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Abstract

Recently we have developed a new energetic model based on the determination of the energies

on each site of random solid solutions after relaxation as a function of both the local

composition and the nominal concentration. It allows to determine the main thermodynamics

driving forces of disordered alloys. Here, we extend the effective site energy model to ordered

alloys and illustrate the results for the AucPd1−c system. As a �rst step, we show the ability of

this energetic model to reproduce the hierarchy of ordered phases. Then, we derive general

mean-�eld analytic formulae for ordered systems and get the phase diagram. We determine the

relative role of the cohesive effect, the chemical effect and the size effect and �nd that the

chemical effect differs signi�cantly between the disordered state and the ordered state. Finally,

we link the energy formation of antisite to the permutation enthalpy and give the driving forces

for the formation of antisite.

Keywords: phase diagram, driving forces, LRO, site energy, antisite, permutation enthalpy,

AuPd

(Some �gures may appear in colour only in the online journal)

1. Introduction

Although phase diagram of bimetallic alloys are well docu-

mented, the driving forces that drive the thermodynamic are

not as often studied. In the disordered state the thermodynamic

forces are the cohesive effect, the chemical (or alloying) effect,

the elastic (or size) effect [1, 2]. The cohesive effect is gener-

ally the main effect for segregation phenomena [3] whereas the

interplay of the chemical and elastic effects dominate the ther-

modynamics of phase diagrams [2, 4]. So far, these contribu-

tions havemostly been determinedwithin the limits of dilution

[2, 5]. We have recently developed an original model which

allows the determination of these driving forces on the whole

concentration range. This method is based on the determina-

tion of site energies of random solid solutions (RSS) of which

3 Author to whom any correspondence should be addressed.

atomic positions are relaxed using semi-empirical interatomic

potentials. The originality of this approach is to extract site

energies for each specie of the alloy according to local com-

position and nominal concentration. So far we have used this

model to study alloys in the disordered state, i.e. at very high

temperatures [6], and when short-range order (SRO) is present

in disordered state i.e. at high temperatures [7]. Right now we

apply the effective site energy (ESE) model to the AucPd1−c
alloy at low temperature when long-range order (LRO) occurs.

Within the ESE model we start from the disordered state

and we attempt to describe the ordered structures. Therefore it

is a reverse approach of the cluster expansion (CE) [8, 9] which

starts from the ordered structures and then expects to be able

to process the disordered alloy as well. Another difference lies

in the fact that for the CE, the energies of ordered structures

are derived from ab initio calculations, whereas the calcula-

tion of site energies is not always possible in ab initio, in any
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case it is not commonly developed [10, 11]. The approach

presented is in fact possible because site energies can be

obtained from semi-empirical potentials. Nevertheless, semi-

empirical potentials have rarely driven site energy analyses, as

the result of simulations is most often preferred to driving force

analysis.

The permutation enthalpy (or enthalpy of transmutation)

which corresponds to the enthalpy variation linked to the per-

mutation of a B atom into an A atom for an AcB1−c alloy, is

the crucial quantity that controls phase diagrams and interfa-

cial segregation [6, 7]. Thanks to site energies, an analytical

expression is obtained. It involves the partial derivatives of the

site energies with respect to the local composition on the one

hand and with respect to the nominal composition on the other

hand. This separation of terms allows to split up the permu-

tation enthalpy into three components, namely the cohesive,

chemical and elastic effects. In addition, this approach makes

it possible to characterize and understand differences with the

Ising model, which is based on constant interaction energies,

or with models based in interactions that depend on concen-

tration. This method is therefore a very powerful analytical

tool.

To illustrate this approach, we have chosen the AuPd sys-

tem, which we have already studied previously [7, 12]. This

system has been the subject of many studies because it has

good catalytic properties [13–15]. AuPd is an alloy with a

weak tendency to order and a strong difference in size param-

eter (∆r/r = 6%). It forms a RSS with a fcc structure at high

temperature over the whole concentration range. At low tem-

peratures, AuPd is subject to many debates, studies giving var-

ious results. AuPd has a negativemixing enthalpy on the entire

temperature range [16], which is the signature of an alloy with

a tendency to order, but the stability domains of the ordered

phases are hypothetical [17]. Three ordered phases are pre-

dicted at low temperature at c = 0.25, c = 0.5 and c = 0.75.
Depending on the studies, and according to the object con-

sidered experimentally (bulk, thin �lm or nanoparticle) or the

numericalmethod used (CE starting fromab initio calculations

via GGAor LDA. . . ), the results differ on themost stable struc-

tures between the structures L12, DO22, DO23 and between the

structures A2B2 and L10 [18–27].

In ordered phases one question concerns the concentra-

tion of point defects such as antisites, vacancies, and com-

plex defects. In this matter, a lot of research effort has been

involved over the last decades in the study of alloys [28–32].

It is challenging to predict the equilibrium of antisites, there-

fore the Wagner–Schottky model is the simplest and most

commonly used [33]. In perfectly ordered structures, atoms

A and B occupy the sites of different sublattices. Different

types of defects have been considered: atomsA and B on inter-

stitial sites (which are often insigni�cant); vacancies in the

sublattices of components A and B; and �nally atoms A on

sites of the sublattice rich in atoms B and atoms B on sites

of the sublattice rich in atoms A. This model assumes that

point defects are non-interacting and that the formation energy,

which is the central quantity, depends linearly on the concen-

tration. Energies are calculated by either semiempirical or ab

initio calculations [34, 35]. When the concentration of defects

is relatively high, such as in AuCu, it is better to consider

the Bragg–Williams [36] or single-site mean-�eld model [37].

Moreover, when the antisites are strongly preponderant over

the vacancies, the equilibrium solution can be obtained from

the determination of isotherms based on the permutation of

atomic species [38] but to our knowledge the link between the

formation energy of antisite and the enthalpy of permutation

has not yet been studied.

