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Let A ⊂ Z be a finite subset. We denote by B(A) the set of all integers n ≥ 2 such that |nA| > (2n -1)(|A| -1), where nA = A + • • • + A denotes the n-fold sumset of A. The motivation to consider B(A) stems from Buchweitz's discovery in 1980 that if a numerical semigroup S ⊆ N is a Weierstrass semigroup, then B(N \ S) = / 0. By constructing instances where this condition fails, Buchweitz disproved a longstanding conjecture by Hurwitz (1893). In this paper, we prove that for any numerical semigroup S ⊂ N of genus g ≥ 2, the set B(N \ S) is finite, of unbounded cardinality as S varies.

A numerical semigroup is a subset S ⊆ N containing 0, stable under addition and with finite complement in N. Equivalently, it is a subset of N of the form S = a 1 , . . . , a n = Na 1 + • • • + Na n where gcd(a 1 , . . . , a n ) = 1. The set {a 1 , . . . , a n } is then called a system of generators of S, and the smallest such n is called the embedding dimension of S.

For a numerical semigroup S, its corresponding gapset is the complement G = N \ S, its genus is g = |G|, its multiplicity is m = min S * where S * = S \ {0}, its Frobenius number is f = max(Z\S) and its conductor is c = f +1. Thus [c, ∞[ ⊆ S and c is minimal for this property. Finally, the depth of S is q = c/m . Given a finite subset A ⊂ N, we denote by nA = A + • • • + A the n-fold sumset of A. See Section 2 for more details. Definition 1.1. Let A ⊂ Z be a finite subset. We associate to A the function β = β A : N + → Z defined for all n ≥ 1 by

β A (n) = |nA| -(2n -1)(|A| -1). Notation 1.2. We denote by B(A) the positive support in 2 + N of the function β A , i.e. B(A) = {n ≥ 2 | β A (n) ≥ 1}.
For instance, 2 ∈ B(A) if and only if |2A| ≥ 3|A| -2. Interestingly, the failure of this condition, namely the inequality |2A| ≤ 3|A| -3, is the key hypothesis of the famous Freiman's 3k -3 Theorem in additive combinatorics [START_REF] Freiman | The addition of finite sets. I. (Russian) Izv. Vysš. Učebn[END_REF].

Example 1.3. If |A| = 0 or 1, then B(A) is infinite. Indeed, if A = / 0, then |nA| = 0 and so β / 0 (n) = 2n -1 for all n ≥ 1. Thus B(/ 0) = 2 + N in that case. Similarly, if |A| = 1, then β A (n) = 1 for all n ≥ 1. So here again B(A) = 2 + N.
In sharp contrast, Theorem 3.3 below states that if S ⊂ N is a numerical semigroup of genus g ≥ 2, then B(N \ S) is finite. More generally, it was shown in [START_REF] Komeda | Non-Weierstrass numerical semigroups[END_REF][START_REF] Oliveira | Weierstrass semigroups and the canonical ideal of non-trigonal curves[END_REF] that β N\S (n) = 0 for all symmetric numerical semigroups S of multiplicity m ≥ 3 and all n ≥ 2. We shall not use this result below, but instead give a short self-contained proof of an immediate consequence, namely that B(N \ S) is empty in that case.

In fact, B(N \ S) is empty in most cases. Indeed, Buchweitz discovered in 1980 that the condition B(N \ S) = / 0 is necessary for S to be a Weierstrass semigroup. By constructing instances where this condition fails, Buchweitz [START_REF] Buchweitz | On Zariski's criterion for equisingularity and non-smoothable monomial curves[END_REF] was able to negate the longstanding conjecture by Hurwitz [START_REF] Hurwitz | Über algebraischer Gebilde mit eindeutigen Transformationen in sich[END_REF] according to which all numerical semigroups of genus g ≥ 2 are Weierstrass semigroups. His first counterexample was S = 13, 14, 15, 16, 17, 18, 20, 22, 23 , with corresponding gapset

G = N \ S = [1, 12] ∪ {19, 21, 24, 25}
of cardinality 16. Then 2G = [2, 50] \ {39, 41, 47}, so that |2G| = 46 and β G (2) = 46 -3 • 15 = 1, implying 2 ∈ B(G) and thus impeding S to be a Weierstrass semigroup. For more information on Buchweitz's condition and Weierstrass semigroups, see e.g. [START_REF] Harris | Existence, decomposition, and limits of certain Weierstrass points[END_REF][START_REF] Kaplan | The proportion of Weierstrass semigroups[END_REF].

