
nodes (lower panel). Two benchmark systems were constructed as a
tiled array of a periodic 1.067 M-atom system, a 5× 2× 2 tiling for
21 M atoms (N) and a 7× 6× 5 tiling for 224 M atoms (H).

B. GPU acceleration

One of the biggest changes to the high-performance com-
puting ecosystem in the past decade has been the emergence
of GPUs as the dominant type of accelerator for scientific ap-
plications, leading to their rapid adoption and widespread use
in computational chemistry applications.42 NAMD was the
first fully featured MD package to exploit GPU acceleration,21

and it was also a pioneer in supporting GPU-accelerated
clusters.43,44 NAMD development has evolved to encompass
two main computing approaches, namely (i) large-scale dis-
tributed memory parallel computing (continuing past NAMD
2.x approach), and (ii) GPU-resident computing, to support
new and emerging platforms that provide dense, tightly cou-
pled GPU accelerators, with shared memory among GPUs and
host (newly added in NAMD 3.x).

The initial use of GPUs in NAMD accelerated calculation
of the short-range non-bonded forces, the biggest computa-
tional workload at each time step. The GPU kernels them-
selves, similarly to the CPU, interpolate force interactions
from a table, but make use of fast-texture memory lookup
and automatic linear interpolation, which avoids calculation
of square-root and exponential functions required for the
PME algorithm33 (see Section V), and eliminates condition-
als needed to support switching functions for van der Waals
forces. Energies are similarly computed with table lookup
and only when required for output. Enhancements were intro-
duced to improve performance by streaming the force calcula-
tions back to the patches, enabling each patch to proceed asyn-
chronously with time stepping as soon as all of its forces are
computed.21 GPU acceleration was next applied to the PME
long-range electrostatics calculation, specifically to the patch-
based calculations involving the spreading of charges from
atoms to grid points, and the gathering of forces from grid
points to atoms.45 Parallel scalability is improved by doubling
the PME grid spacing, together with increasing the interpola-
tion order from 4 to 8 to maintain the same accuracy, thereby
reducing the communication bandwidth by a factor of 8, while
increasing the intensity of arithmetic offloaded to the GPU.

Since then, NAMD has evolved to allow all force terms
to be computed on the GPU. With the 2.12 release, NAMD
incorporated new CUDA kernels for both short-range, non-
bonded forces and longe-range electrostatics calculations, that
yield better performance and scaling in general. The new
short-range non-bonded kernels compute pairwise interac-
tions between two sets of atoms subdivided into tiles of
32 × 32, producing tile lists that can be executed by any
CUDA thread block. To further improve performance, the ker-
nels also benefit from Newton’s third law, avoiding duplicated
calculation between atom pairs and eliminating the need of
synchronization between thread blocks, which allows CUDA
warps to execute independently.46 This new scheme also in-
troduced generalized Born implicit solvent (GBIS) neighbor
list calculation kernels for existing GPU-accelerated GBIS
functions.47 The revised implementation of PME now offloads
the reciprocal-space calculation as well to GPU and uses the
NVIDIA cuFFT library for calculating forward and inverse
FFTs,46, although the scalability of this approach is limited to
no more than four nodes. The 2.13 release of NAMD added
new CUDA kernels for calculating the bonded forces and the
correction for excluded interactions.32 The 2.14 release yields
better performance on modern GPU architectures and con-
tains a more stable pair list generation scheme for large do-
main decomposition cycles. NAMD 2.14 performance results
reported in this contribution represent the outcome from runs
using the traditional distributed memory NAMD design.

NAMD 3.0 maintains the traditional large-scale distributed
memory computing paradigm, but is the first version to pio-
neer the new GPU-resident computing approach. The NAMD
3.0 benchmarks reported here represent the currently achieved
performance using the new GPU-resident computing scheme,
applied to single-node GPU-accelerated hardware platforms.
We note that since NAMD 3.0 and its new GPU-resident com-
puting approach are still actively in development at the time
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of writing this article, we expect to achieve even higher per-
formance by the time it is finalized.

Based on a Charm++ parallel objects paradigm, NAMD
over-decomposes the total work into small, easily migratable
tasks at startup, which are consequently distributed across the
available allocated CPU resources for a particular run (see
section II). This scheme is effective on large parallel comput-
ers with a myriad of CPU cores, as tasks are small enough
to allow for dynamic load balancing at runtime, and better
scaling overall. However, fine-grained decompositions that
are appropriate for large CPU core counts often result in task
sizes that are insufficient to saturate GPU with work, as is nec-
essary to approach peak GPU performance. Moreover, run-
ning large batches of small tasks typically requires excessive
host-device memory transfers, as they have disjoint memory
spaces. Thus, for launching GPU tasks efficiently, NAMD
usually performs an aggregation step, whereby patches are
gathered together into contiguous memory spaces, and their
corresponding atoms are rearranged, in order to coarsen task
grain size to improve GPU utilization and reduce overhead. It
is also possible for the end-user to control which force terms
are offloaded onto the GPU, as force calculations are sched-
uled independently, for best combined use of hybrid CPU and
GPU computing resources.

The improvements to existing GPU kernels and more ef-
fective GPU offloading schemes have allowed NAMD to ben-
efit not only from thousands of CPU cores, but also from
thousands of discrete GPUs. Figure 4 depicts NAMD bench-
marks occupying up to a quarter of ORNL Summit, a GPU-
dense supercomputer with 4,600 compute nodes, each con-
taining two IBM POWER9 CPUs and six NVIDIA Volta
V100 GPUs. Two different tiled replications of the 1.067
million atom, freely distributed, STMV computational assays
were employed as benchmark systems—a 5×2×2 replication
with 21 million atoms, and a 7 × 6 × 5 replication with 224
million atoms. The results demonstrate the fact that NAMD
is able to benefit from the thousands of GPUs available in
Summit, delivering approximately eight times improved per-
formance compared to CPU-only runs.

The rapid pace of performance gains on state-of-the-art
computing architectures has tipped the balance of comput-
ing power even more dramatically in favor of GPUs. The
traditional GPU offloading scheme in NAMD overlaps CPU
and GPU work, with forces being calculated on the GPU and
the integration of the Newton equations of motion being cal-
culated on the CPU as soon as the forces are processed by
the GPU. However, in-depth NAMD performance analysis re-
veals that current high-end GPUs are idling for a large frac-
tion of the simulation time, since integration is a critical step,
and must be performed before the next launch of GPU force
kernels. Ongoing development efforts have begun to amelio-
rate this imbalance, whereby a new GPU-resident comput-
ing scheme maintains data in-place on the GPU throughout
force calculations and integration of atomic coordinates, with
drastically reduced involvement from host CPUs, and minimal
host-device memory transfers. Kernels for the Verlet integra-
tion (see section IV), rigid bonds constraints, and Langevin
dynamics have been introduced, without any need for data

transfer between the CPU and GPU. Figure 5 depicts a time-
line profile of a simulation of apolipoprotein 1 (ApoA1) in
the microcanonical ensemble, with roughly 92,224 atoms, on
a NVIDIA Titan-V GPU, demonstrating that the standard of-
floading scheme is not capable of fully saturating the GPU
with work, as there are large gaps between the GPU force cal-
culations with integration tasks running on the CPU.

CPU Activity
GPU Activity
Memory Activity

CPU Activity
GPU Activity
Memory Activity

NAMD standard GPU-offloading scheme

NAMD single-node GPU-resident scheme

force force force force

force int force int force int force int force int force int force int

FIG. 5. Standard GPU offload approach compared against new GPU-
resident execution scheme for a single-node NAMD simulation of
apolipoprotein 1 (ApoA1) in water, consisting of 92,224 atoms. The
light blue line tracks GPU activity, while the black strip tracks CPU
activity. GPU force calculations are labeled “force” and GPU inte-
gration calculations are labeled “int.”

The new, GPU-resident computing scheme is able to ef-
fectively saturate the GPU with work, showing almost no
gaps between kernel calls. Figure 6 shows preliminary bench-
marks of this GPU-resident scheme for simulations in the mi-
crocanonical ensemble, with a 2-fs time step and the stan-
dard CHARMM force-field parameters, on a NVIDIA Titan V
GPU and an Intel Xeon E5-2650, for four independent com-
putational assays of increasing size.
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FIG. 6. Comparison of NAMD GPU computing schemes for sim-
ulations with increasing atom counts, namely (i) dihydrofolate re-
ductase enzyme (DHFR) with 23,558 atoms, (ii) apolipoprotein 1
(ApoA1) with 92,224 atoms, (iii) F1-ATPase with 327,506 atoms,
and (iv) STMV with 1,066,628 atoms for the GPU-resident scheme
in NAMD 3.0 (N) and for standard GPU offloading scheme in
NAMD 2.14 (H). The simulations were performed in the mi-
crocanonical ensemble, using the CHARMM9 (turquoise line) and
AMBER-like10 (magenta line) cutoff schemes: 12Å and 8Å, respec-
tively.
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The new GPU-resident computing scheme, using only
a single CPU core, outperforms the original GPU offload
scheme by approximately a factor of 2, despite the original
offload scheme’s use of all 16 CPU cores. In addition, since
most of the computational bottlenecks have been removed
from the CPU, it is possible to achieve perfectly-linear scaling
when running independent replica simulations on single-node
multi-GPU platforms, with one replica per GPU. This ap-
proach can produce aggregate simulation times of microsec-
onds per day, as shown in Figure 7.
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FIG. 7. NAMD performance compared on two platforms, NVIDIA
DGX-2 (upper panel) and Amazon Web Services (AWS) P3.16xlarge
(lower panel), using the standard GPU offloading scheme in NAMD
2.14 and the GPU-resident scheme in NAMD 3.0. The DGX-2 and
AWS P3.16xlarge platforms consisted, respectively, of 16×NVIDIA
Tesla V100 GPUs, and 8× NVIDIA Tesla V100 GPUs associated
to a 48-core CPU. The benchmarks were conducted on replica sim-
ulations of apolipoprotein 1 (ApoA1) in water, representing 92,224
atoms, in the microcanonical ensemble, with one independent replica
running on each GPU. The benchmarks were carried out with the
CHARMM9 (turquoise bars) and AMBER-like10 (magenta bars) cut-
off schemes: 12Å and 8Å, respectively.

IV. PROPAGATORS

One of the features that has made NAMD a widely pop-
ular MD engine is its ability to generate trajectories in apt
thermodynamic ensembles, with minimal approximation and
corner-cutting. This section reviews the numerical schemes
implemented in NAMD to integrate the equations of motion,
together with the algorithms utilized to maintain the tempera-
ture and the pressure constant.