We use N-body interatomic potentials from the second

moment approximation (SMA) adjusted on ab initio calcu-

lations [7, 12]. The purpose of this paper is not a new study

on the stability of ordered phases and on the values of crit-

ical temperatures but on the application of site energies to

predict ordered alloys. We are therefore exploring the coher-

ence between SMA simulations and the formalism of site ener-

gies. After a �rst step to validate the use of site energies for

ordered state, the core of this work is the determination of

the driving forces that control low-temperature thermodynam-

ics when LRO occurs. For this purpose, we extend the mean

�eld formalism based on site energies to discriminate the cohe-

sive, alloying and size effects. Because the system is heteroge-

neous, it is necessary to introduce sublattices. This formalism

leads to the determination of the phase diagram via isotherms.

Isotherms are used to quantify antisites as a function of the

concentration and temperature. We then expressed the energy

of antisite formation as a function of site energies and com-

pared the driving forces of the phase diagram with those of

antisite formation, which has never been done before.

The work is organized as follows. In section 2 we present

the mean �eld formalism, based on site energies, developed

for a homogeneous system and its extension to heterogeneous

systems with LRO. Section 3.1 describes the site energies,

the formation energies of ordered structures and the effec-

tive pair interaction of the alloy. The isotherms and the phase

diagram are presented in section 3.2 before discussing the

enthalpy of permutation and its decomposition into three com-

ponents. Section 3.4 presents the analysis of the enthalpy of

permutation in the case of phase L10, and the link with the

formation of antisites. Finally, we present our conclusions in

section 4.

2. Model

Before detailing the evolution of the system, we describe the

energetic model and the numerical methods used.

2.1. Energetic model

Starting from N-body interatomic potentials derived from the

second moment approximation of tight-binding scheme [39],

we calculate the energies of the Pd and Au atoms after relax-

ation of the atomic positions using the FIRE algorithm [40]. To

obtain site energies according to their different local composi-

tion and nominal concentration, all possible environments are

considered in �rst neighbours of a given atom, the rest of the

box being in chemically disordered con�gurations of a given

concentration. The site energy is the average of all site ener-

gies of atoms having the same local environment as the chosen

2
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atom. The site energies (noted E
p
X with X = Au, Pd) therefore

depend on the local composition (characterized by the number

p of �rst neighbours of type Au but it would also be possi-

ble to consider the number of �rst neighbours of type Pd) and

the nominal concentration c (due to size-mis�t between both

constituents).

We de�ne a rigid lattice formalism to describe an alloy

AcB1−c (in this case the alloy AucPd1−c). The following

Hamiltonian gives the internal energy as a function of site

energies:

H =

Nat
∑

i=1

(

piE

∑

j∈υi

p j

A + (1− pi)E

∑

j∈υi

p j

B

)

(1)

whereNat is the total number of atoms, pi the occupation factor

of site n: it is equal to 1 if site n is occupied by an Au atom and

0 if not; and υi represents the set of �rst-neighbors of site i.
This Hamiltonian can be introduced intoMonte Carlo (MC)

simulations or mean �eld formalism (MF). To take full advan-

tage of the analytical approach, in particular for the analysis

of permutation enthalpies, we have chosen to favor the mean

�eld approach over Monte Carlo. Indeed, obtaining the exact

phase diagram in SMA or within site energies is not a problem

and is not the subject of this article.

Remember that this rigid lattice formalism takes into

account relaxations in RSS but of course, as for any rigid lat-

tice formalism, it does not allow to treat the case of a lattice

change, for example a B2 phase on bcc structure in relation to

a RSS fcc structure.

2.2. Mean-field approximation

The Hamiltonian (1) of a homogeneous system is written in

the mean �eld approximation

H = Nat

(

cEZcA + (1− c)EZcB
)

(2)

where Z represents the coordination number.

In the grand canonical ensemble, the free energy F is

given by F = H− TS− cNat∆µ, where T is the temperature

and S is the con�gurational entropy that is written in the

Bragg–Williams approximation [36]:

S = −kBNat (c ln c+ (1− c) ln (1− c)) (3)

with kB the Boltzmann constant.

The equilibrium concentration is obtained by minimizing

the free energy ∂F/∂c = 0:

c

1− c
= exp

(

−
∆Hperm −∆µ

kBT

)

. (4)

As we can see from equation (4),∆Hperm is the cornerstone

of isotherms. The enthalpy of permutation corresponds to the

energy change when a B atom is switched to an A atom:

∆Hperm
=

∂H

Nat∂c
. (5)

∆Hperm is calculated by derivating equation (2) which leads to

the expression:

Hperm
=
(

EZcA − EZcB
)

+ Z

(

c
∂Ep

A

∂p

∣

∣

∣

∣

Zc

+ (1− c)
∂Ep

B

∂p

∣

∣

∣

∣

Zc

)

+

(

c
∂Ep

A

∂c

∣

∣

∣

∣

Zc

+ (1− c)
∂Ep

B

∂c

∣

∣

∣

∣

Zc

)

. (6)

The enthalpy of permutation is therefore the sum of three

terms:

• The �rst term on the RHS corresponds to the energy vari-

ation on the site where a B atom is permuted into a A

atom.

• The 2nd term on the RHS corresponds to the energy vari-

ation of the Z nearest-neighbours sites of the site on which

the exchange occurs.

• The 3rd term on the RHS corresponds to the energy

change of the system when the concentration goes from

c to c+ 1/Nat. It is therefore an elastic term linked to the

variation of the lattice parameter due to the concentration

variation.

Thus this method allows deriving an analytical expression

of the permutation enthalpy over the entire concentration range

for RSS and possibly with SRO [6, 7], whereas until now

the permutation enthalpies were calculated only within the

in�nitely diluted limits [2, 5]. What about when there is LRO?

