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The Buchweitz set of a numerical semigroup

S. Eliahou, J.I. Garcia-Garcia,
D. Marin-Aragén, A. Vigneron-Tenorio

Abstract

Let A C Z be a finite subset. We denote by B(A) the set of all integers
n > 2 such that |[nA| > (2n —1)(JA| — 1), where nA = A+ --- + A denotes
the n-fold sumset of A. The motivation to consider B(A) stems from Buch-
weitz’s discovery in 1980 that if a numerical semigroup S C N is a Weier-
strass semigroup, then B(N\ §) = 0. By constructing instances where this
condition fails, Buchweitz disproved a longstanding conjecture by Hurwitz
(1893). In this paper, we prove that for any numerical semigroup S C N of
genus g > 2, the set B(N\ S) is finite, of unbounded cardinality as S varies.

Keywords and phrases. Weierstrass numerical semigroup; gapset; ad-
ditive combinatorics; sumset growth; Freiman’s 3k — 3 theorem.

To the memory of our friend and colleague
Fernando Torres (1961-2020)

1 Introduction

Denote N = {0,1,2,3,...} and N, =N\ {0} = {1,2,3,...}. For a,b € Z, let
la,b|={z€Z|a<z<b} and [a,o[= {z € Z | a < z} denote the integer intervals
they span. A numerical semigroup is a subset S C N containing 0, stable under
addition and with finite complement in N. Equivalently, it is a subset of N of
the form S = (ay,...,a,) = Na; + --- + Na, where gcd(ay,...,a,) = 1. The set
{ai,...,a,} is then called a system of generators of S, and the smallest such 7 is
called the embedding dimension of S.

For a numerical semigroup S, its corresponding gapset is the complement G =
N\ S, its genus is g = |G|, its multiplicity is m = minS* where $* = S\ {0}, its




Frobenius number is f =max(Z\ S) and its conductor is ¢ = f+ 1. Thus [c,0[ C §
and ¢ is minimal for this property. Finally, the depth of S is ¢ = [¢/m].

Given a finite subset A C N, we denote by nA = A+ --- + A the n-fold sumset
of A. See Section [2|for more details.

Definition 1.1. Let A C Z be a finite subset. We associate to A the function p =
Ba: Ny — Z defined for all n > 1 by

Ba(n) = [nA[ = (2n—T1)(JA[ = 1).

Notation 1.2. We denote by B(A) the positive support in 2+ N of the function By,
ie.

B(A) ={n=2|Pa(n) = 1}.

For instance, 2 € B(A) if and only if |2A| > 3|A| — 2. Interestingly, the failure
of this condition, namely the inequality |2A| < 3|A| — 3, is the key hypothesis of
the famous Freiman’s 3k — 3 Theorem in additive combinatorics [3]].

Example 1.3. If |A| =0 or 1, then B(A) is infinite. Indeed, if A =0, then [nA| =0
and so Bo(n) =2n—1 for alln > 1. Thus B(0) = 2+ N in that case. Similarly, if
|A| =1, then Bs(n) =1 for all n > 1. So here again B(A) =2+ N.

In sharp contrast, Theorem [3.3|below states that if S C N is a numerical semi-
group of genus g > 2, then B(N\ S) is finite.

Example 1.4. Let S = (3,7). Then N\ S = {1,2,4,5,8, 11} and By s(n) = 0 for
all n > 2 as easily seen. In particular, B(N\ S) = 0.

More generally, it was shown in [8| [10] that By g(n) = O for all symmetric
numerical semigroups S of multiplicity m > 3 and all n > 2. We shall not use
this result below, but instead give a short self-contained proof of an immediate
consequence, namely that B(N '\ §) is empty in that case.

In fact, B(N\ S) is empty in most cases. Indeed, Buchweitz discovered in
1980 that the condition B(N'\ §) = 0 is necessary for S to be a Weierstrass semi-
group. By constructing instances where this condition fails, Buchweitz [1] was
able to negate the longstanding conjecture by Hurwitz [6] according to which all
numerical semigroups of genus g > 2 are Weierstrass semigroups. His first coun-
terexample was S = (13,14, 15,16,17,18,20,22,23), with corresponding gapset

G=N\S=[1,12]U{19,21,24,25}
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of cardinality 16. Then 2G = [2,50] \ {39,41,47}, so that |2G| = 46 and B;(2) =
46 —3-15 =1, implying 2 € B(G) and thus impeding S to be a Weierstrass semi-
group. For more information on Buchweitz’s condition and Weierstrass semi-
groups, see e.g. [3,[7].