Here are the contents of this paper. In Section 2, we recall a result of Nathanson in additive combinatorics and we use it to study the asymptotic behavior of the function β A (n). In Section 3, we introduce the Buchweitz set of a numerical semigroup and we prove our main results. Section 4 concludes the paper with open questions on the possible shapes of the sets B(A).

Sumset growth

Given finite subsets A, B of a commutative monoid (M, +), we denote as usual

A + B = {a + b | a ∈ A, b ∈ B}, the sumset of A, B, and 2A = A + A. More generally, if n ≥ 2, we denote nA = A + (n -1)A, where 1A = A. The set nA is called the n-fold sumset of A.
A classical question in additive combinatorics is, how does |nA| grow with n? Here we only consider the case M = Z. We shall need the following result of Nathanson [9, Theorem 1.1].

Theorem 2.1. Let A 0 ⊂ N be a finite subset of cardinality k ≥ 2, containing 0 and such that gcd(A 0 ) = 1. Let a 0 = max(A 0 ). Then there exist integers c, d and subsets

C ⊆ [0, c -2], D ⊆ [0, d -2] such that nA 0 = C [c, a 0 n -d] (a 0 n -D) for all n ≥ max{(|A 0 | -2)(a 0 -1)a 0 , 1}.
As pointed out in [START_REF] Nathanson | Additive Number Theory, Inverse Problems and the Geometry of Sumsets[END_REF], the hypotheses 0 ∈ A 0 and gcd(A 0 ) = 1 are not really restrictive. Indeed, for any finite set A ⊂ Z with |A| ≥ 2, the simple transformation A → A 0 = (Aα)/d, where α = min(A) and d = gcd(Aα), yields a set A 0 satisfying these hypotheses and such that |nA 0 | = |nA| for all n. In view of our applications to gapsets, we shall need the following version. Proof. Set A 0 = A -1 and a 0 = a -1. Then A 0 contains {0, 1}, hence it satisfies the hypotheses of Theorem 2.1. Using the same notation, its conclusion implies [START_REF] Buchweitz | On Zariski's criterion for equisingularity and non-smoothable monomial curves[END_REF] |nA

0 | = a 0 n + b for all n ≥ max{(|A 0 | -2)(a 0 -1)a 0 , 1}, where b = |C| + |D| -c -d + 1. Note that b ≤ 1 since |C| ≤ max(0, c -1), |D| ≤ max(0, d -1
). The desired statement follows from (1) since |nA| = |nA 0 | for all n ≥ 0.

Asymptotic behavior of β A (n)

We now study the evolution of β A (n) as n grows.

Theorem 2.3. Let A ⊂ N + be a finite set containing {1, 2}. Let f = max(A) and g = |A|. Then

lim n→∞ β A (n) = -∞ if f ≤ 2g -2, +∞ if f ≥ 2g.
Finally if f = 2g -1, then β A (n) is constant and nonpositive for n large enough.

Proof. By Corollary 2.2, we have |nA| = ( f -1)n + b for some integer b ≤ 1 and for n large enough. Hence

β A (n) = ( f -1)n + b -(2n + 1)(g -1) = ( f -2g + 1)n + b + 1 -g for n large enough. The claims for f ≤ 2g -2 and f ≥ 2g follow. If f = 2g -1, then β A (n) = b + 1 -g ≤ 0 for n large enough, since b ≤ 1 and g ≥ 2.
Corollary 2.4. Let A ⊆ N + be a finite set containing {1, 2}. Let f = max(A) and

g = |A|. Then B(A) is finite if and only if f ≤ 2g -1. Proof. If f ≥ 2g, then lim n→∞ β A (n) = ∞ by the theorem, whence β A (n) ≥ 1 for
all large enough n. Thus B(A) is infinite in this case. If f ≤ 2g -1, the theorem implies β A (n) ≤ 0 for n large enough, whence B(A) is finite in that case.

3 Application to numerical semigroups Definition 3.1. Let S ⊆ N be a numerical semigroup. We define the Buchweitz set of S as Buch(S) = B(N \ S). Explicitly, setting G = N \ S, we have

Buch(S) = {n ≥ 2 | |nG| > (2n -1)(|G| -1)} = {n ≥ 2 | β G (n) ≥ 1}.
In this section, we first prove that Buch(S) is finite for all numerical semigroups S of genus g ≥ 2. We then show, by explicit construction, that the cardinality of Buch(S) may be arbitrarily large.