In the case of ordered phases, the system is heterogeneous and

it is no longer possible to directly use the mean �eld approxi-

mation to the entire system. However, it can be used by consid-

ering nsr sublattices of composition ci, each sublattice being

homogeneous. The formalism presented above is then applied

to each sublattice (see appendix A) leading to a non-linear

system of coupled equations:

ci

1− ci
= exp

(

−
∆H

perm
i −∆µ

kBT

)

, (7)

where∆H
perm
i is the permutation enthalpy of the sublattice i. It

corresponds to the energy balance when a B atom of sublattice

i is switched to an A atom:

∆H
perm
i =

∂H

∂NAi

=
nsr

Nat

∂H

∂ci
. (8)

The permutation enthalpy of the system is then written

according to the permutation enthalpies of the different sub-

lattices:

∆Hperm
=

1

nsr

nsr
∑

i=1

∆H
perm
i

∂ci
∂c

. (9)

We thus obtain a simple analytical expression of the

enthalpy of permutation for an alloy with LRO.

3. Results

3.1. Energetic model

It is interesting to compare the main characteristics of the

site energies with those of a standard Ising model with

3
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Figure 1. Site energy of an atom I = Au (a), Pd (b), as a function of the number p of Au neighbours, for different values of the concentration
in AucPd1−c alloy (blue: c = 0, cyan: c = 0.25, green: c = 0.5, yellow: c = 0.75 and red: c = 1). The lines are only a guide for the eyes.
Values of site energies of the ordered structures are indicated: L12 at c = 0.25 (diamonds), L10 at c = 0.5 (dots), L12 at c = 0.75 (squares).

Table 1. Formation energies ESO
form and ordering energies ESO

mO of the ordered structures. Comparison between the direct SMA calculation, and
calculation using the site energies considering only the nearest-neighbour shell E

p
X or the site energies in 1st and 2nd neighbouring E

p1 ,p2
X .

c = 1/4 c = 1/2 c = 3/4

L12 DO22 L10 A2B2 L12 DO22

ESO
form (meV/at)

SMA −44 −45.5 −76 −79 −64.7 −66

E
p
X −45 −45 −77.5 −77.5 −66.5 −66.5

E
p1 ,p2
X −47.25 −47.5 −76.5 −80 −63.5 −64.5

ESO
mO (meV/at)

SMA −11.83 −13 −21.96 −25 −18.41 −20

E
p
X −13.25 −13.25 −23 −23 −19.7 −19.7

E
p1 ,p2
X −14.5 −14.75 −22 −25.7 −17.5 −19

interactions between �rst neighbours (VAA,VBB,VAB). For a

given concentration, site energies are not linear functions of

the local environment: the curve of an Au atom is slightly

concave (�gure 1(a)) and that of a Pd atom is convex

(�gure 1(b)). This behaviour differs from that of an Ising

model for which the energy of an atom A varies linearly

with the number p of nearest neighbours of type A accord-

ing to (pVAA + (Z − p)VAB) /2, and for an atom B according

to (pVBA + (Z − p)VBB) /2. The second difference is that site
energies depend on the nominal concentration whereas in a

conventional Ising model the interaction energies are constant.

The site energies in the ordered structures are slightly less

cohesive than in the disordered state for Au atoms (�gure 1(a))

and slightly more cohesive for Pd atoms (�gure 1(b)). Even if

the deviations are small, it is therefore questionable whether it

is reasonable to consider site energies that are average values

obtained for a disordered environment to apply them to ordered

systems? We therefore checked the ability of the site energies

to reproduce the energies of the ordered structures obtained

directly via the SMA. The formation energies of the ordered

structures ESO
form and ordering energies ESO

mO obtained in SMA

are compiled in table 1. The values of the formation energies

and of the ordering energies are negative, indicating respec-

tively a stability of the ordered phases as compared to pure

metals and to RSS. The L10 structure is more stable than the

L12 structure at c = 0.75 which is itself more stable than the

L12 structure at c = 0.25. The values from the site energies are

very close and the hierarchy is perfectly reproduced.We obtain

that DO22 and A2B2 structures are respectively the most sta-

ble structures in SMA (table 1). Structures L10 and A2B2 and

structures L12 and DO22 are not differentiated by the nature of

nearest neighbours. Thus we have calculated their formation

energies with site energies taking into account the dependence

with the chemical nature of the �rst and second neighbours

E
p1,p2
X .We show thatDO22 andA2B2 structures are respectively

more stable than L12 and L10 structures (table 1). The forma-

tion or ordering energies of the ordered structures calculated

from the site energies of the second neighbours are in good

agreement with the SMA values; the stability hierarchy of the

structures is correctly reproduced. It can be noted that these

results are in agreement with those obtained from the CE cal-

culations [13, 14] but this is not the subject of this study as we

are mainly focused on the consistency between the SMA and

the site energies.

The site energies restricted to the nearest-neighbouring

shell for their dependency on the local environment are suf�-

cient to reproduce the hierarchy of the formation and ordering

energies of the ordered phases L12 and L10. We therefore limit

the study to the �rst neighbours to simplify the formulas and

facilitate the reading, the object of the article being the analysis

of the driving forces of a system with LRO.

From the site energies we determine the effective pair inter-

actions that drive the local ordering. The site energies pre-

sented in �gure 1 are written as the sum of a linear term and

4
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Figure 2. Evolution of the nearest-neighbor effective pair
interaction V1 with the concentration c when the curvature of the site
energies is not taken into account V

Ising
1 (blue) and when it is V

χ
1

(green, dashed).

a quadratic term according to the chemical composition of the

nearest neighbours:

E
p
X (c) = E0

X (c)+
p

Z

(

EZ
X (c)− E0

X (c)
)

+ χXp (Z − p) (10)

where χX stands for the curvature of X with X = A or B.