A. Numerical integration

It is useful to distinguish the two ways whereby MD simu-
lations might be carried out. For actual dynamics, the dynam-
ical parameters, e.g., the mass and the thermostat and barostat
coupling parameters, are to be given physically realistic val-
ues. For sampling, however, parameters can be chosen to re-

duce autocorrelation times, thereby increasing the number of
independent samples. In both cases, it is, however, normally
expected that a numerical integrator retain the following prop-
erty of the dynamics: if an ensemble of trajectories has initial
positions and velocities chosen from a given distribution, e.g.,
the canonical ensemble, this distribution is preserved as the
trajectories evolve. This is a useful property even for sam-
pling, in which only a single, long trajectory is generated.

a. Verlet and symplectic integrators. NAMD provides
both deterministic and stochastic equations of motion. The de-
terministic model rests upon the Newton equations of motion,
and the basic integrator is provided by the Verlet algorithm.48

This method happens to be symplectic, which ensures that nu-
merical trajectories possess properties similar to those of the
analytical Hamiltonian dynamics. In particular, Hamiltonian
dynamics preserves volume in phase space and conserves the
energy exactly, which, together, ensure the preservation of any
distribution, such as the Boltzmann distribution, that is a func-
tion of the Hamiltonian alone. A symplectic integrator also
preserves volume in phase space, but conserves a so-called
“shadow” energy, which differs from the actual energy by a
modest O(∆t2). Actually, this is not precisely correct—there
is a “very small” drift in the conservation of the energy over
“very long” timescales.49 The very small error shrinks dramat-
ically, and the very long timescales expand dramatically as ∆t
is reduced. In a plot of the actual energy, the fluctuations indi-
cate the O(∆t2) error in the shadow energy, and an insignif-
icant secular drift indicates a sound integration. In practice,
for a symplectic integrator, it is adequate that the time step
be not much smaller than that needed to avoid drift. For one
thing, the greatest error in the shadow Hamiltonian occurs in
the less important high-frequency modes. Secondly, tempo-
ral discretization error is typically much smaller than that due
to limited sampling. Of any integrator that employs only full
force evaluations, the Verlet integrator allows the largest sta-
ble time step for a given computational effort.50

b. Multiple time stepping. Attaining larger time steps
with a symplectic integrator is possible if the energy function
is partitioned based on time scales and the forces correspond-
ing to shorter time scales are evaluated more frequently. This
numerical scheme,51 known variously as r-RESPA52 and the
impulse method, is implemented in NAMD with up to three
levels of multiple time stepping, namely, bonded, short-range
nonbonded, and long-range nonbonded, e.g., 1, 2, and 4 fs.
There is a limit to the largest time step due to possible res-
onances between the frequencies of the long-range impulses
and natural frequencies of the bonded interactions.53

c. Constrained dynamics. For constrained dynamics,
NAMD uses an extension of Verlet known as SHAKE.54 This
method is dynamically equivalent to RATTLE,55 which is
symplectic.56 More specifically, RATTLE performs a post-
processing on velocities, which is purely cosmetic, in the
sense that it affects only the output velocities, but has no effect
on the trajectory.57 In the NAMD implementation, only cova-
lent bonds to hydrogen atoms are allowed to be constrained,
thereby reducing the frequencies of the fastest bonded inter-
actions, while avoiding any additional parallel communica-
tion, since each cluster of atoms to be constrained is in close
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enough proximity to be kept together on a single processing
element. A consequence of removing these hard degrees of
freedom by means of holonomic constraints is the possibil-
ity to utilize longer time steps to integrate the equations of
motion. Generally, the use of SHAKE requires an iterative
process to satisfy all constraints. To rigidify water molecules,
the constrained equations of motion are solved analytically,
employing a formulation known as SETTLE.58

d. Stochastic dynamics. Commonly used to simulate a
heat bath, the Langevin dynamics implementation of NAMD
is based on a second-order accurate extension of Verlet,
known as the Brooks-Brünger-Karplus (BBK) scheme.59 A
less computationally demanding approach incorporated in
NAMD and referred to as stochastic velocity rescaling,60

leans on a stochastic process to infer the rescaling parame-
ter. NAMD also employs Langevin dynamics to control pis-
ton fluctuations for controlling pressure in the context of the
Langevin piston method.61

B. Thermostats and barostats

NAMD provides mechanisms to control temperature and
pressure in a way that generates the correct ensemble dis-
tribution. For isothermal simulations, thermostat control is
provided by Langevin dynamics, or, alternatively, by stochas-
tic velocity rescaling.60 Langevin dynamics is advantageous
for parallel scaling since no additional communication is
required. Moreover, the friction term that appears in the
Langevin equation tends to enhance dynamic stability. The
method also lends itself to a great deal of flexibility, where dif-
ferent parts of the computational assay, e.g., the solute and the
solvent, can be handled using different coupling coefficients
defined on a per-atom basis. However, the computational cost
of the integration is increased with respect to the basic Ver-
let implementation due to the need of a Gaussian-distributed
random number for each degree of freedom, and at every time
step.

NAMD provides a less costly alternative in the form of
the stochastic velocity rescaling method60, which is an inex-
pensive stochastic extension of the weak-coupling Berendsen
thermostat,62 requiring just two Gaussian-distributed random
numbers for every rescaling of the velocities. The method
has the virtue of being less disruptive to the underlying dy-
namics than Langevin dynamics, conserving both holonomic
constraints and linear momentum. However, each rescaling
involves a global broadcast of the rescaling parameter. Rescal-
ing should not be done more often than the largest time step
employed in the simulation, and can in practice be done less
often, corresponding to the update of the domain decompo-
sition of the cell, which typically occurs every twenty time
steps. The overall reduction in computational effort results
in up to a 20% performance improvement for parallel, GPU-
accelerated simulations, as demonstrated by the parallel scal-
ing benchmarks on the Summit supercomputer at Oak Ridge
National Laboratory depicted in Fig. 8.

Isothermal-isobaric simulations are handled in NAMD
with an implementation of the Langevin piston algorithm,61
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FIG. 8. NAMD scaling on the Summit supercomputer shows the
performance advantage of using stochastic velocity rescaling (blue
line) over the Langevin damping thermostat (red line), up to 20%
faster for the same number of nodes.

which combines the Hoover constant-pressure equations of
motion63,64 with piston fluctuations controlled by Langevin
dynamics.61 (Reference 64 details the difference between
the Hoover formulation and the original Nosé-Andersen
equations.65,66) The resulting equations of motion were in-
dependently proposed in another work, which proved that
the correct ensemble is generated.67 To perform MD simula-
tions in the isothermal-isobaric ensemble, the Langevin piston
barostat must be used in conjunction with either of the afore-
mentioned thermostats.

V. ELECTROSTATICS

Evaluation of electrostatic interactions represents a signif-
icant component of the computational effort in MD simula-
tions. In this section, we review the algorithms implemented
in NAMD to handle electrostatic forces, in particular their
long-range nature.

A. Periodic electrostatics

NAMD supports periodic boundary conditions, or PBCs,
with periodicity in one, two, or three directions, as well as
nonperiodic simulations. Periodicity gives rise to forces re-
sulting from infinite sums of image charges. For periodic-
ity in two or three directions, these forces are not well de-
fined, the net force depending on the ordering of the terms.
To have a well defined force, it is necessary to be more pre-
cise about the limiting process. The best such construction
envisions a sphere of complete periodic cells, and considers
the limit as its radius goes to infinity. The result is the clas-
sic Ewald model68 plus a dipole term, the coefficient of which
depends on the dielectric constant of the surroundings. Such
a term seems inadvisable for solvated biomolecules, so a so-
called “tin foil” boundary is assumed to ensure that it is equal
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to zero. For a system with a nonzero net charge, the limit-
ing process remains valid—provided that a neutralizing uni-
form background charge is introduced, which has no effect on
forces, but introduces a constant correction to the electrostatic
energy per periodic cell.69

B. Ewald summation

The energy and forces associated with the Ewald sum rep-
resent a significant part of the computational effort in an
MD simulation. Ewald summation decomposes the Coulomb
interaction kernel into a short-range part plus a long-range
part, based on the error function erf, 1/r = erfc(βr)/r +
erf(βr)/r, where erfc is the complementary error function.
The short-ranged first term gives rise to a real space sum-
mation between nearby pairs of atoms. The long-ranged and
bounded second term gives rise to a summation of interactions
between the charge densities of the unit cell and all of its peri-
odic images, which converges rapidly in reciprocal space after
applying a Fourier transformation. The parameter β is chosen
to minimize the computational effort, yielding an operation
count proportional to N3/2.70

a. Smoothed particle–mesh Ewald. NAMD reduces the
operation count to O(N logN)33 by employing the smoothed
particle–mesh Ewald (PME) algorithm.71 PME achieves this
speedup by replacing the complex exponential in the recip-
rocal space sum with a B-spline interpolant, which yields an
approximation on a grid amenable to the use of the FFT.

b. Implementation of particle–mesh Ewald. To enhance
the performance of PME, NAMD tabulates quantities used in
the PME energy calculation and interpolates from these quan-
tities, thereby avoiding the calculation of expensive transcen-
dental functions, erfc and exp, during the simulation. The
exact details, however, depend on the computer. In the CPU
version of NAMD, cubic Hermite interpolation results in an
energy function with continuous first derivatives, and its gra-
dient is used to calculate forces. Conversely, the GPU ver-
sion utilizes a linear interpolation of the force and an addi-
tional linear interpolation of the energy when needed for out-
put. Having continuous forces is important for minimization,
and crucial for dynamics. Furthermore, having a force that is
a gradient is equally crucial for Hamiltonian dynamics.

c. Performance of particle–mesh Ewald. The FFTs cal-
culated by PME pose a challenge to parallel scaling due to
communication requirements. A one-dimensional pencil de-
composition of the three-dimensional FFT improves the scal-
ing for larger assemblies of atoms over the two-dimensional
slab decomposition originally supported by earlier versions of
NAMD, where the FFTW library is employed to calculate the
constituent FFTs on CPU cores. GPUs can be used with PME
to calculate the spreading of charge from atoms to grid points,
and the gathering of the force from grid points to atoms. This
use of GPU acceleration can outperform the CPU version
when one doubles the grid spacing and increases the order
of interpolation from 4 to 8, which maintains the expected ac-
curacy and simultaneously increases the arithmetic intensity
of the GPU, while reducing the communication bandwidth by

a factor of 8. There is also a version of PME for single-node
MD simulations, which implements all kernels on the GPU
and employs the NVIDIA cuFFT library for the FFT calcu-
lation. Performance of PME in the context of the adaptive,
asynchronous programming model Charm++ is discussed in
section II.

d. Conservation of momentum. The best known fast
methods for electrostatics are all based on a gridded
approximation,72 and, therefore, compute energies that are not
translation-independent. Consequently, the total linear mo-
mentum is not expected to be conserved. NAMD, however,
provides a simple device73 that conserves momentum without
incurring energy drift of any significance (comparing to sec-
tion IV of reference 71).

C. Multilevel summation method

For simulations that are not periodic, or periodic in only two
directions, the use of FFT is less efficient. Additionally, FFT
does not parallelize very well for very large molecular objects
simulated on a large array of processors. These drawbacks
are overcome by the multilevel summation method (MSM),
which generalizes the basic idea of PME by decomposing the
Coulomb interaction kernel into two or more parts of increas-
ing length scale. The intermediate parts are approximated on
meshes/grids of increasing coarseness, and these intermediate
computations are performed in real space rather than in re-
ciprocal space, exploiting the finite range of the intermediate
parts of the kernel. The long part, of infinite range, is on a grid
coarse enough for the computation to be carried out efficiently
by an FFT, or even directly. In practice, instead of erf(βr)/r,
a softened kernel is employed,74 which has the virtue of cre-
ating short-range and intermediate-range kernels that are ex-
actly zero beyond a given cutoff. NAMD implements MSM
based on the use of piecewise polynomial interpolation having
continuous first derivatives.75

D. Treatment of induced polarization

In addition to the simpler, pairwise additive force fields
with fixed electric charges featured in the program, NAMD of-
fers an extension that models induced electronic polarization
using a classical Drude-oscillator approach.5,13 Potential func-
tions that represent electrostatic interactions in terms of fixed
effective partial charges are clearly limited by their ability to
provide a realistic and accurate representation of both micro-
scopic and thermodynamic properties, most notably when in-
duced electronic polarization is expected to play a significant
role. One approach to incorporate these effects is the classi-
cal oscillator model introduced by Drude,76 which addresses
induction phenomena by introducing an auxiliary charged par-
ticle attached to each polarizable atom by means of a har-
monic spring.13 One noteworthy advantage of this model is
that it preserves the simple particle-particle Coulomb electro-
static interaction employed in pairwise additive force fields,
allowing an implementation that is computationally simple
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and effective. The development and parametrization of the
Drude force field over the last fifteen years now includes wa-
ter, ions, proteins, lipids, nucleic acids and carbohydrates.77,78

To avoid the computationally prohibitive self-consistent field
(SCF) procedure, which is normally required to treat induced
polarization, an extended Lagrangian with a dual Langevin
thermostat scheme applied to the Drude-nucleus pairs has
been developed.5,13 This approach enables the efficient gen-
eration of classical trajectories that are near the SCF limit. To
achieve SCF-like dynamics, it is critical that the cold thermo-
stat act on the atom-Drude oscillator pairs rather than on the
Drude particles directly.13 The implementation in NAMD is
achieved by separating the dynamics of each atom-Drude pair
with coordinates in terms of the global motion of the center
of mass and the relative internal motion of the oscillator. This
implementation has made possible the efficient simulation of
very large molecular systems accounting for through-space in-
duction phenomena.5

E. Generalized Born implicit solvation

NAMD features alternatives to an explicit description of the
environment, chief among which is the generalized Born im-
plicit solvent (GBIS) model.79 GBIS is a fast, albeit approx-
imate, model for the calculation of electrostatic interactions
within a solvent described as a dielectric continuum by means
of the Poisson-Boltzmann equation. It allows large molecular
objects to be simulated at a fraction of the cost of a model that
would include explicit solvent molecules, and is available in
both the CPU and GPU versions of NAMD.47,80

VI. THE COLLECTIVE VARIABLES MODULE

The collective variables module, or Colvars, is a contributed
software library, which supports enhanced-sampling methods
in a space of reduced dimensionality.6 Since its introduction as
part of NAMD version 2.7, Colvars has provided the compu-
tational platform for most of the enhanced-sampling methods
listed in section VII, and other derived methods.81 It is written
primarily in C++ and included in the official source code as
well as precompiled NAMD builds.