Finiteness of Buch(S)

We start with a well known inequality linking the Frobenius number and the genus of a numerical semigroup. Proposition 3.2. Let S ⊂ N be a numerical semigroup with Frobenius number f and genus g ≥ 1. Then f ≤ 2g -1.

Proof. Let x ∈ S ∩ [0, f ]. Then f -x /
∈ S since S is stable under addition and x + ( fx) = f / ∈ S. Hence, the map x → fx induces an injection

S ∩ [0, f ] → N \ S. Since |S ∩ [0, f ]| = ( f + 1) -g, it follows that f ≤ 2g -1, as claimed.
Recall that S is said to be Summarizing, we have

symmetric if |S ∩ [0, f ]| = |N \ S|, i.e. if f = 2g -1. A classical
|nA| =        m + 3 if n = 1, 3m + 7 if n = 2, (2n -1)(m -1) + 6n -1 if 3 ≤ n ≤ k + 2, 2n(m -1) + 1 if n ≥ k + 4.
The stated formula for

β G (n) = β A (n) = |nA| -(2n -1)(|A| -1) follows. Hence Buch(S) = [2, k + 2], as claimed.
This family of numerical semigroups was inspired by the PF-semigroups introduced in [START_REF] García-García | On reducible non-Weierstrass semigroups[END_REF].

More intervals

What are the possible shapes of Buch(S) when S varies? We do not know in general. By Proposition 3.4, any finite integer interval I with |I| ≥ 2 and min(I) = 2 may be realized as I = Buch(S) for some numerical semigroup S. Here we present families of numerical semigroups S realizing as Buch(S) all finite integer intervals I with |I| ≥ 2 and min(I) ∈ {3, 4, 5, 6}. Proposition 3.5. Let k ≥ 1. Let S be the numerical semigroup of multiplicity m = 6k + 19 and depth q = 2 whose corresponding gapset G = N \ S is given by

(4) G = [1, m -1] {2m -7, 2m -6, 2m -2, 2m -1}. Then Buch(S) = [3, k + 3]. Proof. Let again A = (2m -1) -G = [0, 1] {5, 6} [m, 2(m -1)]. We then have 2A = [0, 2] [5, 7] [10, 12] [m, 4(m -1)], 3A = [0, 3] [5, 8] [10, 13] [15, 18] [m, 6(m -1)], 4A = [0, 24] ∪ [m, 8(m -1)]. It follows that nA = [0, 6n] ∪ [m, 2n(m -1)] for all n ≥ 4. In particular, if 6n ≥ m then nA = [0, 2n(m -1)]. Therefore, β G (n) = β A (n) =        0 if n = 2, 1 if n = 3, 4 if 4 ≤ n ≤ k + 3, 6k -6n + 22 if n ≥ k + 4.
Hence Buch(S) = [3, k + 3], as claimed. Proposition 3.6. For k ≥ 1 and i ∈ {1, 2, 3}, let S i be the numerical semigroup with G i = N \ S i given by Proof. Similar to the proofs of Propositions 3.4 and 3.6. We omit it here.

G 1 = [1, m 1 -1] {2m 1 -6, 2m 1 -2, 2m 1 -1}, G 2 = [1, m 2 -1] {2m 2 -10, 2m 2 -4, 2m 2 -3, 2m 2 -2}, G 3 = [1, m 3 -1]
Having realized all finite integer intervals I with |I| ≥ 2 and min(I) ∈ [START_REF] Delgado | Numericalsgps": a GAP package on numerical semigroups[END_REF][START_REF] Hurwitz | Über algebraischer Gebilde mit eindeutigen Transformationen in sich[END_REF] as I = Buch(S) for a suitable numerical semigroups S, is it possible to do the same for all finite integer intervals I with min(I) ≥ 7? We do not know in general. But here is a particular case where min(I) can be arbitrarily large. It is based on a family of numerical semigroups found in [START_REF] Komeda | Non-Weierstrass numerical semigroups[END_REF]. Proposition 3.7. For any integer k ≥ 1, there is a numerical semigroup S such that Buch(S) = [7 + 2k, 7 + 4k].