The linear term allows to recover the Ising model with the

pair interactions which in this case depend on the concentra-

tion. For p = 0 and p = Z, the site energies of the two types of

atoms are written simply as a function of the pair interaction

energies: EZA (c) = Z VAA(c)
2

, E0
A (c) = Z VAB(c)

2
, EZ

B (c) = Z VBA(c)
2

and E0
B (c) = Z VBB(c)

2
. At a given concentration, the difference

between the two slopes leads to the expression of the �rst

neighbours effective pair interactions V
Ising
1 (c):

ZV
Ising
1 (c) =

(

EZA (c)− E0
A (c)

)

−
(

EZB (c)− E0
B (c)

)

. (11)

Taking into account the curvature, which is not zero as a

function of p, induces a variation in the effective alloying inter-

actions with the local concentration, which in turn depends on

the nominal concentration:

V
χ
1 (c) =

(

∂Ep
A

∂p

∣

∣

∣

∣

Zc

−
∂Ep

B

∂p

∣

∣

∣

∣

Zc

)

. (12)

As expected for the AuPd alloy, the nearest-neighbour

effective pair interaction is positive, re�ecting the trend to the

ordering of the alloy (�gure 2). The effective pair interaction

V
Ising
1 increases with concentration, this dependence is mainly

elastic effect related to the variation of the lattice parameter

with c. Taking into account the curvature leads to a variation

of the effective pair interaction V
χ
1 of about 15 meV instead

of 5 meV for V
Ising
1 when one passes from Pd(Au) to Au(Pd).

This chemical effect is one of the reasons of the hierarchy of

critical temperatures of the ordered phases.

3.2. Mean field isotherms

As mentioned above, we consider a �rst neighbour approach.

We have previously shown that in this case the ordered phases

L10 and L12 are stable. Phase L10 is characterized by an alter-

nance of pure planes in one direction for AuPd composition.

The stoichiometric compounds AuPd3 and Au3Pd in the L12
structure are composed of a pure Pd (respectively Au) plane

and a mixed Au–Pd plane. The description of these phases

requires the introduction of 4 sublattices. The evolution of

the concentration of each sublattice enables characterizing the

long-range order of the system.

The mean �eld isotherms c (∆µ) are presented in

�gures 3(a)–(c) at different temperature values. At low tem-

peratures, the isotherms have plateaux at concentrationswhich

correspond to AuPd3, AuPd and Au3Pd compounds. Outside

the plateaux, the slope of the isotherm is generally positive

except for concentrations below c = 0.25.We have previously

shown that this characteristic behaviour of phase separation is

driven by the size effect [7].We also note the presence of small

S or backward returns of the isotherm for concentration values

close to 0.25, 0.75 and 0.95 (�gure 3(a)). The position of these

S changes with temperature. When the temperature is higher,

the length of the plateaux decreases, their slope increases and

the S are less and less marked until they disappear. The cal-

culation of free energy as a function of concentration shows

that the S of isotherms correspond to �rst order transitions and

determine the stable parts which are indicated by vertical lines

in �gures 3(d)–(f).

When the temperature increases

• The gap between the concentration of Au-rich and Pd-rich

sublattices decreases;

• The concentration ranges of the L12 structures deviate

from the stoichiometric composition, they shift towards

c = 0.5. This evolution is most signi�cant for the L12 rich

in Pd;

• The structure L′ which separates structures L12 and L10
at low concentrations is only observed at T = 150 K

(�gure 3(d)). The one separating structures L10 and L12 at

high concentrations is observed at T = 150K (�gure 3(d))

and 300 K (�gure 3(e));

• The domains of RSS at low and high concentrations

increase.

We determine from isotherms the concentrations that

delimit each phase and we report them to draw the phase dia-

gram. Let us recall that this phase diagram includes the effects

of local relaxation due to the size mismatch between the two

constituents and the effects of global relaxation due to the

variation in the lattice parameter (�gure 4).

The most surprising result is that the phase diagram is

asymmetric. Let us recall that a mean �eld phase diagram

derived from a classical Ising model with constant pair inter-

actions is symmetric with regard to equiatomic composi-

tion [41]. Moreover, the critical temperatures of ordered

structures are expected to be equal [41]. Within this site

energy model the critical temperatures of structures L12 and

L10 are not equal. The hierarchy of critical temperatures is

TL12
c (c = 0.25) < T

L10
c < TL12

c (c = 0.75). These unconven-

tional results are mainly due to the curvature term of the site

energies which induces a variation in the effective pair inter-

actions with the local and nominal concentration. The critical

temperatures of the L12 structures are not obtained for com-

positions c = 0.25 or c = 0.75, they are switched towards the

5
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Figure 3. Mean �eld isotherms c (∆µ) (a–c) and ci (c) (d–f) at T = 150 K (a, e), T = 300 K (b, d) and T = 450 K (c, f). Concentration of the
1st sublattice c1 (orange), of the 2nd sublattice c2 (red), of the 3rd sublattice c3 (cyan) and of the 4th sublattice c4 (blue) (d–f). The vertical
dashed lines delimit the concentration ranges of the stable parts (isotherms with points) and the unstable parts (isotherms in dashed lines).

Figure 4. Phase diagram AucPd1−c. The grey areas represent the
biphased domains.

equiatomic composition, in agreement with literature for both

mean �eld and CVM studies [41, 42].

3.3. Permutation enthalpies

3.3.1. Key role of ∆Hperm whatever the temperature. The

mean �eld formula (equation (4)) of isotherms shows that

the enthalpy of permutation is the thermodynamic quantity

that controls phase diagrams and more generally interfacial

segregation. It corresponds to the enthalpy balance during an

exchange of one B atom into one A atom (equation (5)). These

relationships need to be extended for systems with LRO by

de�ning sublattices. The permutation enthalpy of each sublat-

tice ∆H
perm
i is the partial derivative of the Hamiltonian with

respect to ci (equation (8))whose analytical expression is given

Figure 5. Comparison of ∆Hperm (c) of LRO (T = 150 K)
(continuous lines) and of RSS (T = 1000 K) (dashed) with also a
comparison with direct calculation (symbols).

in appendix A (equation (A.6)). The permutation enthalpy is

the total differential of the Hamiltonian, i.e. the sum of the

partial differentials according to formula (9).

Figure 5 shows the evolution of the permutation enthalpy

as a function of concentration (equation (6)) for a RSS (which

corresponds to the very high temperature system) and at low

temperature when the system is ordered (equation (A.6)). To

validate the formulae we compare the results with the direct,

i.e. by calculating the energy derivative (equation (5)).