A. Principles of a biased simulation with Colvars

Simulations using methods implemented by Colvars re-
quire the end-user to choose and define two entities, namely (i)
at least one collective variable (CV) (colvar), that is a function
of atomic coordinates, and (ii) a method that modifies the dy-
namics of the CV, i.e., a bias. There can be of course multiple
variables or biases defined simultaneously. The Colvars mod-
ule offers many choices of both variables and biasing meth-
ods, ranging from massively-parallel compiled code to arbi-
trary functions chosen by the user at run time; both are de-
scribed hereafter (Fig. 9).
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FIG. 9. Graphical representation of a Colvars configuration.

B. Using VMD to prepare or analyze simulations

Setting up Colvars calculations with NAMD is now facil-
itated by the interactive Colvars Dashboard in VMD, which
provides helpers for preparing a configuration describing the
CVs. The configuration can be saved to a file that is di-
rectly readable by NAMD for biased simulations. The Colvars
Dashboard also facilitates the analysis of NAMD simulations,
regardless of whether these were carried out with Colvars. It
is distributed with VMD, starting with version 1.9.4.

C. Parallel performance

When NAMD is run in parallel on multiple nodes, only
one instance of the Colvars module is run, on the first, mas-
ter node. This requires all-to-one communication of se-
lected atomic coordinates, or their partial contributions to the
CVs), and one-to-all communication of the biasing forces on
the atoms. Updating the Colvars module is executed asyn-
chronously alongside the force calculation by NAMD, result-
ing in efficient latency hiding.

Two types of parallelization schemes are implemented in
Colvars/NAMD, addressing respectively cases of CPU and
communication bottlenecks. On multicore platforms that sup-
port shared-memory parallelism, calculation of multiple CV
components and biases is distributed over all cores of the first
node. This is helpful when several computationally expensive
variables or components are defined. Separately, when CVs
depend on atomic coordinates only via the centers of mass of
groups of atoms, the centers of mass are calculated in parallel
using NAMD functions. There, a single biasing force is com-
puted for each group, and is distributed onto the constituent
atoms only within each node that carries them. This arrange-
ment achieves parallelism without communicating the entire
molecular system over all nodes, preserving the capability of
NAMD to treat very large computational assays. Similarly,
biasing forces can also be applied indirectly to atoms via vol-
umetric maps, as will be detailed hereafter.
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D. Scripting interface

Colvars takes advantage of the NAMD embedded script-
ing interpreters to enable custom extensions without the need
to write and compile C++ code. These custom extensions
may take two forms: (i) Directives in the main NAMD
script, and (ii) callbacks to user-defined functions. Script-
ing directives are typically employed to control simulation
workflows based on CVs, forming the basis for the imple-
mentation of numerical schemes like the string method with
swarms of trajectories,82 or the adaptive multilevel splitting
algorithm.83,84 The primary scripting language of Colvars in
NAMD is Tcl. Colvars can be also called from a Python script
indirectly through the Tcl interface. In response to a growing
demand from a broad community of users, Python objects will
be made available in the near future, in conjunction with im-
proved Python support by recent NAMD builds.

Complementary to workflow control, user-defined func-
tions, i.e., callbacks, can also be used by the Colvars library.
Such scripted functions provide the framework for the im-
plementation of custom-tailored CVs and biasing algorithms
without the necessity to recompile NAMD. Compared with
tclForces and tclBC, Colvars-based callbacks carry the
advantage that custom variables and biases are typically cal-
culated in low-dimensional spaces. They have, therefore, min-
imal performance overhead, because atom-level processing is
done by C++ functions of Colvars and NAMD. A simpler, if
slightly less flexible way to define variables as custom math-
ematical functions of existing components is provided using
the lightweight expression parsing library Lepton written by
Peter Eastman.85 Using Lepton requires no knowledge of pro-
gramming at all, as new variables can be expressed in con-
ventional mathematical notation. Gradients of such custom-
tailored variables are calculated transparently, using automatic
differentiation. The example configuration below defines a
CV based on two components, namely the scalar distance, d,
between two atom groups, and the vector distance, r, between
the same groups. The value of the CV is the unit vector join-
ing the two groups, the individual scalar components of which
are calculated by three custom functions.

colvar {
name myUnitVectorColvar

# Uses two predefined basis functions,
# scalar and vector distance
distance {
name d
# This quantity is referred to by its
# name ’d’ in custom functions
group1 { atomNumbers 1 2 3 4 }
group2 { atomNumbers 5 6 7 8 }

}
distanceVec {
name r
# Scalar components of the vector r are accessed
# as ’r1’, ’r2’, and ’r3’
group1 { atomNumbers 1 2 3 4 }
group2 { atomNumbers 5 6 7 8 }

}

# Together, the 3 instances of customFunction
# define a 3-vector colvar
customFunction r1 / d
customFunction r2 / d
customFunction r3 / d

}

E. Projecting atomic forces on collective variables

A key feature of Colvars is the projection of total atomic
forces onto specific CVs, forming the basis of the classic ther-
modynamic integration (TI) free-energy estimator.86 This es-
timator is typically used in the adaptive biasing force (ABF)
method87–89. Starting with NAMD 2.13, it can also be used
in combination with other methods, including steered MD,90

umbrella sampling91 and metadynamics92 (see section VII).6

Because the projection of total forces requires the fulfill-
ment of certain mathematical conditions,88,93 the TI estima-
tor cannot be used directly in some cases. However, vari-
ables can still be coupled to an extended Lagrangian system,
the forces of which approximate then the true total forces
of the variables for estimating the free energy, as is done,
for instance, in the extended-system ABF algorithm94, imple-
mented in Colvars.95 The free energy can then be recovered
from unbiased estimators.95,96 In two– and three-dimensional
cases, the free energy is now automatically computed based
on estimates of its gradients. To work around the problem
that the inexact numerical estimate of the gradients is not gen-
erally the gradient of a scalar field,97 the free energy landscape
is obtained as the solution of a Poisson equation, stating that
the Laplacian of the free energy is equal to the divergence of
the gradient estimator, subject to appropriate boundary condi-
tions (periodic or non-periodic depending on the CVs in use).

The collection of total forces requires that Colvars compu-
tations are carried out at the end of the force calculation by
NAMD, which would introduce an additional latency. To cir-
cumvent this shortcoming, total forces computed at the pre-
vious time-step, rather than the current one, are utilized by
Colvars. This approach is specific to NAMD, and is not cur-
rently used by Colvars in other MD engines. The one-step
lag is inconsequential for methods that rely on force averages
over many time steps. This detail must, however, be kept in
mind when the time series of total forces is important.

A second noteworthy detail is that the total forces com-
puted by NAMD include contributions both from the force
field and any externally-applied forces. Colvars automatically
subtracts its own biasing forces under the most typical sce-
narios, when the TI free-energy estimator is employed by a
single enhanced-sampling method, e.g., ABF. Otherwise, it
should be noted that any external restraints will be accounted
for by the TI free-energy estimator,86,93 thereby, potentially
introducing a bias.

F. New and notable coordinates

The basis set of coordinates provided by the C++ Colvars
library has been extended with spherical polar coordinates,
employed, for instance,98 in a restraint scheme for standard
binding free-energy calculations99, dipole-moment magnitude
and direction,100) and geometric path-based variables.101 In-
dependently, path-collective variables102 are available in Tcl
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as scripted functions. The variable that calculates coordina-
tion numbers (coordNum) has quadratic complexity in the
number of atoms involved, with a potentially high compu-
tational cost. It can now be computed at a tunable level of
approximation using pair lists, drastically improving its per-
formance.

FIG. 10. Gradients of the Distance to Bound Configuration (DBC)
coordinate for a phenol molecule bound to T4 lysozyme. The refer-
ence pose of phenol heavy atoms is shown in light cyan. The arrows
are proportional to the derivatives of the CV with respect to atomic
Cartesian coordinates. The small gradient contributions on protein
Cα carbons illustrate the purely roto-translational counter-forces ex-
erted on the receptor when biasing forces are applied to a DBC coor-
dinate.

Any CV implemented by Colvars can be calculated in a
moving frame of reference tied to a set of atoms in the molec-
ular system. This way, any external degree of freedom can
be turned into an internal degree of freedom of the relevant
subsystem (the reader is referred to reference 6 for further de-
tail). This approach facilitates the description of the relative
motion of molecular objects, and is the foundation of the Dis-
tance to Bound Configuration (DBC) coordinate for absolute
binding free energy calculations, which measures the devia-
tion of translational, rotational, and conformational degrees
of freedom of the ligand (see Figure 10).81

Certain phenomena, such as protein–solvent interaction or
membrane dynamics, require dynamical selections of the rel-
evant atoms. Toward this end, volumetric maps (see section
XIII) may be used to define CVs that, for instance, “count”
the number of atoms within an arbitrary region of space.
The recently introduced Multi-Map variable103 utilizes this
approach to study the deformation of lipid membranes over
biologically-relevant scales, as well as solvent-density fluctu-
ations in confined cavities (see Fig. 11). This functionality
will also serve as the basis for new sampling methods based

on electron density maps (see section XIV).
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FIG. 11. CVs for solvent reorganization based on volumetric maps.
Snapshot of a hydrophobic cavity containing a varying number of
water molecules (A). A volumetric map (red transparent contour) is
used to define a continuous variable Nw measuring the number of
molecules in the cavity. Trajectory of a short SMD simulation on
Nw (red), compared to the number of molecules counted with VMD
(blue) (B). PMF of Nw, computed over approximately 400 ns. The
use of gridForces maps (see section XIII) in Colvars allows the
development of methods for enhanced sampling of fully dynamic ag-
gregates, such as water densities and lipid membranes.103 (C).

G. New and notable biasing methods

In addition to the biasing methods originally described in
the Colvars reference6, other notable methods have been in-
troduced more recently, particularly in the context of intro-
ducing experimental constraints into the simulation. Lever-
aging tools added to NAMD for other replica-exchange algo-
rithms (see section X), the multiple-walker version of ABF104

has been introduced for free-energy calculation encumbered
by hidden barriers (see section VII).105 Two new methods tar-
get directly a certain probability distribution via harmonic re-
straints on the probability distribution computed over multiple
copies of certain atoms,106 or by the more general-ensemble-
biased metadynamics method.107 Alternatively, experimental
restraints may be enforced following the maximum-entropy
principle as a constant-force, linear restraint.108 The magni-
tude of the force can be learned automatically within the simu-
lation, such as in the the adaptive linear bias (ALB) method,109

and in the restrained-average dynamics (RAD) method,110

which further reduces nonequilibrium effects by incorporat-
ing the experimental uncertainty in the biasing forces.