Here are the contents of this paper. In Section[2] we recall a result of Nathanson
in additive combinatorics and we use it to study the asymptotic behavior of the
function B4 (n). In Section 3} we introduce the Buchweitz set of a numerical semi-
group and we prove our main results. Section ] concludes the paper with open
questions on the possible shapes of the sets B(A).

2  Sumset growth

Given finite subsets A, B of a commutative monoid (M, +), we denote as usual
A+B={a+b|acA,becB},
the sumset of A,B, and 2A = A+ A. More generally, if n > 2, we denote nA =

A+ (n—1)A, where 1A = A. The set nA is called the n-fold sumset of A.

A classical question in additive combinatorics is, how does |[nA| grow with n?
Here we only consider the case M = 7Z. We shall need the following result of
Nathanson [9, Theorem 1.1].

Theorem 2.1. Let Ay C N be a finite subset of cardinality k > 2, containing 0

and such that gcd(Ag) = 1. Let ap = max(Ag). Then there exist integers c,d and
subsets C C [0,¢—2], D C [0,d — 2| such that

nAg = CU|c,apn — d| U (apn — D)
for all n > max{(|Ao| —2)(ao — 1)ap, 1}.

As pointed out in [9], the hypotheses 0 € Ay and gcd(Ap) = 1 are not really
restrictive. Indeed, for any finite set A C Z with |A| > 2, the simple transformation
A Ag=(A—0a)/d, where @ = min(A) and d = gcd(A — a), yields a set Ag
satisfying these hypotheses and such that [nAg| = |nA| for all n. In view of our
applications to gapsets, we shall need the following version.

Corollary 2.2. Let A C Ny be a finite subset containing {1,2}. Let a = max(A).
Then there is an integer b < 1 such that

nAl=(a—1)n+b
foralln> (JA|—2)(a—2)(a—1).



Proof. Set Ao =A —1 and ap = a— 1. Then A contains {0, 1}, hence it satisfies
the hypotheses of Theorem [2.1] Using the same notation, its conclusion implies

(1) InAo| = apn+b
for all n > max{(|Ao| —2)(ao — 1)ao, 1}, where
b=|C|+|D|—c—d+1.
Note that b < 1 since |C| < max(0,c— 1), [D| < max(0,d — 1). The desired state-

ment follows from (T)) since |nA| = |[nAy| for all n > 0. O

2.1 Asymptotic behavior of B4 (n)

We now study the evolution of B4 (n) as n grows.

Theorem 2.3. Let A C N be a finite set containing {1,2}. Let f = max(A) and
g = |A|. Then
| [ e i f<2g-2,
Jim Ba () _{ too if f>2g.

Finally if f =2g — 1, then Ba(n) is constant and nonpositive for n large enough.

Proof. By Corollary 2.2} we have |nA| = (f — 1)n+ b for some integer b < 1 and
for n large enough. Hence

Ba(n) = (f=Dn+b—(2n+1)(g—1)
= (f-2g+Dn+b+1—g

for n large enough. The claims for f <2g—2 and f > 2g follow. If f =2g—1,
then Ba(n) = b+ 1 — g <0 for n large enough, since » < 1 and g > 2. O

Corollary 2.4. Let A C N be a finite set containing {1,2}. Let f = max(A) and
g = |A|. Then ‘B(A) is finite if and only if f <2g—1.

Proof. If f > 2g, then lim,,_, B4 (1) = oo by the theorem, whence B4(n) > 1 for
all large enough n. Thus B(A) is infinite in this case. If f < 2g — 1, the theorem
implies B4 (n) < 0 for n large enough, whence B(A) is finite in that case. O



3 Application to numerical semigroups

Definition 3.1. Let S C N be a numerical semigroup. We define the Buchweitz set
of S as Buch(S) = B(N\ S). Explicitly, setting G =N\ S, we have

Buch(S) = {n>2|[nG|> (2n—1)(|G| - 1)}
{n>2]Bg(n) > 1}.

In this section, we first prove that Buch(S) is finite for all numerical semi-
groups S of genus g > 2. We then show, by explicit construction, that the cardi-
nality of Buch(S) may be arbitrarily large.

3.1 Finiteness of Buch(S)

We start with a well known inequality linking the Frobenius number and the genus
of a numerical semigroup.

Proposition 3.2. Let S C N be a numerical semigroup with Frobenius number f
and genus g > 1. Then f < 2g— 1.