First of all, we recall that the evolution of ∆Hperm (c) of

a RSS is independent of temperature. Figure 5 shows that

the calculation via site energies (equation (6)) is in perfect

agreement with the direct calculation. ∆Hperm is a decreasing

and then increasing function of the nominal concentration. In

6
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the case of an Ising model, the slope of the curve gives the

sign of the effective pair interaction V1, which would mean

that V1 < 0 at low concentrations and V1 > 0 at higher con-

centrations while we have shown that V1 > 0 over the whole

concentration range (�gure 2). We have previously shown

that the negative slope at low concentrations is due to elastic

effects [2].

For LRO, at low temperatures, only the stable parts are

displayed (�gure 5). The enthalpy of permutation presents a

succession of plateaux and steps. The stoichiometric composi-

tions AuPd3, AuPd andAu3Pd correspond to the steps between

2 plateaux. There are also plateaux for the phases L′. At high

concentrations the curve is identical to the RSS curve. There

is also a perfect agreement between the direct calculation and

the analytical formula.

3.3.2. Decomposition of ∆Hperm. The permutation enthalpy

is composed of three contributions: the �rst one is equal to the

standard difference in cohesive energies between pure metals,

the second one, known as a chemical effect, is related in a clas-

sical Ising model to the effective pair interactions and the third

one, known as a size effect or elastic effect, takes into account

the size mis�t between the two elements. To avoid overloading

the text, the formulas are detailed in appendix B in the case of

RSS and for system with LRO. It should be recalled that this

decomposition was validated by direct calculations within the

dilute limits [2, 5].

Figure 6 shows the permutation enthalpy and its three com-

ponents. The cohesive effect is independent of concentration

and temperature (�gure 6(a)). The size effect does not depend

on temperature, it is the same for the RSS and the LRO sys-

tem (�gure 6(a)). The slope of the size contribution curve is

�rst negative and then almost zero at high concentrations. The

negative slope leads to the biphased domain between an almost

Pd-pure RSS and the L12 structure at c = 0.25.
The chemical effect is very dependent on c and T

(�gure 6(b)). The RSS chemical contribution is an increasing

function of c, so chemical and size effects are in competition.

At low temperatures, in the ordered state, this curve is trans-

formedwith the presence of plateaux and steps (almost vertical

parts but continuous). The chemical contribution is also the

sum of two contributions, one related to the linear part of the

site energies, called the Ising contribution, the other related

to the curvature and called with the same name. For the disor-

dered state, the effect of the curvature is negligible. Figure 6(b)

shows that for LRO the Ising component is predominant and

is at the origin of the curve’s shape in plateaux and steps. The

effect of the curvature is slightly more signi�cant than for the

disordered state.

The chemical effect for RSS is thus mainly related to the

Ising contribution and it can be simply written as ∆H
perm
chem =

2ZcV
Ising
1 (c). It is no longer possible to use this classic formula

for LRO, even with V
χ
1 (c) instead of V

Ising
1 (c). This expres-

sion cannot lead to the presence of plateaux. In the presence

of LRO, the effective pair interaction VLRO
1 (c) depends on the

nominal composition and local composition of the ordered

structure that is considered instead of RSS. For the structure

L10 for example, VLRO
1 (c) corresponds to the difference in

slopes of E4
A (0.5) and E

8
B (0.5) instead of E

6
A (0.5) and E

6
B (0.5)

for RSS (equation (C.2)).

The permutation enthalpy is driven at low temperature by

the chemical contribution, which is itself controlled by the

Ising contribution (�gure 6(b)). The detailed analysis of this

curve is the subject of the following section.

3.4. Permutation enthalpy and formation energy of antisites

3.4.1. Analysis of ∆Hperm. For the sake of clarity, we restrict

the analysis to the case of phase L10, knowing that it is easily

generalized to phases L12. Two sublattices being suf�cient to

describe phase L10, we can use a model with two variables c1
and c2 and therefore∆H

perm
1 ,∆H

perm
2 which can be written as

(appendix C):

∆H
perm
1 = ∆HB→A

1 −2Z11V
L10
1 (c)+2 (Z11c1+Z12c2)V

L10
1 (c)

(13a)

∆H
perm
2 = ∆HB→A

2 −2Z21V
L10
1 (c)+2 (Z21c1+Z22c2)V

L10
1 (c)

(13b)

where ∆HB→A
1 and ∆HB→A

2 are the permutation enthalpies

of the 2 sublattices at stoichiometric composition c1 = 1 and

c2 = 0. Zii and Zij represent the intra-sublattice (resp. inter)

coordination number (Zii = 4, i = 1 or 2 and Zij = 8, i 6= j).

V
L10
1 (c) is the effective pair interaction for the structure L10

given by equation (C.2).

Concentrations are given by solving the equation:

c1 (1−c2) = c2 (1−c1) exp

(

−
2 (Z11−Z12)V

L10
1 (c) (c1−c2)

kBT

)

,

(14)

since ∆HB→A
1 − 2Z11V

LRO
1 (c) = ∆HB→A

2 − 2Z21V
LRO
1 (c).