Proof. For k ≥ 1, let S be the numerical semigroup minimally generated by the set T 1 ∪ T 2 ∪ T 3 , where

T 1 = [44 + 27k + 4k 2 , 79 + 51k + 8k 2 ], T 2 = [81 + 51k + 8k 2 , 84 + 53k + 8k 2 ], T 3 = [87 + 53k + 8k 2 , 87 + 54k + 8k 2 ].
• Assume now 6 + 2k < n ≤ 11 + 4k. The sequence of sets [0, n] and

[6 + 2k, 6 + 2k + n -1], . . . , [(n -5 -2k)(6 + 2k), (n -5 -2k)(6 + 2k) + (5 + 2k)]
verifies that the intersection of any two consecutive terms is nonempty. Moreover, their union is the interval [0, (n -5 -2k)(6 + 2k) + (5 + 2k)] whose cardinality is equal to (n -5 -2k)(6 + 2k) + (5 + 2k) + 1. For i = n -4 -2k, . . . , 6 + 2k the intervals are disjoint with all the others sets appearing in the expression (5); the cardinality of the union of these sets is equal to 2k+5 ∑ i=n-2k-5 i. For every i = 7 + 2k, . . . , n the intersection

[i(6 + 2k), i(6 + 2k) + n -i] ∩ [43 + 26k + 4k 2 , (8k 2 + 53k + 85)n]
is nonempty, except for n = 7 + 2k. Since (7 + 2k)(6 + 2k) = 42 + 26k + 4k 2 , the set 

1 Introduction

 1 Denote N = {0, 1, 2, 3, . . . } and N + = N \ {0} = {1, 2, 3, . . . }. For a, b ∈ Z, let [a, b[= {z ∈ Z | a ≤ z < b} and [a, ∞[= {z ∈ Z | a ≤ z}denote the integer intervals they span.

Example 1 . 4 .

 14 Let S = 3, 7 . Then N \ S = {1, 2, 4, 5, 8, 11} and β N\S (n) = 0 for all n ≥ 2 as easily seen. In particular, B(N \ S) = / 0.

Corollary 2 . 2 .

 22 Let A ⊂ N + be a finite subset containing {1, 2}. Let a = max(A). Then there is an integer b ≤ 1 such that |nA| = (a -1)n + b for all n ≥ (|A| -2)(a -2)(a -1).

  result of Sylvester states that any numerical semigroup of the form S = a, b with gcd(a, b) = 1 is symmetric. Theorem 3.3. Let S ⊆ N be a numerical semigroup of genus g ≥ 2. Then Buch(S) is finite. Proof. Let G = N \ S. Then Buch(S) = B(G) by definition. We have g = |G| ≥ 2. Let f = max(G) be the Frobenius number of S. Let m = min(S \ {0}) be the multiplicity of S. Then m ≥ 2 since g ≥ 2, and [1, m -1] ⊆ G. Assume first m ≥ 3. Then {1, 2} ⊆ G. Hence Corollary 2.4 applies, and since f ≤ 2g -1 by Proposition 3.2, it yields that B(G) is finite, as desired. Assume now m = 2. Then S = 2, b with b odd and b ≥ 5 since |G| ≥ 2. At this point, we might conclude the proof right away using what is known in for all n ≥ 3, as easily verified by induction on n. Let us determine |nA| for all n ≥ 1. Note first that the union in (3) is disjoint if and only if 6n + 1 ≤ m . Moreover, as m = 6k + 15, we have 6n + 1 ≤ m ⇐⇒ n ≤ k + 2. In contrast, if n ≥ k + 3, i.e. if 6n -3 ≥ m, then the union in (3) collapses to a single interval and we get nA = [0, 2n(m -1)].

{2m 3 -

 3 10, 2m 3 -9, 2m 3 -2}, where m 1 = 4k + 22, m 2 = 7k + 44 and m 3 = 5k + 55, respectively. Then Buch(S 1 ) = [4, k + 4], Buch(S 2 ) = [5, k + 5], Buch(S 3 ) = [6, k + 6].

6 + 2 -

 62 2k), i(6 + 2k) + ni] ∪ 43 + 26k + 4k 2 , (85 + 53k + 8k 2 )n is equal to [42 + 26k + 4k 2 , (85 + 53k + 8k 2 )n], and the cardinality of this set is 8k 2 + 53k + 85 n -4k 2 -26k -42 + 1. Putting all the above together, we have that if 6 + 2k < n ≤ 11 + 4k, the set nA has cardinality equal to((n -5 -2k)(6 + 2k) + (5 + 2k) + 1)+ 2k+5 ∑ i=n-2k-5 i + 8k 2 + 53k + 85 n -4k 2 -26k -42 + 1 = -65 -46k -8k 2 + (193n)/2 + 57kn + 8k 2 nn 2 /2,and therefore[START_REF] Kaplan | The proportion of Weierstrass semigroups[END_REF] β G (n) = -65 -46k -8k 2 + (193n)/2 + 57kn + 8k 2 nn 2 /(2n -1)(46 + 27k + 4k 2 -1) = (-20 -19k -4k 2 ) + (3k every n ∈ [6 + 2k, 11 + 4k].

