Supplementary Material

Combustion of $n-C_3-C_6$ linear alcohols: an experimental and kinetic modeling study.

Part I: reaction classes, rate rules, model lumping and validation.

M. Pelucchi^{1*}, S. Namysl², E. Ranzi¹, A. Rodriguez², C. Rizzo¹, K. P. Somers³, Y. Zhang⁴,

O. Herbinet², H.J. Curran³, F. Battin-Leclerc², T. Faravelli¹.

¹ CRECK Modeling Lab, Department of Chemistry Materials and Chemical Engineering, Politecnico di Milano, 20133, Milano, Italy

² Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, ENSIC, Nancy Cedex, France

³ Combustion Chemistry Centre, National University of Ireland Galway, Galway, Ireland

⁴ State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Corresponding author:

Dr. Matteo Pelucchi, Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milan, Italy Email: <u>matteo.pelucchi@polimi.it</u> Tel: +39 02 2399 4234

Contents:

- 1. Structure and size of the kinetic models attached
- 2. Nomenclature for alcohols and related molecules
- 3. Comparison of radical decomposition and isomerization rate constants (CRECK vs Sarathy et al.)
- 4. Rate of production analysis (CRECK vs Sarathy et al.)

1. Structure and size of the kinetic models attached.

Table S1 describes the attached kinetic models. The modular structure of the CRECK model (Version 2003, March 2020 [1]) allows to easily reduce the number of species and reactions by including/excluding kinetic subsets. The octanol model is provided as a separate module.

Model	Description	Number of	Number of	References
		Species	Reactions	
Model1	HT and LT, complete CRECK2003 model	491	17888	[2-9]
Model2	HT and LT including NOx (Model1 with NOx)	536	18348	[2-10]
Model3	bdel3 HT only, complete CRECK2003 HT model		14453	[2-9]
	(Model1 without LT)			
Model4	HT only, TPRF and alcohols	253	7559	[2-6, 8, 9]
Model5	Nodel5HT with PAHs and NOx (Model 3 with NOx)		14913	[2-10]
Octanol subset	Octanol HT and LT subsets only			[8, 9]

Table S1: CRECK2003 (March 2020) kinetic models attached to this study [1].

2. Nomenclature for alcohols and related molecules

Table S2 shows the nomenclature of species in the kinetic models for alcohols pyrolysis and oxidation.

Table S2: Species nomenclature.*denotes lumped species for which only one representative isomer is pictured.

	Species Name	Species	Representation	Model name
		Formula		
1	n-propanol	C3H8O1	ОН	NC3H7OH
2	n-butanol	C4H10O1	ОН	N1C4H9OH
3	n-pentanol	C5H12O1	ОН	С5Н11ОН
4	n-hexanol	C6H14O1	ОН	С6Н13ОН
5	α-radical, n-propanol	C3H7O1	он	СН3СН2СНОН
6	α-radical, n-butanol	C4H9O1	Л	СН3СН2СН2СНОН
7	α-radical, n-pentanol	C5H11O1	С С С С С С С С С С С С С С С С С С С	RPENT1OHA
8	α-radical, n-hexanol	С6Н13О1	Л С С С С С С С С С С С С С С С С С С С	RHEX1OHA
9	β-radical, n-propanol	C3H7O1	ОН	СН3СНСН2ОН
10	β-radical, n-butanol	C4H9O1	ОН	СН3СН2СНСН2ОН
11	γ-radical, n-propanol	C3H7O1	•>>>он	СН2СН2СН2ОН

12	γ -radical, n-butanol	C4H9O1	$\dot{\sim}$	СНЗСНСН2СН2ОН
			ОН	
13	δ -radical, n-butanol	C4H9O1	• ОН	CH2CH2CH2CH2OH
14	alkoxy radical, n-propanol	C3H7O1	 0.	CH3CH2CH2O
15	alkoxy radical, n-butanol	C4H9O1	~~~~ .	CH3CH2CH2CH2O
16	n-pentanol radicals*	C5H11O1	он	RPENT1OHB
17	n-hexanol radicals*	C6H13O1	он	RHEX1OHB
18	n-propanal	C3H6O1		С2Н5СНО
19	n-butanal	C4H8O1		СЗН7СНО
20	n-pentanal	C5H10O1		С4Н9СНО
21	n-hexanal	С6Н12О1		ALDC6
22	1-propenol isomers*	C3H6O1	ОН	СЗН5ОН
23	1-butenol isomers*	C4H8O1	ОН	NC4H7OH
24	1-pentenol isomers*	C5H10O1	ОН	С5Н9ОН
25	hydroxyalkyl-peroxy radicals (RO2), n- propanol*	С3Н7О3	ос.	RNC3OHOOX
26	hydroxyalkyl-peroxy radicals (RO2), n- butanol*	C4H9O3	ОО•	RBU1OOX
27	hydroxyalkyl-peroxy radicals (RO ₂), n- pentanol*	С5Н11О3	ОО+	RPENT1OOX
28	hydroxyalkyl-peroxy radicals (RO ₂), n- hexanol*	С6Н13О3	ОО+	RC6OHOOX
29	hydroperoxyl-alkylhydroxy radicals (Q OOH), n-propanol*	С3Н7О3	оон	QNC3OHOOX
30	hydroperoxyl-alkylhydroxy radicals (Q OOH), n-butanol*	C4H9O3	• оон	QBU1OOX
31	hydroperoxyl-alkylhydroxy radicals (Q OOH), n-pentanol*	C5H11O3	ООН	QPENT1OOX