Isotherms issued from equation (14) are in perfect agree-

ment with the complete model near c = 0.5.
We show �gure 7 the evolution with the concentration of

the permutation enthalpies of the two sublattices and of the full

system for different temperatures. Since the plateaux are more

pronounced at low temperatures, results obtained at T = 150

K are �rstly discussed. The permutation enthalpy displays two

plateaux and one step centered on c = 0.5 (�gure 7(a)). The

permutation enthalpy is equal to ∆H
perm
1 for c < 0.5, and to

∆H
perm
2 for c > 0.5, the step occurring at c = 0.5. According

to formula (9) the permutation enthalpy is related to the sub-

lattices permutation enthalpies via dc1/dc and dc2/dc. Each
plateau corresponds to a concentration rangewhere one sublat-

tice has a constant concentration (�gure 7(d)). At low concen-

trations, sublattice 2 remains pure in Pd and the concentration

of sublattice 1 increases linearly with the nominal concen-

tration. Once sublattice 1 is rich in Au, its concentration is

constant and the concentration of sublattice 2 increases with

c. The step is almost vertical at low temperature. A temper-

ature increase results in a decrease in the slope of the step

near c = 0.5. The concentrations of the 2 sublattices vary

simultaneously before and after the stoichiometric composi-

tion, dci/dc are not constant and the permutation enthalpy is

7
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Figure 6. (a) Evolution of the driving forces as a function of c for LRO (T = 150 K). Black: ∆Hperm (c), blue: ∆H
perm
coh (c), red:∆H

perm
size (c),

green: ∆H
perm
chem (c), dashed green ∆H

perm
Ising (c). (b) Comparison of the chemical effect for LRO (green) and for RSS (T = 1000 K) (grey).

Dashed lines represent the respective Ising contributions.

Figure 7. Permutation enthalpy of the 2 sublattices and of the total system in the concentration range of the L10 structure (a–c). Evolution of
dci/dc with the concentration for the 2 sublattices (d–f). T = 150 K (a, d), T = 300 K (b, e) and T = 450 K (c, f).

no longer perfectly equal to that of a sublattice (�gures 7(e)

and (f)).

It can be noted that ∆HB→A
2 and∆HB→A

1 can be calculated

directly in SMA at 0 K by considering the energy balance after

relaxation of the atomic positions during the permutation of

one B atom from sublattice 2 of the L10 structure into one A

atom, and of one A atom from sublattice 1 into one B atom.

To keep coherence in the notations, we call permutation in the

sense B→ A what amounts to changing the sign of the energy

balance from A→ B. This leads to ∆HB→A
1 = −∆EA→B and

∆HB→A
2 = ∆EB→A. The direct calculation leads to ∆HB→A

1 =

0.60 eV and ∆HB→A
2 = 0.78 eV in perfect agreement with

the values of ∆Hperm on each side of the step (�gure 7(a)).

This provides a new insight on the analysis of the ∆Hperm(c)

curve. ∆HB→A
2 and ∆HB→A

1 are the energy balance between

the stoichiometric compound and the ordered structure with

one antisite on one sublattice. The creation of one antisite on

one sublattice de�nes the quasi-vertical step at the stoichio-

metric composition. When we deviate from the stoichiomet-

ric composition, more and more antisites are created on one

of the 2 sublattices, and the permutation enthalpy is equal to

the permutation enthalpy of the sublattice whose concentration

varies.

The formal link between the permutation enthalpy and

the formation enthalpy of antisites is the subject of the next

section.

3.4.2. Formation energy of antisites. Isotherms can be used

to deduce the concentration of antisites on each sublattice

at stoichiometry and for non-stoichiometric compositions. In

8
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Figure 8. Antisites concentration as a function of T at different
nominal concentration values surrounding the equiatomic
composition (c = 0.5: cAS(A) black and cAS(B) grey; c = 0.45: cAS(A)
blue and cAS(B) red; c = 0.55: cAS(A) cyan and cAS(B) orange).

the canonical ensemble, i.e. if the nominal concentration is

imposed, the system forms pairs of antisites to accommodate

the concentration (B atoms on the A-rich sublattice and A

atoms on the B-rich sublattice). In the grand canonical ensem-

ble, when the difference in chemical potential is imposed, anti-

sites can be isolated on a single sublattice. In this last case, the

formation of complexes with vacancies makes it possible to

compensate a deviation in stoichiometry. The concentration of

vacancies being much lower than that of antisites, especially

at low temperatures, we neglect them.

cAS(A) and cAS(B) the concentration of antisites A (resp.

B) on sublattice B (resp. A) verify cAS(A) = c2, and cAS(B) =

1− c1 and are obtained by solving equation (14) for different

compositions around stoichiometry.

Figure 8 shows two quite distinct regimes whatever the

composition. There is an athermal regime at low temperatures

where antisite concentrations vary only slightly. Then, there is

a thermally activated regime at the highest temperatures char-

acterized by a strong dependence of antisite concentrations

with temperature. At the stoichiometric composition, there are

as many antisites on the two sublattices and the concentration

increases from 200 K. For a sub-stœchiometric composition

the athermic plateau is a little longer. The concentration of

antisites A on sublattice B is zero, while that of antisites B on

sublattice A is non-zero. Concentrations of antisites A and B

increase from 300 K faster than at stoichiometry. For an over-

stoichiometric composition, the concentration of antisites B on

sublattice A is zero, while that of antisites A on sublattice B is

non-zero. Concentrations of antisites A and B increase from

300 K more slowly than at stoichiometry. This inversion is

related to the evolution ofV
L10
1 with concentration, for constant

effective pair interactions the same increase with temperature

is obtained regardless of the deviation from the stoichiometry

considered.

In the literature, the concentration of antisites is often deter-

mined from the Wagner–Schottky model [33] whose central

quantity is the enthalpy of formation of an antisite. We have

previously shown that the permutation enthalpy that drives

the phase diagram is made of three driving forces. One may

therefore wonder what are the driving forces for the enthalpy

of antisite formation.

The enthalpies of antisite formation are written according

to the permutation enthalpies of the corresponding sublattices:

∆Hform
AS(A) = ∆H

perm
2 −∆µ et ∆Hform

AS(B) = ∆H
perm
1 −∆µ.