Question 4 . 1 .Question 4 . 2 .Question 4 . 3 .

 414243 Let A ⊂ Z be a finite subset, or more specifically a gapset. Is the set B(A) always an interval of integers? Even more so, is the function β A (n) unimodal? In sharp contrast with the above questions, let T ⊂ 2 + N be any finite subset. Does there exist a finite subset A ⊂ N, or more specifically a gapset, such that B(A) = T ?
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the symmetric case [START_REF] Komeda | Non-Weierstrass numerical semigroups[END_REF][START_REF] Oliveira | Weierstrass semigroups and the canonical ideal of non-trigonal curves[END_REF]. However, for the convenience of the reader, let us give a short self-contained argument. We have G = {1, 3, . Proof. Let k = b -2, and let S be the numerical semigroup of multiplicity m = 6k + 15 and depth q = 2 whose corresponding gapset G = N \ S is given by

We claim that Buch(S) = [2, k + 2]. Indeed, we will show a more precise statement, namely

Let us compute 2A and 3A. We obtain

In general, we have

The corresponding gapset G = N \ S is then given by

of cardinality |A| = 46 + 27k + 4k 2 . The n-fold sumsets of A are then given by

• Assume first 2 ≤ n < 6 + 2k. In this case, we have

Thus, all the sets appearing in (5) are disjoint and the cardinality of nA is equal to

Thus,

The only difference between the case n = 6 + 2k and the previous one is that the sets [0, n] and [6 + 2k, 6 + 2k + n -1] have a nonempty intersection, equal to {6 + 2k}. Replacing n by 6 + 2k and subtracting one, we obtain β G (6 + 2k) = 0.

• Finally, assume 11 + 4k < n. The set

is equal to [0, (85 + 53k + 8k 2 )n] and the remaining intervals are contained in this union. So we have nA = [0, (85 + 53k + 8k 2 )n] and therefore [START_REF] Komeda | Non-Weierstrass numerical semigroups[END_REF] 

Combining β G (6 + 2k) = 0 with the formulation of ( 6), ( 7) and ( 8) for β G (n), we get the following formulas:

Let k ≥ 1 be fixed. For 2 ≤ n < 6 + 2k, the formula of β G (n) is a degree two polynomial in n with positive leading coefficient such that β G (2) = -1-k < 0 and β G (5+2k) = -1-k < 0. We have therefore β G (n) < 0 for every n = 2, . . . , 5+2k.

If n > 11 + 4k, we now have that β G (n) is a degree one polynomial with negative leading coefficient and such that β G (12 + 4k) = -14 -5k < 0. So β G (n) < 0 for every n > 11 + 4k.

Finally, if 6 + 2k < n ≤ 11 + 4k the function β G (n) is a degree two polynomial in n with negative leading coefficient. As in addition β G (7 

Concluding remarks

The current knowledge on the structure of B(A) for finite subsets A ⊂ Z is very scarce, even for gapsets. Do they have some special shape or property? We end this paper with three questions based on the few currently available observations.

Authors' addresses:

Shalom Eliahou a,b a Univ. Littoral Côte d'Opale, UR 2597 -LMPA -Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville, F-62100 Calais, France b CNRS, FR2037, France e-mail: eliahou@univ-littoral.fr Juan Ignacio García-García c,d e-mail: ignacio.garcia@uca.es Daniel Marín-Aragón c c Departamento de Matemáticas, Universidad de Cádiz, E-11510 Puerto Real (Cádiz, Spain). e-mail: daniel.marin@uca.es Alberto Vigneron-Tenorio d,e e Departamento de Matemáticas, Universidad de Cádiz, E-11406 Jerez de la Frontera (Cádiz, Spain). d INDESS (Instituto Universitario para el Desarrollo Social Sostenible), Universidad de Cádiz, E-11406 Jerez de la Frontera (Cádiz, Spain). e-mail: alberto.vigneron@uca.es