Proof. Let x € SN [0, f]. Then f—x ¢ S since S is stable under addition and
x+ (f—x) = f ¢ S. Hence, the map x — f — x induces an injection

SNI0, f]— N\S.
Since [SN [0, f]| = (f+ 1) — g, it follows that f <2g — 1, as claimed. O

Recall that S is said to be symmetric if |SN[0, f]| = [N\ S|, i.e. if f=2g—1.
A classical result of Sylvester states that any numerical semigroup of the form
S = (a,b) with ged(a,b) = 1 is symmetric.

Theorem 3.3. Let S C N be a numerical semigroup of genus g > 2. Then Buch(S)
is finite.

Proof. Let G=N\S. Then Buch(S) = B(G) by definition. We have g = |G| > 2.
Let f = max(G) be the Frobenius number of S. Let m = min(S\ {0}) be the
multiplicity of S. Then m > 2 since g > 2, and [1,m— 1] C G.

Assume first m > 3. Then {1,2} C G. Hence Corollary applies, and since
f <2g— 1 by Proposition[3.2] it yields that B(G) is finite, as desired.

Assume now m = 2. Then S = (2,b) with b odd and b > 5 since |G| > 2.
At this point, we might conclude the proof right away using what is known in
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the symmetric case [8, [10]. However, for the convenience of the reader, let us
give a short self-contained argument. We have G = {1,3,...,b—2}, i.e. all odd
numbers from 1 to b—2. Hence G—1={0,2,...,b—3} and gcd(G—1) = 2. Set
A=(G—-1)/2=10,k|], where k = (b—3)/2. For all n > 1, we have

|nG| = |nA| = |nk+ 1| =n(|G| - 1)+ 1.

Therefore Bg(n) = —(n — 1)|G| 4+ n, whence Bg(n) < 0 for all n > 2. Tt follows
that B(G) = 0 and we are done. O

3.2 Unboundedness of | Buch(S)|
We show here, by explicit construction, that | Buch(S)| may be arbitrarily large.

Proposition 3.4. For any integer b > 3, there exists a numerical semigroup S such
that Buch(S) = [2,b).

Proof. Let k = b —2, and let S be the numerical semigroup of multiplicity m =
6k + 15 and depth g = 2 whose corresponding gapset G = N\ S is given by

(2) G=[l,m—1|U{2m—7,2m—52m—22m—1}.

We claim that Buch(S) = [2,k+ 2]. Indeed, we will show a more precise state-
ment, namely

1 if n=2,
Bg(n) = 2 it 3<n<k+2,
—6(n—k—3) if n>k+3.

Let A = (2m—1) —G. Then Bg(n) = Ba(n) since [nG| = |nA| for all n > 1. We
have
A=[0,11U{4,6}U[m,2(m—1)].

Let us compute 2A and 3A. We obtain

24 = [0,2]U[4,8]L{10,12} U [m,4(m—1)],
34 = [0,14]U{16,18} U[m,6(m—1)].

In general, we have

3) nA = ([0,6n—4|u{6n—2,6n})U[m,2n(m—1)]
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for all n > 3, as easily verified by induction on n.
Let us determine |nA| for all n > 1. Note first that the union in (3)) is disjoint if
and only if bn+1 < m . Moreover, as m = 6k + 15, we have

on+1<m<—n<k+2.

In contrast, if n > k+ 3, i.e. if 6n —3 > m, then the union in (3)) collapses to a
single interval and we get

nA =[0,2n(m—1)].

Summarizing, we have

m+3 if n=1,

InA| = 3m+7 if n=2,
2n—1)m—1)+6n—1 if 3<n<k+2,
2n(m—1)+1 it n>k+4.

The stated formula for Bg(n) = Ba(n) = [nA| — (2n—1)(JA| — 1) follows. Hence
Buch(S) = [2,k+2], as claimed. O

This family of numerical semigroups was inspired by the PF-semigroups in-
troduced in [4].

3.3 More intervals

What are the possible shapes of Buch(S) when S varies? We do not know in
general. By Proposition[3.4] any finite integer interval / with |I| > 2 and min(I) =
2 may be realized as I = Buch(S) for some numerical semigroup S. Here we
present families of numerical semigroups S realizing as Buch(S) all finite integer
intervals 7 with |I| > 2 and min(/) € {3,4,5,6}.