(15)

At low temperatures and at the stoichiometric composition

∆µ =
(

∆H
perm
1 +∆H

perm
2

)

/2, which leads to:

∆Hform
AS(A) = ∆Hform

AS(B) =
(

∆H
perm
2 −∆H

perm
1

)

/2. (16)

This equation allows to split the formation enthalpy of anti-

sites according to the 3 components. It should be recalled that

the cohesion effect, equal to the difference in the cohesion

energies of the two species (equation (B.2a)), does not depend

on the sublattice and this is also the case for the size effect

(equation (B.2c)). Only the chemical component changes from

one sublattice to another. The relationship (15) thus becomes

∆Hform
AS(A) = ∆Hform

AS(B) =
(

∆H
perm
chem,2 −∆H

perm
chem,1

)

/2. (17)

While the permutation enthalpy is the result of the 3 effects

of cohesion, alloy and size, the formation enthalpy of an anti-

site contains less information than the permutation enthalpy

since it depends only on the alloying effect. The formation

enthalpy of antisites only allows to deduce the number of anti-

sites in the vicinity of the stoichiometry, it does not allow to

get the isotherms, nor the phase diagram.

4. Conclusions

We develop an approach that describes the disordered system

and apply it to a system which tends to form ordered struc-

tures at low temperatures. This new approach is complemen-

tary to the cluster expansion in the sense that all site energies

are average quantities obtained after relaxation of the atomic

positions.

In this work we have shown that this formalism predicts

the hierarchy of ordered structures. The results are in good

agreement with the direct calculations obtained with the semi-

empirical interatomic potentials. For a given concentration, the

distinction between the structures (DO22 and A2B2) is accu-

rately obtained when the site energies take into account the

chemical nature of the �rst and second neighbouring atoms.

These results justify the use of site energies to study the alloy

at low temperaturewhen orderingoccurs.We are aware thatwe

have only tested a few structures. The extension to a large num-

ber of structures is an important task that will be the subject of

future work.

Site energies constitute a very powerful tool for analyz-

ing the thermodynamic driving forces contained in an ener-

getic model for random solid solutions as well as for systems

with short or long range ordering. The enthalpy of permuta-

tion is the central quantity that separates the cohesive, chemi-

cal and elastic effects. For an ordered system, the permutation

enthalpy curve displays plateaux and steps. Each plateau cor-

responds to an almost linear variation in the concentration of

one sublattice while the concentration of the other sublattices

9
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remains constant. This behaviour is only due to the chemi-

cal effect. We have found that the creation of one antisite is

at the origin of both the quasi-vertical step at a stoichiomet-

ric composition and the change of plateau. The permutation

enthalpy and the formation enthalpy of antisites are linked.

The enthalpy of formation of the antisites is less rich than the

enthalpy of permutation because it only includes the chemical

contribution.

Finally, the AuPd alloy is characterized by a competi-

tion between the chemical effect and the size effect. At low

concentrations, the size effect is predominant and leads to

a demixtion between a quasi-pure Pd phase and the ordered

compound AuPd3. At higher concentrations, the chemical

effect predominates, leading to long range ordering.

Appendix A. Mean field approximation with LRO

The mean �eld modelling can be applied to ordered struc-

tures by considering sublattices, each sublattice being homo-

geneous. The HamiltonianH of the system is expressed as the

sum of each sublattice Hamiltonian Hi:

H =
1

nsr

nsr
∑

i=1

Hi, (A.1)

where nsr is the number of sublattices and Hi is given by

Hi/N = ciE

∑

j=1,nsr

Zi jc j

A + (1− ci)E

∑

j=1,nsr

Zi jc j

B , (A.2)

with ci the concentration of the ith sublattice which is equal

to ci =
NAi
Ni
, NAi and Ni being respectively the number of A

atoms and the number of sites of the ith sublattice. The nom-

inal composition is related to the concentration of sublattices

according to c =
∑nsr

i=1 ci
nsr

. Zij is the number of nearest bonds

between sites of the ith sublattice and the jth sublattice (for

nsr = 4, Zii = 0 ∀i and Zij = 4∀j 6= i).

The free energy is F = H − TS − Nat
nsr

(
∑nsr

i=1 ci
)

∆µ, with S
the con�gurational entropy

S =
1

nsr

nsr
∑

i=1

Si, (A.3)

and the con�gurational entropy of the ith sublattice Si is written

in a classic manner in the form of

Si/Nat = −kB (ci ln (ci)+ (1− ci) ln (1− ci)) . (A.4)

The minimization of free energy leads to the system of nsr

non-linear equations coupled as follows:

ci

1− ci
= exp

(

−
∆H

perm
i −∆µ

kBT

)

, (A.5)

with ∆H
perm
i = ∂H

∂NAi
= nsr

Nat

∂H
∂ci

. ∆H
perm
i is the permutation

enthalpy of the ith sublattice i.e. the enthalpy balance during

a permutation of one B atom of the ith sublattice into one A

atom.∆H
perm
i is composed of three terms:

∆H
perm
i (c) = ∆HB→A (c)+∆Hn (c)+∆H∆c (c) , (A.6)

where:

• ∆Hi,B→A is the enthalpy change on the site where

the exchange B→ A (of the ith sublattice) occurs:

∆HB→A = E

∑

j

Zi jc j

A − E

∑

j

Zi jc j

B ;

• ∆Hn is the enthalpy change on all nearest-neighbors sites

of the one on which the exchange B→A occurs:∆Hn =

∑

m6=i

Zim



cm
∂E

p
A

∂p

∣

∣

∣∑

j

Zmjc j

+ (1− cm)
∂E

p
B

∂p

∣

∣

∣∑

j

Zmjc j



;

• ∆H∆c is an elastic term related to the variation of the

site energies for all sites due to the change in nominal

concentration induced by the exchange B→ A:

∆H∆c =
1

nsr

nsr
∑

m=1






cm

∂Ep
A

∂c

∣

∣

∣

∣∑

j

Zmjc j

+ (1−cm)
∂Ep

B

∂c

∣

∣

∣

∣

∑

j

Zmjc j






.

We solve the system of equations via a damped-

dynamics algorithm [43].