VII. ENHANCED SAMPLING METHODS

NAMD provides a large set of methods and algorithms to
enhance, boost and accelerate the natural molecular motions
during MD simulations. Depending upon the context and im-
plementation, several of these methods may be used to en-
hance conformational sampling, while remaining consistent
with a Boltzmann equilibrium distribution. A broad set of
approaches, referred to as Hamiltonian tempering,111 aim at
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enhancing configurational sampling via a modification of the
underlying potential energy function of the system. Those in-
clude accelerated MD112,113 (aMD) and its Gaussian variant114

(GaMD), which, as will be detailed in section VIII, attempt to
parametrically “lift” the energy floor of the potential function
to make the energy wells more shallow, yet without perturb-
ing the energy barriers. Another method is solute tempering
(REST2),115 which aims at enhancing sampling by scaling the
solute-environment interaction energy to lower the barriers
that separate conformational states. Hamiltonian tempering
methods effectively attempt to smooth the potential energy
surface in order to enhance sampling. Hamiltonian temper-
ing methods can generate Boltzmann-distributed configura-
tions either via a post-hoc re-weighting analysis, or by gener-
ating the simulation within a Hamiltonian tempering replica-
exchange scheme (see section X).

Studies of complex conformational transitions occurring
on long timescales often proceed by identifying a geometric
transformation associated with a general-extent parameter,116

ξ(x), often referred to as reaction-coordinate model,117 and
formed by collective variables.88 Several enhanced-sampling
algorithms16,118,119 aimed at encouraging the exploration of
relevant regions of configurational space along such user-
chosen reaction-coordinate model are available in NAMD.
One of the most direct choices to boost the motion of a sys-
tem along this reaction-coordinate model consists in applying
a time-dependent non-equilibrium perturbation via SMD.90 In
principle such non-equilibrium SMD trajectories can be used
to determine the equilibrium free energy via post-hoc analysis
based on the Jarzynski identity,120 although reaching conver-
gence may be challenging in practice. By far the most widely
used approaches to map the free-energy landscape along the
reaction-coordinate model of complex biomolecular systems
rely on configurational sampling in the presence of some
biasing potential, following the general statistical technique
of importance sampling,16,118,119 which seeks to estimate a
particular distribution by sampling from a different distribu-
tion. The Colvars module,6 described in Section VI, serves
as a repository for these importance-sampling approaches, as
well as a toolkit for the implementation of new numerical
schemes. Among the widely used algorithms associated with
geometric transformations that are available in Colvars are
umbrella sampling91,121 (US), metadynamics92,122,123 (MtD),
well-tempered metadynamics124 (WT-MtD), and ABF87,89

and its different variants95,96,125,126 (see Fig. 12).
Importance sampling approaches such as US, MtD and

ABF, which promote configurational exploration by means
of a bias along a chosen direction ξ(x), remain plagued by
slow degrees of freedom in directions orthogonal to ξ(x).127

For instance, misrepresentation of the true conformational
transformation associated with the molecular transition in
terms of a naive reaction-coordinate model, ξ(x), consist-
ing of a single collective variable, may often result in se-
vere sampling nonuniformity.118,119 While it is never pos-
sible to formally guarantee a complete ergodic sampling,
multiple-walker (MW) strategies, e.g., MW-MtD128 or MW-
ABF104,105 are available to address this issue. A common
denominator is the combination of information accrued by
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FIG. 12. Sampling of a rugged free-energy landscape. Boltzmann
sampling favors low-energy regions (A). Free-energy barriers can be
overcome by depositing harmonic potentials, as is done in US (B),
by applying a time-dependent bias that yields a Hamiltonian bereft
of an average force along ξ(x), as is done in ABF, or its extended-
Lagrangian variant, eABF (C), or by flooding valleys by means of
Gaussian potentials, or hills, as is done in MtD (D). Combination of
MtD and eABF, meta-eABF, concurrently shaves free-energy barri-
ers and floods valley (E). To enhance ergodic sampling, a multiple-
walker extension of MtD (F), ABF or eABF (G) and meta-eABF (H)
has been implemented.

the different walkers, namely the Gaussian-potential weights
and widths in MW-MtD, and the free-energy gradients in
MW-ABF. Those algorithms, directly embedded in Colvars,6

can be brought to a higher level of sophistication by means
of Tcl-scripting. For instance, Darwinian selection rules
clone good walkers that cover large stretches of ξ(x), while
eliminating the less efficient, kinetically trapped ones.105 A
number of replica-exchange strategies built on the powerful
multiple-copy algorithm129 (MCA) infrastructure of NAMD
may be used (see section X). These strategies include multi-
canonical temperature and Hamiltonian tempering replica-
exchange MD111,130–132 (REMD), and bias-exchange window-
swapping umbrella sampling133 (BEUS). Available MCA
sampling algorithms may be extended via the Tcl scripting
interface.

All the sampling methods described above rely on a stan-
dard microscopic isothermal MD propagator to evolve the
atomic configuration of the system according to the New-
ton classical equation of motions. Another type of isother-
mal propagator, which leans on a combination of Metropolis-
Hastings Monte Carlo (MC), with proposed moves gener-
ated by non-equilibrium MD (neMD) switches134 may be em-
ployed to further enhance conformational sampling. This hy-
brid neMD-MC propagator may be combined with any num-
ber of enhanced sampling functionalities of NAMD, e.g.,
ABF.135 At the heart of the hybrid propagator is the neMD
switch, during which the molecular system is evolved under
the influence of a time-dependent Hamiltonian that is per-
turbed for a brief period of time. The resulting configura-
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tion at the end of the neMD trajectory is then accepted or re-
jected according to a Metropolis criterion. A symmetric two-
end momentum reversal prescription is used at the end of the
neMD trajectories to guarantee that algorithm obeys micro-
scopic detailed balance to yield the proper equilibrium Boltz-
mann distribution.134 The hybrid neMD-MC sampling prop-
agator with the Hamiltonian tempering scheme aMD and the
REST2115 is available in NAMD in the form of Tcl scripting.
Additional variants of neMD-MC involving the exchange of
molecular species — e.g., lipid swapping in membrane mod-
els, may be implemented through the alchemical FEP module
and Tcl scripting.
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FIG. 13. Potential of mean force characterizing the permeation
of a 1–palmitoyl–2–oleoyl-phosphatidylcholine:chole-sterol model
membrane by 2′,3′–dideoxyadenosine, obtained using ABF (red
line) and meta-eABF (blue line) (A). The reaction-coordinate model
is the projection onto the z–axis of the distance separating the center
of mass of the permeant from that of the lipid bilayer (B).

As an illustration of an enhanced-sampling applica-
tion with NAMD, we have simulated the permeation by
a drug-like molecule, 2′,3′–dideoxyadenosine (DDA), of
a membrane model consisting of 1–palmitoyl–2–oleoyl-
phosphatidylcholine:cholesterol mixture at a 2:1 ratio, em-
ploying both the ABF and its recent variant that com-
bines MtD92,122,123 and the extended-Lagrangian version of
ABF,95,96 coined meta-eABF.7,126 The potential of mean force
(PMF) characterizing the permeation events was obtained by
discretizing the reaction-coordinate model, chosen as the Eu-
clidian distance between the center of mass of DDA and that
of the bilayer projected onto its normal, z, into bins 0.1 Å
wide, wherein samples of the local force were accrued. To
improve the efficiency of the free-energy calculation, the re-
action pathway spanning −45≤ z ≤+45 Å was stratified into
nonoverlapping windows. However, whereas nine windows
were utilized with the ABF algorithm, the aggressive sam-
pling of MtD in meta-eABF simulation allows a coarser strat-
ification scheme to be employed, with only three windows
in this particular instance. Detail of the simulations can be
found in references 136 and 126. Compared to reference 136,
sampling has been increased to 4.5µs to reduce to less than
0.4 kcal/mol the hysteresis in the PMF between the upper and
the lower leaflets. The meta-eABF free-energy profile was
obtained in a 1.5 µs, though as early as 0.8 µs, the hystere-
sis was equal to kBT . As can be seen on Figure 13, the two
PMFs almost perfectly overlap, differing only by 0.1 kcal/mol
at the barrier (z=0), and by 0.2 kcal/mol in the humps of the

interfacial region (z=±24Å). The virtual absence of difference
between the PMFs determined with ABF and meta-eABF un-
derscores the efficiency of the latter algorithm, able to map
a complex free-energy landscape 3–6 times faster than the
former.7,126 It is also worth noting that this class of enhanced-
sampling methods based on time-dependent biases acting on
CVs allows kinetic models to be built, obviating the need for
additional simulations. For further details, the reader is re-
ferred to references 137 and 138.

VIII. IMPLEMENTATION OF ACCELERATED MD IN
NAMD

Accelerated MD (aMD) pertains to the family of
enhanced-sampling methods discussed in section VII, and
smoothens the potential energy landscape of a system
through adding a boost potential, Uboost(x), to the orig-
inal potential, U(x), whenever the latter falls below a
certain threshold E. In the original version of aMD139,
Uboost(x) takes the following form when U(x) < E:
Uboost(x) = [E − U(x)]

2
/[α+ E − U(x)], where α is

a user-defined acceleration factor that fine-tunes the mod-
ified potential energy landscape, U∗(x): The smaller the
α, the more flattened U∗(x) becomes, while as α in-
creases, U∗(x) asymptotically approaches the original po-
tential, U(x). The ensemble average 〈A 〉 of an observ-
able A (x) can be recovered through reweighting: 〈A 〉 =
〈A (x) exp [βUboost(x)]〉∗/〈exp [βUboost(x)]〉∗. Here, β =
1/kBT , where kB is the Boltzmann constant and T is the tem-
perature, and 〈· · · 〉∗ represents the ensemble average with the
modified potential.

Available since the 2.8 release of NAMD113, the above ver-
sion of aMD has been applied to investigate a range of bio-
logical objects, such as lipid mixtures140, the maltose bind-
ing protein141, the ubiquitin ligase142 and the dopamine trans-
porter143. The overhead for performing an aMD simula-
tion, relative to a standard MD run, is only ∼10% on aver-
age113,114. However, a major limitation has been the conver-
gence of the reweighted ensemble average — the numerical
evaluation of equations like the previous one is known to be
challenging due to the strong non-linearity of the exponen-
tial terms144,145. Much effort has been invested to address
this reweighting problem in aMD.146,147 Starting with version
2.12, the Gaussian accelerated MD (GaMD) method148 has
been implemented in NAMD114. GaMD differs from the orig-
inal aMD version in three main aspects: First, the boost po-
tential in GaMD adopts a harmonic form when U(x) < E:
Uboost(x) = 1/2k [(E − U(x)]

2, where k is a force constant.
Second, GaMD employs a second-order cumulant expansion
to perform reweighting, which is more accurate than an ex-
ponential average when Uboost(x) follows a near-Gaussian
distribution146. Third, unlike in the original version of aMD,
where the end-user must provide all parameters, GaMD auto-
matically determines key parameters based on statistics col-
lected from a series of short preparative simulations. The user
only needs to specify the length of the preliminary runs and
σ0, the upper limit for the standard deviation of the boost po-
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tential. A smaller σ0 tends to enforce a more stringent require-
ment on the normality of the boost potential distribution.

In both the original aMD and the GaMD implementations,
three modes for applying the boost potential are available: (i)
boosting the dihedral potential, (ii) boosting the total poten-
tial, and (iii) boosting both, i.e., the so-called “dual-boost”,
with separate parameters controlling the boost level for each
term. Modes (i) and (iii), in which the dihedral potential is
singled out to enable direct manipulation of the torsional de-
grees of freedom, are used most frequently. Overall, the dual-
boost mode affords the highest boost potential, which may
produce the greatest effect of enhanced sampling, but simulta-
neously poses the biggest challenge for reweighting. With the
GaMD implementation, the dual-boost mode has been applied
on molecular objects ranging from short peptides to G-protein
coupled receptor, with normality tests revealing minimal an-
harmonicity of the resulting boost potential distributions148.