Proposition 3.5. Let k > 1. Let S be the numerical semigroup of multiplicity
m = 6k + 19 and depth q = 2 whose corresponding gapset G = N\ S is given by

4) G=[l,m—1u{2m—7,2m—6,2m—2,2m—1}.

Then Buch(S) = [3,k+ 3.



Proof. LetagainA = (2m—1)—G=[0,1]U{5,6} LI[m,2(m—1)]. We then have
24 = [0,2]U[5,7]U[10,12] Um,4(m 1),
3A = [0,3]U[5,8]L[10,13]U[15,18] U [m,6(m—1)],
4A = [0,24]U[m,8(m—1)].
It follows that nA = [0,6n] U [m,2n(m — 1)] for all n > 4. In particular, if 6n > m
then nA = [0,2n(m — 1)]. Therefore,
0 if n=2,
1 if n=3,
Be(n) =Ba(n) = 4 if 4<n<k+3,
6k—6n+22 if n>k+4.
Hence Buch(S) = [3,k + 3], as claimed. O

Proposition 3.6. For k > 1 and i € {1,2,3}, let S; be the numerical semigroup
with G; = N\ S; given by

G, = [1,m—1u{2m; —6,2m; —2,2m; — 1},
G, = [1,m2—1]|_|{2m2—10,2m2—4,2m2—3,2m2—2},
Gy = [1,m3—1]|_|{2m3—10,2m3—9,2m3—2},

where my = 4k + 22, my = Tk + 44 and m3 = 5k + 55, respectively. Then
Buch(S;) = [4,k+4], Buch(S2) = [5,k+ 5], Buch(S3) = [6,k+6].
Proof. Similar to the proofs of Propositions [3.4]and [3.6] We omit it here. O

Having realized all finite integer intervals / with |/| > 2 and min(/) € [2,6] as
I = Buch(S) for a suitable numerical semigroups S, is it possible to do the same
for all finite integer intervals I with min(/) > 7? We do not know in general. But
here is a particular case where min(/) can be arbitrarily large. It is based on a
family of numerical semigroups found in [J].

Proposition 3.7. For any integer k > 1, there is a numerical semigroup S such
that Buch(S) = [7+ 2k, 7 + 4k].

Proof. For k > 1, let S be the numerical semigroup minimally generated by the
set 71 UT> U T3, where

Ty = [44427k+4Kk> 79+ 51k + 8k,
T, = [81+451k+ 8k 84+ 53k+ 8k,
T3 = [87+53k+8k>, 87 + 54k + 8k2).
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The corresponding gapset G = N\ S is then given by
G = [1,43 + 27k + 4k*) U {80 + 51k + 8k*, 85 + 53k -+ 8k, 86 + 53k + 8k*}.
Let A = (86 + 53k + 8k*) — G. Then
A=1[0,1]U{6+42k} LI [43 + 26k + 4k*, 85 + 53k + 8k?],

of cardinality |A| = 46 + 27k + 4k>. The n-fold sumsets of A are then given by

s

5) nAz[O,n]U( [i(6—|—2k),i(6+2k)+n—i]>

i=1
U [43 + 26k +4k*, (85 + 53k + 8k*)n] .
e Assume first 2 < n < 6 + 2k. In this case, we have
0<n<6+42k<6+2k+n—1<---<(n—1)(6+2k)

<(n—1)(642k)+n—1<n(6+2k) < (7+2k)(6+2k)+1
= 43 26k + 4k> < (854 53k + 8k*)n.

Thus, all the sets appearing in (5) are disjoint and the cardinality of nA is equal to

n
(n+1)+ Y i+ ((8K* +53k+85) n— (4k* + 26k +43) + 1) =
i=1

— 41 — 26k — 4k* + (173n) /2 + 53kn + 8k*n +n? /2.

Thus,

6) Bg(n) = (—41 —26k —4k* + (173n) /2 + 53kn+ 8k*n +n*/2)
— (4K*+27k+46—1) (2n— 1) =

7 1
(4+k)—(§+k)n+§n2

for every n € 2,5+ 2k].
The only difference between the case n = 6 4 2k and the previous one is that

the sets [0,n] and [6 + 2k,6 4 2k +n — 1] have a nonempty intersection, equal to
{6+ 2k}. Replacing n by 6 + 2k and subtracting one, we obtain B (6 + 2k) = 0.