Appendix B. Driving forces with LRO

For RSS, the permutation enthalpy (given by equation (6)) can

be written as the sum of 3 effects:

∆H
perm
coh =

(

EZA (1)− E0
B (0)

)

, (B.1a)

∆H
perm
chem =

(

EZcA (c)− EZA (c)
)

−
(

EZcB (c)− E0
B (c)

)

+ Z

(

c
∂Ep

A

∂p

∣

∣

∣

∣

Zc

+ (1− c)
∂Ep

B

∂p

∣

∣

∣

∣

Zc

)

, (B.1b)

∆H
perm
size =

(

EZA (c)− EZA (1)
)

−
(

E0
B (c)− E0

B (0)
)

+

(

c
∂Ep

A

∂c

∣

∣

∣

∣

Zc

+ (1− c)
∂Ep

B

∂c

∣

∣

∣

∣

Zc

)

. (B.1c)

The cohesive term is the standard difference in cohesive

energies between pure metals. The chemical contribution is

related to the chemical local environment change. It can also

be written −Z (1− 2c)V
χ
1 . The size contribution is related to

the change of lattice parameter with c.

In the case of LRO, we extend the rule of 3 effects to the

permutation enthalpy of each sublattice:∆H
perm
i = ∆H

perm
coh,i +

∆H
perm
chem,i +∆H

perm
size,i with:

∆H
perm
coh,i =

(

EZA (1)− E0
B (0)

)

, (B.2a)

∆H
perm
chem,i

=

((

E

∑

j

Zi jc j

A (c)− EZA (c)

)

−

(

E

∑

j

Zi jc j

B (c)− E0
B (c)

))

+
∑

m6=i

Zim






cm
∂Ep

A

∂p

∣

∣

∣

∣∑

j
Zmjc j

+ (1− cm)
∂Ep

B

∂p

∣

∣

∣

∣∑

j
Zmjc j







(B.2b)
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∆H
perm
size,i

=
((

EZA (c)− EZA (1)
)

−
(

E0
B (c)− E0

B (0)
))

+
1

nsr

nsr
∑

m=1






cm
∂Ep

A

∂c

∣

∣

∣

∣∑

j

Zmjc j

+ (1− cm)
∂Ep

B

∂c

∣

∣

∣

∣∑

j

Zmjc j







(B.2c)

The cohesive and size effects are identical for each sub-

lattice. The cohesive effect does not vary between the disor-

dered and the ordered states. The elastic term differs slightly

between the disordered and ordered states (due to the devia-

tion between
∂E

p
X

∂c

∣

∣

∣

Zc
and

∂E
p
X

∂c

∣

∣

∣∑

j

Zmjc j

) but it can be numerically

overlooked. The most changing driving force is the chemical

effect.

Appendix C. Application to the L10

The L10 structure can be described by equations of appendix

Awith only 2 sublattices (nsr = 2, Zii = 4 et Zij = 8 with i and

j =1 or 2).

Equation (A.6) become at the stoichiometric composition

for (c1 = 1, c2 = 0):

∆HB→A
1 =

(

E
Z11
A − E

Z11
B

)

+ Z11
∂Ep

A

∂p

∣

∣

∣

∣

Z11

+ Z12
∂Ep

B

∂p

∣

∣

∣

∣

Z12

+
1

2

(

∂Ep
A

∂c

∣

∣

∣

∣

Z11

+
∂Ep

B

∂c

∣

∣

∣

∣

Z12

)

(C.1a)

∆HB→A
2 =

(

E
Z21
A − E

Z21
B

)

+ Z21
∂Ep

A

∂p

∣

∣

∣

∣

Z11

+ Z22
∂Ep

B

∂p

∣

∣

∣

∣

Z21

+
1

2

(

∂Ep
A

∂c

∣

∣

∣

∣

Z11

+
∂Ep

B

∂c

∣

∣

∣

∣

Z21

)

(C.1b)

One can thus write the permutation enthalpy of sublat-

tice i as the sum of ∆HB→A
1 and a complementary term (see

equation (13a) and (13b)) by laying:

V
L10
1 (c) =

∂Ep
A

∂p

∣

∣

∣

∣∑

j
Z1 jc j

−
∂Ep

B

∂p

∣

∣

∣

∣∑

j
Z1 jc j

. (C.2)

Since �gure 6 shows that the curvature can be neglected,

we can consider the linear part of site energies, and thus:

(

E
Z11c1+Z12c2
A − E

Z11
A

)

−
(

E
Z11c1+Z12c2
B − E

Z11
B

)

= (Z11c1 + Z12c2)V
L10
1 (c)− Z11V

L10
1 (c) ,

(

E
Z21c1+Z22c2
A − E

Z21
A

)

−
(

E
Z21c1+Z22c2
B − E

Z21
B

)

= (Z21c1 + Z22c2)V
L10
1 (c)− Z21V

L10
1 (c) .

For constant nearest-neighbour pair interactions,

E
p
A = pVAA/2+ (Z − p)VAB/2 and E

p
B = pVBA/2+

(Z − p)VBB/2, then equation (C.1a) and (C.1b) become:

∆H
perm,0
1 = −4V

Ising
1 + 12τ +∆H∆c (c)|0, (C.3a)

∆H
perm,0
2 = +4V

Ising
1 + 12τ +∆H∆c (c)|0, (C.3b)

with ∆H∆c (c)|0 the 3rd term on RHS corresponds

to the elastic effect at the stoichiometry, V
Ising
1 =

(VAA + VBB − 2VAB) /2 and τ = (VAA − VBB) /2.
In the ordered state, at the stoichiometry, the chemical

potentials difference is given by ∆µ = ∆Hperm
(

c = 1/2
)

=
(

∆H
perm
1 +∆H

perm
2

)

/2. So it can be written as follow:

∆µ = 12τ +∆H∆c (c)|0 (C.4)

The formation enthalpy of A antisites on the sublattice rich

in B, ∆Hform
AS(A), and of B antisites on the sublattice rich in

A, ∆Hform
AS(B), are ∆Hform

AS(A) = ∆H
perm
2 −∆µ and ∆Hform

AS(B) =

−∆H
perm
1 +∆µ. Thus at the stoichiometry it leads to:

∆Hform
AS(A) = ∆Hform

AS(B) = 4V
Ising
1 (C.5)

The formation enthalpies of antisites are only depending on

the effective pair interaction.
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