Unlike many other enhanced sampling methods, aMD does
not require a predefined reaction-coordinate model. This fea-
ture confers to it the flexibility to explore the available con-
formational space in a somewhat “unrestrained” manner. In
particular, it renders the method suitable for complex objects
without knowledge or obvious choices of collective variables.
However, this very feature also means that the sampling effort
in aMD may be less focused along a given reaction-coordinate
model, which, in turn, hampers convergence of the resulting
free-energy profile. In order to address this issue, a promis-
ing and actively pursued direction is the combination of aMD
with other enhanced-sampling methods, which can be applied
either sequentially,149,150 or simultaneously135,151.

IX. ALCHEMICAL FREE-ENERGY CALCULATIONS

Alchemical free-energy calculations16,118,119 are aimed at
transforming chemical species through a virtual process in-
volving intermediate species that are unphysical. Many types
of calculations are possible and supported by NAMD, depend-
ing on the transformation process linking the end states, al-
tering either the intermolecular interaction as a whole or the
individual force field parameters within a single-152 or dual-
topology153 framework (see Fig. 14). Dual-topology indi-
cates that the covalent structure of the two alchemical end
states is intact and present at all stages of the calculations,
while single-topology is meant to indicate that a covalent scaf-
fold common to the two end states is being used. The choice
of one or both of these frameworks can have significant ef-
fects on statistical efficiency, and one or the other might intu-
itively seem better suited for a particular problem.118 Indeed,
for computational efficiency the transformation is often car-
ried out on a hybrid molecule formed by a single-topology
common scaffold attached to two distinct dual-topology moi-
eties. Nonetheless, by virtue of free energy being a state func-
tion, both the single- and dual-topology paradigms are valid
approaches. While the single-topology framework generally
seems to imply a lesser perturbation, its setup and implemen-
tation require particular care compared to its dual-topology
counterpart.
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FIG. 14. Single- and dual-topology frameworks for alchemical
transformations in NAMD. When the reference and the target states
are chemically different, and their respective charge distributions are
distinct, a minimum common substructure is sought in the dual-
topology paradigm (A and C). The two topologies coexist in a hy-
brid compound, albeit do not interact, either directly (through non-
bonded contributions) or indirectly (through bonded contributions).
Unchanged (black), incoming (blue) and outgoing (magenta) atoms
are defined in three partitions. In some extreme cases, when the
end states are chemically distinct and no common substructure can
be found, the two topologies are introduced independently, and ge-
ometric restraints are enforced to prevent them from drifting apart
from each other. In the single-topology paradigm (B and D), holo-
nomic constraints are applied to the common substructure (black),
and dummy particles are introduced to describe the alternate state.
As the transformation proceeds, these dummy particles become real,
interacting atoms. To avoid the creation of an unphysical net force,
the alternate state is only partially chemically bonded to the rest of
the molecule.

NAMD supports a wide variety of methodologies for com-
puting the free-energy difference between alchemical end
states. The two most conventional approaches are thermody-
namic integration86 (TI) and energy difference methods based
on so-called free energy perturbation154,155 (FEP). In FEP, the
free-energy change between the reference state, 0, and the tar-
get state, 1, writes, ∆A = −1/β ln 〈exp (−β∆U)〉0. Here,
∆U is the perturbation, that is the difference between the po-
tential energy of the reference state and that of the target per-
turbed state, and 〈· · · 〉0 denotes an ensemble average over
configurations representative of the reference state. In prac-
tice, even for modest perturbations, transition between the end
states is stratified into nonphysical intermediates by means of
a transformation parameter λ to reduce the variance of the free
energy estimate. Convergence of the free-energy calculation
is intimately related to the number of intermediates, ensuring
suitable overlap of the underlying configurational ensembles.
In TI, the free-energy change between the end states is ex-
pressed as an integral, ∆A =

∫ 1

0
dλ 〈∂∆U/∂λ〉λ, which,

in practice, is also determined using finite increments of the
coupling parameter. Here, the number of points is a trade-
off between accuracy of the numerical integral and compu-
tational cost. To circumvent singularities arising from parti-
cles appearing in a locus already occupied, for instance, by
solvent molecules, the Lennard-Jones potential is simultane-
ously shifted and scaled,156 resulting in a smooth transition
between the chemical states. From a practical standpoint, the
alchemical transformation can be carried out in a sequential
fashion from 0 to 1, or in the opposite direction, by means of
Tcl scripting, avoiding a restart of NAMD between intermedi-
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ate states. Under these premises, the end-user takes advantage
of NAMD performance on parallel architectures to handle the
computational assay at a given value of the coupling parame-
ter λ.

An alternate view to FEP is to note that ∆U is essentially
the instantaneous work required to carry out particular pertur-
bation in question.157 Following Jarzynski,120 it is possible in-
stead to define a protocol such that the perturbation is carried
out over a certain amount of time in a fashion that disrupts the
equilibrium. In this case, the FEP equation154,155 still holds,
but ∆U is instead replaced by the observed work required to
carry out the transformation and the ensemble average repre-
sents initial conditions for multiple perturbations — which is
still an equilibrium ensemble. The potential advantage of this
approach is that it eliminates the need for stratified interme-
diate states. However, the accuracy and efficiency are highly
contingent on the intrinsic timescales needed to carry out the
transformation effectively.

Assuming suitable computational resources, it is also pos-
sible to run the different intermediate states concurrently
within the multiple copy algorithms129 (MCA) infrastructure
of NAMD (see section X). Optimally, each replica is handled
by an array of computing cores commensurate with the sys-
tem size. The data generated in an alchemical transformation,
either sequentially or concurrently for all strata, is generally
post-processed to obtain a better estimator of the free energy
than that of FEP, e.g., Bennett acceptance ratio158 based on
bidirectional free-energy calculations,157 as well as estimates
of the associated statistical and systematic errors. For per-
formance purposes, it might be desirable to carry out the for-
ward and the backward transformations concomitantly. One
possible option provided by NAMD is the interleaved double-
wide sampling algorithm,81 which switches the target value of
lambda on the fly to supply energy differences in both direc-
tions of change, which are necessary to calculate statistically
optimal free energy estimators, in a single simulation. An
interesting characteristic of importance-sampling algorithms
like FEP and TI is that they can be melded seamlessly with nu-
merical schemes aimed at improving ergodic sampling.118,119

Running simultaneously the different intermediate states of
the alchemical transformation, it is a natural to combine the
free-energy method with a replica-exchange algorithm, e.g.,
Hamiltonian-exchange,131 temperature-exchange,130 or both.

REMD111,130–132 has proven to improve convergence of
FEP calculations involving considerable reorganization of
the surroundings. The Hamiltonian-exchange, or FEP/(λ,
H )–REMD algorithm has been introduced, primarily for
ligand binding, wherein replicas along the alchemical ther-
modynamic coupling axis, λ, are spawned as a series of
Hamiltonian–boosted copies along a second axis to form a
two-dimensional replica-exchange exchange map (see Fig.
15).132 Aiming to achieve a similar performance at a lower
computational cost, a modified version of this algorithm has
been implemented, in which only the end states along the al-
chemical axis are augmented by boosted replicas. The re-
duced FEP/(λ, H )–REMD numerical scheme, with a one-
dimensional unbiased alchemical thermodynamic coupling
axis, λ, is introduced in the context of the generic MCA
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FIG. 15. Hamiltonian-exchange FEP calculations, or FEP/(λ,H )–
REMD (see section X). The computational assay is cloned into repli-
cas corresponding to the different strata of the alchemical transfor-
mation whereby the interaction of a small molecule with its envi-
ronment is progressively turned off. The configurations of adjacent
λ-states, i and j, are swapped periodically and the proposed move is
accepted following a Metropolis-Hastings criterion, p(λi → λj =

min
{
1; e−β{[Uj(x,λj)−Ui(x,λj)]+[Ui(x,λi)−Uj(x,λi)]}

}
.

chassis of NAMD (see section X). Different Hamiltonian-
tempering boosting schemes could be employed to acceler-
ate the convergence of the free-energy calculation, e.g., a
potential-energy rescaling of a selected subset of the compu-
tational assay with REST2,115 and the introduction of biases
flattening the torsional free-energy barriers.

Historically, alchemical transformations in NAMD were in-
troduced through the dual-topology framework,159 but a num-
ber of applications, e.g., in drug discovery and in constant–
pH MD,160 have provided an impetus for the introduction of
an alternate scheme, now available in the free-energy module
of the code. An effective hybrid single-dual topology pro-
tocol has been designed for the calculation of relative bind-
ing affinities of small ligands to a receptor.161 The protocol
has been developed as an expansion of NAMD, which hith-
erto exclusively supported a dual-topology framework for rel-
ative alchemical FEP calculations. In this protocol, the al-
chemical end states are represented as two separate molecules
sharing a common substructure identified through maximum
structural mapping. Within the substructure, an atom-to-atom
correspondence is established, and each pair of corresponding
atoms are holonomically constrained to share identical coor-
dinates at all time throughout the simulation. The forces are
projected and combined at each step for propagation. To en-
hance sampling of the dual-topology region, the FEP calcula-
tions can be carried out within a REMD strategy supported by
the MCA framework of NAMD (see section X), with periodic
attempted swapping of the thermodynamic coupling param-
eter, λ, between neighboring states. This hybrid single-dual
topology scheme combines the conceptual simplicity of the
dual-topology paradigm with the advantageous sampling effi-
ciency of the single-topology approach.
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X. MULTIPLE COPY/REPLICA ALGORITHMS

Numerical schemes that couple the dynamical propaga-
tion of a set of copies of the computational assay of inter-
est, referred here to as “replicas”, offer powerful and flex-
ible strategies to characterize complex molecular processes.
Such MCAs can be employed to enhance sampling, compute
reversible work and free energies, as well as refine transi-
tion pathways. Widely used examples of MCAs include tem-
perature and Hamiltonian-tempering REMD, i.e., T–REMD
and H –REMD,130,131,133,162 alchemical FEP with λ–replica-
exchange, i.e., FEP/(λ, H )–REMD,132,163 umbrella sampling
with Hamiltonian replica exchange, i.e., US/H –REMD,164,
and string method with swarms of trajectories (SMwST)82 to
sample conformational transition pathways.

In section IX, we have mentioned the use of MCAs in the
context of FEP/(λ, H )–REMD calculations with NAMD (see
Fig. 15). Here, we outline how MCAs can be employed for
SMwST simulations, whereby a putative transition path be-
tween basins of the conformational free-energy landscape can
be refined. This pathway, or “string”, consists of a set of
m discrete conformations, or “images”. A set of CVs is in-
troduced to reduce the dimensionality of the process at hand
(see section VI). The swarms results from n MD trajectories
started from a single image, combined to yield an average
drift, and requiring communication between the n copies of
that image. The average drift for the different images is uti-
lized to update the string, following a redistribution of these
images to remove any drift tangential to the path. This re-
parameterization step also implies communication between
the m images that form the string. The images are then pre-
pared for the next optimization cycle by performing restrained
simulations with the CVs to their updated values. The MCA
implementation of this method utilizes m × n independent
replicas that intercommunicate once at each iteration.

A robust and general infrastructure has been built upon the
parallel programming system Charm++ upon which NAMD
rests to enable the implementation of a suite of MCAs for MD
simulations (see Fig. 16). Multiple concurrent NAMD in-
stances are launched with internal partitions of Charm++, and
located continuously within a single-communication world.
Messages between NAMD instances are passed by low-level,
point-to-point communication functions, accessible through
the Tcl scripting interface of NAMD. The communication-
enabled Tcl scripting provides a sustainable application inter-
face for the end-users to set up generalized MCAs without the
explicit need to modify the source code, thereby conferring to
the present implementation both versatility and massive scal-
ability.