e Assume now 6+ 2k < n < 11+ 4k. The sequence of sets [0,7n] and
6+2k,6+2k+n—1],...,[(n—5—2k)(6+2k),(n—5—2k) (64 2k) + (5+2k)]

verifies that the intersection of any two consecutive terms is nonempty. Moreover,
their union is the interval [0, (n — 5 — 2k)(6 + 2k) + (5 + 2k)] whose cardinality
is equal to (n —5—2k)(6+2k)+ (5+2k)+1. Fori=n—4—2k,...,6+2k
the intervals are disjoint with all the others sets appearing in the expression (5));
2k+5
the cardinality of the union of these sets is equal to Z i. For every i =
i=n—2k—5
7+ 2k, ... n the intersection

[i(6+2k),i(6+2k) +n — i] N [43 + 26k + 4k>, (8k* + 53k + 85)n]

is nonempty, except for n = 7 +2k. Since (7 +2k)(6 + 2k) = 42 + 26k + 4k, the
set

( U [i(6+2k),i(6+2k)+n— i]) U [43 +26k + 4k2, (85 + 53k + 8k*)n]
i=7+2k

is equal to [42 + 26k + 4k?, (85 + 53k + 8k%)n], and the cardinality of this set
is ((8k*+53k+85)n—4k* —26k —42) + 1. Putting all the above together, we
have that if 6 +2k < n < 11+ 4k, the set nA has cardinality equal to

((n—5—=2k)(6+2k)+ (5+2k)+ 1)+
2k+5
Y i+ (8K +53k+85)n—4k* —26k—42) +1 =
i=n—2k—5

— 65— 46k — 8k* + (193n) /2 + 5Tkn + 8k*n — n* /2,
and therefore

(7) Bg(n) = —65 — 46k — 8k*> + (193n) /2 4 5Tkn + 8k*n —n* /2
—(2n—1)(46 + 2Tk +4k* — 1) =
13 n?

(—20 — 19k — 4k*) + (3k + ==

for every n € [6+ 2k, 11 +4k].
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e Finally, assume 11 44k < n. The set

6+2k
[0,7] U (| [i(6+2K),i(6+2k) +n— i]) U [43 + 26k + 4k2, (85 + 53k + 8k%)n]
i=1

is equal to [0, (85 + 53k + 8k?)n] and the remaining intervals are contained in this
union. So we have nA = [0, (85 4 53k + 8k)n] and therefore
(8) Bo(n) = — (4k> +27k+46—1) (2n—1) + (8k* + 53k +85)n+ 1 =

(4k* + 27k +46) — (k+5)n
for every n > 11 +4k.

Combining B (6 + 2k) = 0 with the formulation of (6), (7) and (8) for Bg(n),
we get the following formulas:

(4+k) — (3 +k)n+in? if 2<n<6+2k,
Bo(n) 0 if n=6+2k,
n)—=
¢ (—20 — 19k — 4k2) + (3k+ B)n— 2 if 642k <n < 11+4k,
(4k> 427k +46) — (k+5)n if 1144k <n.

Let k > 1 be fixed. For 2 < n < 6+ 2k, the formula of Bg(n) is a degree two
polynomial in n with positive leading coefficient such that B(2) = —1—k < 0 and
Bs(5+2k) = —1—k < 0. We have therefore Bg(n) <0 foreveryn=2,...,542k.

If n > 114 4k, we now have that B (n) is a degree one polynomial with nega-
tive leading coefficient and such that B(12 +4k) = —14 — 5k < 0. So Bg(n) <0
for every n > 11 +4k.

Finally, if 6 + 2k < n < 11+ 4k the function B (n) is a degree two polynomial
in n with negative leading coefficient. As in addition Bg(7+2k) = 1 +k, Bs(7 +
4k) = 1 and B(8 + 4k) = —k, the only positive values that we have in this part
are for n € [7+ 2k, 7+ 4k]|.

Since Bg(n) < 0 except for n € [7+ 2k,7 + 4k|, the set Buch(S) is equal to
[7+ 2k, T + 4k]. O

4 Concluding remarks

The current knowledge on the structure of B(A) for finite subsets A C Z is very
scarce, even for gapsets. Do they have some special shape or property? We end
this paper with three questions based on the few currently available observations.
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Question 4.1. Let A C Z be a finite subset, or more specifically a gapset. Is the
set ‘B(A) always an interval of integers?

Question 4.2. Even more so, is the function B(n) unimodal?

Question 4.3. In sharp contrast with the above questions, let T C 2+ N be any

finite subset. Does there exist a finite subset A C N, or more specifically a gapset,
such that B(A) =T?
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