Representative applications of MCAs with fine-grained,
inter-copy communication structure, including global λ–
exchange in FEP/(λ, H )–REMD, window swapping US/H –
REMD in multidimensional order-parameter space, and
SMwST simulations, have been implemented with Tcl script-
ing on top of Charm++. Once Charm++ is initialized, each
Charm++ processing element can be logically mapped onto
a designated local partition. When Charm++/NAMD en-
ters the inter-copy communication phase, all localized pro-
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FIG. 16. Generic implementation of MCA in the Charm++ RTS.
Multiple NAMD instances run concurrently, and each of them is exe-
cuted by an independent Charm++ RTS (gray vertical lines). Replica
exchange/inter-copy communications (red double arrows) are imple-
mented through a Tcl scripting interface. comm_local denotes a
local internal Charm++ partition, dedicated to be the communica-
tion layer of a single trajectory run/NAMD instance. comm_cross
denotes a global Charm++ communication layer across all local par-
titions. A scripting interface of replica exchange is implemented with
communication-enabled Tcl functions built on top of comm_cross.

cessing elements are mapped back to a global state. Fur-
thermore, on leadership supercomputers, such internal parti-
tions can benefit from performance gains from the low-level
machine-specific communication library, such as the parallel
active messaging interface (PAMI) on IBM Blue Gene/Q,165

or the user generic network interface (uGNI) on Cray XK7.166

The Tcl interface of NAMD is intended to offer maximum
flexibility to the end-user for the implementation of MCAs
without touching the source code. For instance, through Tcl
scripting, variables and expressions utilized initially to define
options can be changed dynamically in the course of the sim-
ulation. Said differently, once the user-friendly Tcl commu-
nication commands are built on top of the low-level, point-
to-point communication functions, the end-user can design
generic MCAs without modifying, or adding a single line of
C++. Within an MCA Tcl script, inter-copy communications
are executed by the Tcl replicaSend/Recv/Sendrecv
functions on top of the Charm++ communication layer, and
the end-user only needs to designate the communication part-
ners for each copy. A significant advantage of the present Tcl-
based MCA scheme is that the end-user can define virtually
any type of MCA through simple Tcl scripting, as all the pa-
rameters and biasing energy terms are already registered in the
Tcl-scripting interface of NAMD. For instance, in an absolute
free-energy calculation, the nonbonded scaling parameters for
different atom types can be wrapped into a single-parameter
unit, which will be exchanged along the entire alchemical re-
action path. Similarly, multiple orthogonal order parameters
can be alternatively exchanged in the context of a multidimen-
sional US Hamiltonian exchange.

XI. CONSTANT–PH MOLECULAR DYNAMICS

In constant-pH MD simulations, selected ionizable sites are
allowed to spontaneously change their protonation state as a
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function of time in response to the environment and the im-
posed pH. This is an increasingly popular approach for di-
rectly probing different protonation states in biomolecules.
Indeed, several methods and implementations have been
reported,160,167–172 and employed to study pH effects on
molecular conformation,173 ligand binding,174,175 as well as
enzymatic activity.176 In practice, how these calculations are
carried out and subsequently analyzed can depend rather sig-
nificantly on the specific methodology being used. The imple-
mentation in NAMD retains as many characteristics of con-
ventional MD as possible and, with only minor additions,
shares all of the same system preparation tools and output for-
mats. With only a few exceptions, which will be discussed
hereafter, pH-dependent mechanical observables can be esti-
mated directly from trajectory averages.

The method implemented in NAMD is based on a hybrid
scheme,177 which consists of carrying out short nonequilib-
rium MD (neMD) switching trajectories to generate physi-
cally plausible configurations with changed protonation states
that are subsequently accepted or rejected according to a
Metropolis Monte Carlo (MC) criterion.160,172 The constant-
pH neMD-MC method is essentially an elaboration of con-
ventional MD, which is still utilized to sample new molecular
configurations in an explicit solvent model (this functionality
is not currently compatible with implicit solvent models). By
using a symmetric momentum reversal prescription134 and a
generalized Metropolis–Hastings criterion,178 the neMD-MC
hybrid procedure rigorously captures the proper Boltzmann
statistics, while allowing the environment, e.g., the solvent, to
relax according to its natural dynamics,179 i.e., the protona-
tion states and configurations are sampled jointly. This com-
bination builds upon the concept of “stochastic titration”,180

and a switching protocol.177 NAMD also utilizes efficiency
improvements in both the switching procedure and the way
MC candidate states are selected.134,160,172 In particular, sam-
pling can be improved by iteratively updating an estimate of
the pKa of each titratable group, namely an adjustable param-
eter referred to as the “inherent” pKa.160,172 These estimates
need not be exact in practice, and a reference estimate from a
single residue in solution is often suitable to guide sampling
away from improbable protonation-state changes.

The constant-pH MD analog of atomic coordinates is the
protonation site “occupation vector”, a sequence of ones and
zeros indicating which protons are physically coupled to the
system, and which are simply modeled as dummy atoms. Us-
age of dummy atoms is a purely bookkeeping measure, and
does not impact the thermodynamics of the molecular objects
at play in any way.160 By adding extra placeholder atoms,
constant-pH MD trajectories can be easily visualized and an-
alyzed with the myriad tools available for fixed particle count
simulations, chief among which is VMD.19 The only caveat
to this process is that the occupation vector must be consid-
ered as additional data in each trajectory frame used to filter
out the cases in which a given proton is either interacting or
non-interacting.

The occupation vector can also be utilized to construct sim-
ple and intuitive observables. For instance, the number of sim-
ulation frames in which a proton occupies a site can be directly
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FIG. 17. Sample titration curves computed from a constant-pH MD
trajectory of the BBL miniprotein181,182 reveal a range of protonation
states over a modest pH range. Solid lines represent fits to a Hill
curve, from which pKa values and Hill coefficients, n are derived.
The present results were obtained using the CHARMM36 force field
and standard settings (e.g., rigid bonds with hydrogen, PME). An
MC step was performed every ps, and a uniform switch time of 15 ps
was used for each move (particular residues requiring longer/shorter
times can also be specified). About 20,000 moves were attempted at
seven pH values leading to an aggregate of about 2 µs of MD.

related to the protonated fraction of a given state, i.e., the frac-
tion of simulation time in which that state is occupied. A pro-
tonation state of interest can often be composed of the oc-
cupations from multiple sites, possibly on multiple residues.
Since these occupations are discrete, there is no ambiguity in
doing so. Ultimately, the protonated fraction, or, more gen-
erally, the state occupation at multiple pH values constitutes
a titration curve that can be analyzed to yield a pKa value,
usually by fitting to a model like a Hill curve, (see Fig. 17).
The output from NAMD simulations at multiple pH values is
also amenable to use with reweighting schemes such as the
weighted histogram analysis method.160,183

XII. HYBRID QM/MM MOLECULAR DYNAMICS
SIMULATIONS

Classical MD simulations, which rely on molecular me-
chanics (MM) force fields, are well suited for tackling most
computational biophysics problems, from folding184 to the
study of large macromolecular complexes,185 but fail when
the electrons play an important role in the investigated
phenomena.186 In particular, charge redistribution and cre-
ation or rupture of chemical bonds are two frequent problems
that have limited the treatment at the MM level.187 In such
cases, quantum mechanical (QM) calculations provide a much
more detailed view of the chemical process at hand188. The
cost for a more detailed treatment offered by QM methods is
a significant increment in the computational complexity, even
for the smallest of proteins, making a ns-long full-QM MD
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simulation still impractical, or outright prohibitive.
Partitioning a biomolecular system in MM and QM re-

gions has become a common approach to balance precision
and efficiency.189 Hybrid QM/MM simulations do just that
by focusing the computational resources on atoms that play
a significant role in the process of interest.190 In practice, the
QM/MM approach augments the MM force field, restricting
the electronic structure calculation at the QM level to a small
part of the system, while the remaining atoms serve as an en-
vironment that can affect the electronic distribution in the QM
region.189,191 The classical MD integrator then combines the
QM potential and the MM force field potential to dictate the
movement of the atoms over time, keeping the dynamics of the
system at classical mechanics level in the Born-Oppenheimer
approximation.192

For most applications, hybrid QM/MM protocols are well-
established and have been employed broadly to investigate
a variety of biomolecular problems, most notably in en-
zymatic activity, including the mechanism of HIV inte-
grases, glutamine synthetases, glycoside hydrolases, dioxy-
genases, lipases, dehydrogenases, catalases, glycosyltrans-
ferases, and nearly every other class of enzymes with known
structure.193–199 The large list of enzymatic mechanisms that
have been explored showcases the significant contribution
of QM/MM methods to the development of enzymology200.
In addition, polarization effects have also been the focus of
QM/MM simulations.201 By studying both lipids and drugs
at the QM level, QM/MM approaches have been momentous
in understanding how small drugs interact with lipid mem-
branes, particularly on how local anesthetics are stabilized by
dipalmitoylphosphatidylcholine (DPPC) lipids at water/lipid
interfaces.202 More recently, the QM/MM implementation of
NAMD was used to investigate a key step in the translation
of the genetic code,203 revealing details of the aminoacylation
mechanism of glutamyl-tRNA synthetase (GluRS). In this in-
vestigation, two QM regions were simulated simultaneously
over multiple replicas of the same system, one for the active
site of GluRS, and the other for its anticodon recognition do-
main. This combination of biological system and software
infrastructure made possible a unique analysis of the informa-
tion transferred between the QM and MM regions, indicating
that both levels of calculation were closely integrated to ren-
der a cohesive view of the biological object.

In spite of the increase in interest and widespread ap-
plications, QM/MM simulations remain difficult to set up,
most notably when a combination of methods is needed, e.g.,
QM/MM plus enhanced sampling (see section VII). The phi-
losophy behind the development of the NAMD QM/MM in-
terface was to make hybrid methods available to all struc-
tural biologists, while reducing the typical learning barrier,
and making this interface flexible and easily adaptable. The
NAMD QM/MM suite includes an interface to multiple QM
codes that can be combined with NAMD, orbital visualiza-
tion tools within the program VMD19, and the user-friendly
QwikMD20 module (see section XV) for preparing, running,
and analyzing QM/MM simulations.203 The NAMD QM/MM
interface also allows a large number of independent QM re-
gions to be simulated concurrently, with a full integration of

the vast collection of methods featured in NAMD, including
SMD, enhanced-sampling, and free-energy estimation meth-
ods (see section VII). Moreover, a reaction-oriented biased
simulation method was introduced, providing a quick start for
the study of reaction mechanisms.203
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FIG. 18. Schematic representation of a hybrid QM/MM MD step in
NAMD. Two trialanines, each containing one QM region, are simu-
lated through simultaneous and independent executions of the chosen
QM software (ORCA). In a QM/MM simulation, positions and ele-
ments of QM atoms are sent by NAMD to the QM software, along
with positions and partial charges representing the local MM envi-
ronment within a given cutoff (dashed magenta or purple lines, top-
left panel). NAMD expects from the QM software forces, total en-
ergy, and partial charges for all QM atoms, and forces acting on MM
partial charges due to electrostatic interactions. All atoms are moved
based on the calculated force gradients. Different atoms will have
their resulting force gradient computed either by the QM software,
by NAMD, or a combination thereof (top-right panel). If selected,
long-range electrostatics can be calculated by NAMD for all atoms
using PME, utilizing the updated partial charges calculated by the
QM software. For additional detail, the reader is referred to refer-
ence 203.

In hybrid QM/MM simulations, NAMD offloads part of its
force and energy calculations to a quantum-chemistry pack-
age, referred here to as “QM software”.203 The QM software
receives positions and elements of all atoms in the QM re-
gion, then returns partial charges, forces and total energy. Us-
ing simple keywords, a user can direct NAMD to provide the
positions and charges of the classical atoms that surround the
QM region, allowing the QM calculation to be carried out in
an electrostatic embedding. In case a covalent bond connects
a QM and an MM atom, a link atom — typically a hydrogen
atom,204 is introduced to cap the QM atom, and the classical
partial charge from the MM atom is distributed over surround-
ing classical atoms (see Fig. 18). Different keywords con-
trol various aspects of the electrostatic interactions between
the MM and QM regions, as well as the charge redistribution
around the QM-MM bonds. All keywords are used in a regular
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NAMD configuration file, essentially expanding the classical
MD simulation.

Taking advantage of the advanced state of current quantum-
chemistry packages, NAMD can efficiently carry out a
QM/MM MD simulation using a memory-backed temporary
filesystem (“RAM disk”) to exchange input and output files
with the chosen QM software. Most QM packages use “state
files” to store the results of a single-point calculation, and
are optimized to be called sequentially, quickly loading state
files from a previous iteration, and using that information to
achieve convergence faster. The underlying assumption is that
atoms will move only slightly between two consecutive MD
steps, so that the previous result makes a good initial guess for
the current calculation. The choice of using files in memory to
communicate with the QM software has two main advantages:
First, the time spent with file reading and writing is negligible,
compared to a single-point calculation in an MD step; Second,
it facilitates the integration with multiple QM software. To
that effect, the NAMD QM/MM interface was built to com-
municate natively with MOPAC205,206 and ORCA,207 and to
provide a flexible standardized interface that allows virtually
any quantum chemistry package to be wrapped in a script and
used by NAMD.

The QM/MM implementation in NAMD has been exten-
sively tested for accuracy, stability, and performance. Both
MOPAC and ORCA were used to validate results, and all
tests were thoroughly described in reference 203. Energy
conservation was observed using a variety of simulation pro-
tocols, and trajectory stability was assessed by conserving
energy in simulations up to 100 ns long. Moreover, tests
with NAMD/ORCA at the PM3, HF, and DFT levels of ap-
proximation revealed that long-range electrostatics could be
safely integrated into the simulation using PME (see sec-
tion V) with little impact on energy conservation. As ex-
pected, benchmarks indicated that performance depends heav-
ily on the chosen QM method and the size of the QM region.
For very small systems, i.e., 12 QM atoms, our benchmarks
showed a performance of up to 10 ns/day of QM/MM simu-
lation when employing NAMD/MOPAC with the PM7 semi-
empirical method208 and running on an 4.2-GHz Intel Core
i7-7700K CPU, with 64GB of RAM.

XIII. GRID-BASED POTENTIALS

While most MD simulations operate with particles and
particle-based interactions, there is a world of continuum
models used throughout all branches of basic science and en-
gineering. The gridForces module of NAMD makes it
possible to couple a particle-based MD simulation to external
grid-based potentials, opening exciting possibilities for multi-
scale and multi-physics simulations of biomolecular objects,
and offering an extreme flexibility for user customization of
external forces in an MD simulation.

The gridForces module of NAMD was initially devel-
oped to facilitate simulation of single-stranded DNA (ssDNA)
passage through the nanopore of α-hemolysin,18 a water-filled
transmembrane channel (see Fig. 19A). In experiment,212 ss-
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FIG. 19. Using grid-based potentials to steer an MD simulation. (A)
A cut-away view of an all-atom simulation system featuring a sin-
gle DNA strand (orange) passing through an α-hemolysin nanopore
(blue) embedded in a lipid membrane (green). Water and ions are
not shown for clarity. (B) Electrostatic potential contour map in
and around an α-hemolysin nanopore determined using all-atom MD
methods209. Coupling this potential to atoms of ssDNA only through
the gridForces module of NAMD dramatically accelerates the
simulation of the DNA translocation process18. (C) The cryo-EM
density (white wireframe surface) is used as a steering potential for
docking the all-atom structure of an α/β (red/blue) tubulin dimer to
build an all-atom model of a microtubule210. (D) All-atom MD sim-
ulation of plasmonic trapping. Electric field-driven translocation of
DNA (blue and orange) through a nanopore in a solid-state mem-
brane (gray) is halted by the plasmonic field (semi-transparent red
surface) generated by the gold bowtie nanostructure (yellow). The
arrows illustrate the magnitude and direction of plasmonic forces
acting on the DNA molecules211. Water and ions are not shown for
clarity.

DNA passage through the nanopore is driven by a gradient of
an electric potential that varies dramatically at the entrance
and within the nanopore (see Fig. 19B). The ms-timescale of
the translocation process rules out a brute force MD approach,
whereas conventional accelerated dynamics approaches, such
as constant force pulling, or SMD, fail to produce realistic
translocation events, owing to ssDNA stretching under the
force.18 The solution — referred to as grid-steered MD (G-
SMD) — was to first determine the average distribution of the
electrostatic potential within the nanopore, and then use this
distribution as an external potential, magnified by a custom
factor, to guide DNA through the nanopore. Using the G-
SMD protocol, multiple complete translocation events of ss-
DNA through α-hemolysin were obtained within just tens of
ns, while introducing minimal distortions to the DNA confor-
mations. In this particular example, the gridForces mod-
ule was employed to enable simulations at, effectively, very
high transmembrane biases without producing high electric-
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field artifacts, such as membrane rupture. A step-by-step
guide to using G-SMD for nanopore transport simulation can
be found in a dedicated tutorial on nanopore modeling.213,214

Being able to apply position-dependent forces according
to a custom three-dimensional potential in an all-atom MD
simulation became a game changer for the field cryogenic
electron microscopy (cryo-EM) reconstruction215, where
crystallography-resolved all-atom models of proteins or nu-
cleic acids are modified to match a three-dimensional den-
sity determined using cryo-EM (see Fig. 19C). The molecu-
lar dynamics flexible fitting (MDFF) method,17 which will be
detailed in section XIV, uses the experimentally-determined
density as an external potential in a G-SMD simulation of a
crystallographic structure to obtain the best match between
the atomic coordinates and the electron density. Originally
developed for implicit-solvent docking216, the MDFF proto-
col can also be employed in an explicit solvent simulation, as
was the case, for instance, in the construction of a complete
all-atom structure of a biological microtubule210.

The gridForces module of NAMD offers limitless pos-
sibilities with regard to building initial models for all-atom
simulations or coupling an all-atom simulation to external
continuum models. For example, a nanoscale Swarovski
sculpture can be built by melting a silicon dioxide crys-
tal and then annealing the molten atoms in the presence of
a steric repulsive potential that acts as a kind of a nano-
imprint mask.217 Similarly, atomically precise repulsive po-
tentials can be used to create pockets of vacuum in water,218 or
a lipid membrane35 prior to insertion of folded biomolecules,
thereby eliminating steric clashes. Multi-scale modeling is
enabled by coupling an MD simulation to external potentials
obtained by solving continuum models, such as the COM-
SOL Multiphysics R© program, or any other three-dimensional
solver. Examples of such simulations include the study of
thermophoretic stretching of ssDNA in a locally heated solid-
state nanopore,219,220 simulations of plasmonic trapping of
DNA molecules (see Fig. 19D),211 and coarse-grained sim-
ulations of double-nanopore systems.221

At present, the gridForces module is activated using a
set of standard NAMD keywords. The reader is referred to
the NAMD user’s guide and the user-defined forces tutorial218

for a detailed description. The information about grid-force
potentials is provided to NAMD in the form of .dx format-
ted file, the header of which specifies the dimensions and lo-
cation of the grid. For each gridForce potential, which
could be multiple, the end-user must supply a pdb file with
a flag on those atoms or particles that will be subject to the
external potential. Optionally, the user can specify custom
factors that couple the potential to individual atoms, as well
as a global coupling factor, which can be set separately for
each of the Cartesian axes. During a NAMD simulation, each
of the flagged atoms will be subject to an external force, the
magnitude and direction of which are determined by (i) the
instantaneous coordinates of the atoms, (ii) the eight values
of the potential at the nearby nodes of the grid, and (iii) ad-
ditional user-defined scaling factors. The value of the force
is computed as the negative gradient of the local potential,
which in turn is determined using either linear or cubic inter-

polation schemes. If the physical dimensions of the grid do
not match the physical dimension of the computational assay,
i.e., the simulation cell, special care must be taken in defining
conditions at the boundary of the grid to avoid interpolation
artifacts, such as forces produced by an abrupt change of the
potential at the edge of the grid, or the unintended application
of the grid potential over the periodic boundary of the simu-
lation cell. Additional care should be taken when using cubic
interpolation for the computation of grid forces in the case of
rapidly varying (digitized) potentials, as such an interpolation
is prone to produce local attractive potentials. We strongly
recommend to examine the shape, the location and the profile
of the external grid-based potentials, e.g., visually in VMD or
through analysis scripts, prior to running production simula-
tions.

Among current limitations of the gridForces module is
the static nature of the external potentials, that is, once the po-
tential has been activated, its spatial location, orientation and
values cannot be changed. While the framework for modify-
ing external potentials in the course of an MD simulation is in
the works, several workarounds are already available. A triv-
ial one consists in splitting one continuous NAMD run into
several ones, replacing the potential file between consecutive
runs, which is a convenient method to enable a self-consistent
multi-scale simulation. Another possibility consists in using
multiple grid potentials and changing their global scaling fac-
tors via scripting commands in the NAMD configuration file,
or via external forces applied by Colvars onto one or more grid
potentials, for example via the Multi-Map Variable.103 The
grid-force potentials themselves can be prepared using third-
party software, such as Matlab, COMSOL Multiphysics R©, or
APBS222, obtained using the volmap plugin of the visualiza-
tion program VMD,19 or generated from scratch using custom
Tcl, Perl or Python scripts.

XIV. MOLECULAR DYNAMICS FLEXIBLE FITTING

While the most widely used method for acquiring
biomolecular structures is X-ray crystallography, crystalliza-
tion of very large biomolecules, macromolecular complexes,
and membrane proteins is extremely challenging. In response,
cryo-EM, which obviates the difficult crystallization step and
makes imaging possible under physiologically-relevant con-
ditions, is increasingly becoming a mainstream approach for
structure determination of biomolecular systems.

Historically, computational methods were required to
bridge the resolution gap between crystallography and cryo-
EM to produce atomic-resolution models of biomolecular ob-
jects. One such method, MDFF17,215,223,224 is a feature of
NAMD. It has proven to be an extremely successful refine-
ment method as evidenced by its numerous applications215,225

ranging from the intricate ribosomal machinery216,226–228 to a
host of non-enveloped viruses.3
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A. The original MDFF algorithm

The essence of MDFF is, given an initial all-atom structure
and a corresponding cryo-EM density, to match the structure
to the density by means of an MD simulation (see Fig. 20).
Toward this end, the structure is first docked rigidly into the
density. Then, flexible fitting is performed by applying to the
structure an external biasing potential, in addition to the clas-
sical force field. This biasing potential is derived by invert-
ing the cryo-EM density and bounding the resultant map from
below a threshold to remove noise. Quality of the fitting pro-
cedure is controlled by a user-defined factor, gscale, which
scales the biasing potential relative to the force field.
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FIG. 20. A simple MDFF example of fitting a protein structure into
a density map. (A) The X-ray structure of an adenylate kinase pro-
tein (PDB:1AKE). (B) The protein structure rigid body docked to the
density map. (C) The protein structure inside the density map after
running a MDFF simulation. (D) The overall quality of fit (cross
correlation) during a MDFF simulation.

In practice, the potential energy function used for fitting is
defined on a three-dimensional grid and incorporated into the
MD simulation using the gridForces feature of NAMD8,18

(see section XIII). Forces are computed from the added po-
tential and applied, in addition to the intrinsic forces, to each
atom as a function of its position on the grid, using an inter-
polation scheme. The computed density-derived forces drive
the atoms into regions of high density, producing an atomic-
resolution structure in the conformation captured in the cryo-
EM density. The MD-based nature of MDFF allows for flex-
ibility and sampling, while maintaining a realistic structural
geometry through incorporation of the molecular mechanical
force fields. Restraints imposed during the simulation help
preserve the secondary structure and stereochemical correct-
ness (using the extraBonds feature of NAMD229), as well
as any symmetry230 of the protein investigated. Traditional
MDFF is applicable with cryo-EM densities in the resolution
range of 5–15Å. For density maps between 3–5Å resolution,
the refinement steps get entrapped into biologically irrelevant
energy minima, usually yielding incorrect models. This limi-
tation of MDFF has been overcome by introducing a density-
based simulated annealing protocol called cascade MDFF,
and subsequently, in a more automated replica-exchange al-

gorithm referred to as ReMDFF.231

B. xMDFF: MDFF for low-Resolution X-ray
crystallography

Although originally developed for fitting crystal structures
into cryo-EM densities, MDFF has been extended to refine
structures from X-ray crystallographic diffraction data, lead-
ing to an algorithm coined xMDFF. This methodology em-
ploys a real-space refinement scheme, which flexibly fits
atomic models into a density map through an iterative up-
dating. The performance of xMDFF has been demonstrated
for the refinement of protein crystallographic data at resolu-
tions ranging from 3.6 Å to 7 Å.232 For abiological macro-
molecules, xMDFF refinements were performed up to 1.6 Å
resolution.233

xMDFF uses model-phased density maps, which incorpo-
rate the phases from a search model and the amplitudes from
the X-ray diffraction data. These density maps are created uti-
lizing tools in the Phenix software suite.234 The density map
is used as a potential for steering the search model into the
appropriate locations by means of MDFF forces. Once the
search model is fitted into the density, it provides new phases
to be used with the observed amplitudes of the X-ray diffrac-
tion data to generate an updated density. This model is then
fitted into the new map using MDFF, and the process proceeds
iteratively until a sufficiently low reliability factor for assess-
ing possible over-modeling of the data, or Rfree-value, is ob-
tained.

Mirroring the strengths of MDFF, xMDFF also benefits
from the equilibrium and enhanced-sampling capabilities of
NAMD. This sampling capability enables the determination
of multiple occupancies in biological objects.235 Conventional
MD simulations generate ensembles of atomic structures un-
der constraints, such as constant pressure, volume, tempera-
ture, and number of particles. Generally, xMDFF is compati-
ble with any such ensemble-generation scheme, e.g., isobaric-
isothermal or canonical, as wellas microenvironmental condi-
tions, such as vacuum, explicit or implicit solvent, all achiev-
able within typical NAMD simulations.

XV. USABILITY, REPRODUCIBILITY, AND
EXTENSIBILITY

An MD simulation in NAMD is typically configured us-
ing one or multiple files, other referred to as configuration
files. These files set the values of many tunable parameters,
e.g., temperature and pressure, and include a series of instruc-
tions and manipulations to drive the simulation following a
well-defined workflow. Such a workflow can be as simple a
temperature ramp, where the temperature increases every so
many steps, or a more sophisticated sequence of runs, analy-
sis, and manipulations, as would be the case in constant–pH160

simulations and in a number of replica-exchange strategies.129

Written either in Tcl or in Python, these configuration files are
a resourceful platform that allows the user to adapt the NAMD
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wealth of features to the specificities of each and every molec-
ular object and computational assay. Since these workflows
are written in commonly used scripting languages, end-users
can exploit the scripting interface that connects NAMD with
their favorite analysis and modeling tools to perform more
complex operations guiding the simulation.

Method development at the scripting level, e.g., constant–
pH, requiring minimal or no manipulation at all of the source
code, has many strategic advantages, most notably in terms of
code maintenance. Furthermore, as a result of their flexibil-
ity and accessibility, scripting languages like Tcl and Python,
enjoy a broad community of developers who have developed
over the years a vast library of modules, packages, and scripts,
often critical for non-programming researchers. To formalize
the interface as a development platform, we have expanded
the NAMD Tcl (8.5 and above) and Python (3.7 and above)
interpreters to support plugin/module utilization and distri-
bution. Establishing a formal plugin engine, similar to the
VMD19 plugin system, allows the developers not only to de-
velop their methods more conveniently, but also to distribute
them to a growing community of users. Beyond improving
the usability of NAMD, formalization of the plugin distribu-
tion also ensures reproducibility of the simulations by general-
izing the common functionalities between different modules,
while confining the end-user intervention to the manipulation
of variables and user-defined functions, as opposed to the du-
plication and manipulation of entire modules.

Irrespective of the architecture where NAMD is executed,
the same configuration file can be used to drive a simula-
tion on a laptop, a local workstation, or a supercomputer
— differences between these architectures appearing at the
level of execution commands and the internals of NAMD
and Charm++. This commonality has allowed for the de-
velopment of a number of tools to set up MD simulations
with NAMD, like QwikMD,20,203 MDFF graphical user in-
terface (MDFF-GUI),17,215,223,224 the binding free-energy es-
timator (BFEE),236 and Colvars6 Dashboard, all distributed
in the visualization code VMD,19 as well as web tools, like
CHARMM-GUI.237

In general, preparation tools for MD simulations manage
the end-user input information on the computational assay,
the structures of the molecular objects at hand, the simula-
tion parameters, and generate the necessary files towards ex-
ecution of NAMD on virtually any architecture. When using
QwikMD and MDFF-GUI, the simulation can be performed
on the same machine where the files were prepared, and the
end-user can interact with the simulation as it runs. Interactiv-
ity is supported by the interactive molecular dynamics (IMD)
module, implemented in both VMD and NAMD, and allow-
ing visualization, analysis, and manipulation of the simula-
tion during its execution. Ability to interact with the simu-
lation has proven particularly useful in structure refinement
with MDFF-GUI, as the user can manually promote structure
fitting into regions of the density map, and more generally
in any MD simulation to detect abnormal events at an early
stage. Moreover, the IMD module is often used for educa-
tional purposes to visualize the dynamics of the molecular
object in the course of an MD simulation, a feature largely

exploited in QwikMD and its training material.
QwikMD is an MD toolkit available in VMD, which guides

the end-user through the main steps towards the setup, the
execution, and the analysis of MD simulations. The user-
friendly GUI of QwikMD facilitates the preparation of MD
simulations in a point-and-click fashion, using preset param-
eters for unbiased, steered-MD, MDFF or hybrid QM/MM
computations,203 and is fully integrated with the molecular vi-
sualization interface of VMD. Beyond assisting the end-user
at the setup stage, this tool ensures the reproducibility of the
simulations by recording and logging all parameters and steps
taken during the preparation and analysis process. The results
of the simulations are then readily analyzed in QwikMD, em-
ploying a wide variety of tools available in VMD.19

The development of QwikMD was facilitated by the exis-
tence of other modeling VMD plugins that are utilized in a
very well-defined workflow, chief among which is the pro-
tein structure file (psf) generator, or PSFGEN, the common
structure preparation tool for simulations with NAMD. This
tool can either be employed in a standalone mode, or as a
VMD plugin, to map the input user-defined structure into the
CHARMM force field,9 generating the psf that describes the
identity and topology of the molecular object, e.g., atoms
types and charges, as well as bonds, valence angles, dihe-
dral angles, and cross-terms. PSFGEN was recently expanded
to support the recent developments in both the additive9 and
non-additive77 CHARMM36 force fields, being now able to
generate and manipulate Drude particles and lone pairs. Im-
provements in the performance and implementation of the
hydrogen-mass repartition238 now allows the end-user to setup
faster and simulate larger molecular objects with longer time
steps.

XVI. CONCLUDING REMARKS AND PERSPECTIVE

Empowered with continuing advances in hardware technol-
ogy on both commodity and large supercomputing platforms
enabling faster and larger simulations, with development of
more efficient algorithms allowing for better exploitation of
the computing architectures available to computational scien-
tists (see sections II and III), and with more effective inter-
action between scientists of different disciplines, we can only
expect broader and more sophisticated applications of molec-
ular simulations to more complex biomolecular objects and
processes. As a result, the scope of molecular modeling and
simulation will continue to extend into into a broader range of
biomolecular phenomena of strong biological and biomedical
relevance.

One particular area that will certainly keep its already fast
pace of progress is that of modeling and simulating cellular-
scale phenomena. Both inspired and enabled by advances
in structural biology on the experimental side, biomolecular
modelers will be able to aim at modeling complex subcellu-
lar organelles and cellular behavior.3,35,239 The resulting struc-
tural models will provide scientists with crucial information
to start thinking in the context of realistic, concrete molec-
ular models, and to pose relevant molecular questions more
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rationally. Since its inception, NAMD has always regarded
large-scale simulations as a key area in biomolecular model-
ing, and, thus, continues to invest heavily to allow researchers
to model and simulate realistic cellular systems. Recent mod-
ifications of the code have enabled the program to be bench-
marked for the first time on molecular assemblies of up to two
billion atoms (see Fig. 21).
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FIG. 21. Continuous development effort over the years towards sim-
ulating with NAMD realistic biological objects of increasing com-
plexity, from a small, solvated protein, on the thousand-atom size
scale, in the early nineties, to a full protocell, on the billion-atom
size scale, nowadays.

Notably, in the context of cellular-scale molecular model-
ing and simulation, a major aspect, prominent in recent stud-
ies, has been the degree to which the modelers make an effort
to maximize the biological realism by including as extensively
as possible available experimental data into the computational
model, and to match the simulation conditions with the ex-
perimental ones.17,215,223,224 While unavailability of some ex-
perimental details may limit the scope of cellular modeling
to some degree, in many areas, computational techniques of-
fer alternative solutions to build biological models, e.g., con-
struction of reliable models of a biological membrane with
heterogeneous lipid composition. In this regard, MD simu-
lations will continue to provide a powerful tool to build de-
tailed molecular models of systems of interest. At the same
time, there is a need for new modeling tools streamlining the
nontrivial process of setting up such complex models (see
section XV).20,237 Successful projects employing MD simu-
lations will not only benefit from experimental verification,
but also empowered by incorporation of reliable experimental
data into the model, an area in which biomolecular model-
ers have made tremendous progress particularly over the last
decade. While we have developed already advanced method-
ologies to integrate a broad range of experimental information
to guide our models and simulations, there is clearly a need
to develop the methodology and the software tools to allow
for better, more accurate, more comprehensive, and prefer-
ably automated ways of doing so. Such molecular modeling

efforts are, therefore, essential to pave the way towards mod-
eling cell-scale simulations in meaningful times.

Another major area that has and continues to largely
benefit from advances in molecular simulation, in general,
and free-energy calculations, in particular, is computational
drug design.16,240–242 Supported by progress on the hard-
ware front, most prominently, with the availability of fast
GPUs on a variety of platforms, as well as on the software
front, with optimally designed tools (see sections IX and
XV),81,99,129,159,161,236 one can now screen large numbers of
small molecules for potential pharmacological effects on spe-
cific biological targets within timeframes compatible with in-
dustrial requirements, and with meaningful, quantitative free
energies, e.g., binding affinities.243–245 In this regard, develop-
ment of more accurate force fields, such as polarizable force
fields aimed at capturing induction phenomena more faith-
fully, as well as machine-learning protocols such as the accu-
rate neural network engine for molecular energies (ANAKIN-
ME, or ANI for short),246 are critical advances in order to pro-
vide reliable quantitative scales. Modern MD engines have
to be conscious and aware of such developments and ready
to incorporate them efficiently and in a time-bound fashion.
Furthermore, in cases where more complex electronic ef-
fects might be important to describe ligand-protein interac-
tions, one can resort to more expensive levels of theory, most
notably in the form of a QM description amidst a classical
representation of the rest of the macromolecular system—a
methodology known as the QM/MM calculation already suc-
cessfully implemented in NAMD203 (see section XII).
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