32	hydroperoxyl-alkylhydroxy radicals (Q OOH), n-hexanol*	С6Н13О3	ООН	QC6OHOOX
33	(O๋2QOOH), n-propanol*	С3Н7О5	оо• Оон	ZNC3OHOOX
34	(Ö ₂ QOOH), n-butanol*	C4H9O5	оо• оон	ZBU1OOX
35	(O ₂ QOOH), n-pentanol*	C5H11O5	оо• оон	ZPENT1OOX
36	(O ₂ QOOH), n-hexanol*	С6Н13О5	ОС• ООН	ZC6OHOOX
37	carbonyl hydroxyalkyl hydroperoxide (CHHP), n-propanol*	C3H6O4	он оон	KEHYNC3OH
38	carbonyl hydroxyalkyl hydroperoxide (CHHP), n-butanol*	C4H8O4	ООН	KEHYBU1
39	carbonyl hydroxyalkyl hydroperoxide (CHHP), n-pentanol*	C5H10O4	о оон	КЕНҮР1ОН
40	carbonyl hydroxyalkyl hydroperoxide (CHHP), n-hexanol*	С6Н12О4	ОООН	КЕНҮС6ОН
41	epoxy alcohols, n-propanol*	C3H6O2	Блон	СЗОНСҮЕТН
42	epoxy alcohols, n-butanol*	C4H8O2	ОН	С4ОНСҮЕТН
43	epoxy alcohols, n-pentanol*	C5H10O2	ОН	С5ОНСҮЕТН
44	epoxy alcohols, n-hexanol*	С6Н12О2	ОТОН	С6ОНСҮЕТН

3. Reference kinetic parameters for H-atom abstraction reactions by \dot{H} , $\dot{O}H$, \ddot{O} , $H\dot{O}_2$ and $\dot{C}H_3$

Table S3: Reference kinetic parameters for H-atom abstraction reactions by most important radicals. Units are cal,cm3, mol, s.

	Site	Α	n	Ea
	0	3.00e+06	2.00	6349.34
	α	1.05e+07	2.00	4000.00
R=H	β	4.50e+06	2.00	4000.00
	Secondary	6.60e+06	2.00	4000.00
	Primary	9.00e+06	2.00	6349.34
	0	1.50e+09	1.00	1540.75
R=ĊH	α	5.25+09	1.00	50.00
	β	2.25+09	1.00	50.00

	Secondary	3.30e+09	1.00	50.00	
	Primary	4.50e+09	1.00	1540.75	
	0	2.35e+06	2.00	4691.70	
	α	8.23e+06	2.00	2500.00	
R=Ö	β	3.53e+06	2.00	2500.00	
	Secondary	5.17e+06	2.00	2500.00	
	Primary	7.05e+06	2.00	4691.70	
	0	9.60e+05	2.00	19190.53	
	α	1.02e+07	2.00	16000.00	
R=HÖ₂	β	2.40e+06	2.00	16000.00	
	Secondary	1.76e+06	2.00	16000.00	
	Primary	2.40e+06	2.00	19190.53	
	0	3.00e+04	2.00	7443.70	
	α	1.05e+05	2.00	5000.00	
R=ĊH₃	β	4.50e+04	2.00	5000.00	
	Secondary	6.60e+04	2.00	5000.00	
	Primary	9.00e+04	2.00	7443.70	

4. Comparison of radical decomposition and isomerization rate constants (CRECK vs Sarathy et al.) Figure S1 compares high pressure limit rate constants for alcohol radicals decomposition and isomerization reactions. The rate constants selected in this work are compared with those proposed by Sarathy et al. [11].

Figure S1: Comparison of radical decomposition and isomerization rate constants. Black lines: this work (CRECK model), red lines: Sarathy et al. [11].

5. Rate of production analysis

Figure S2 compares results from a rate of production analysis performed with the present model and that of Sarathy et al. [11], for a n-pentanol/air mixtures (ϕ =1.0) at p=10 bar and T=748 K.

Figure S2: reactive fluxes analysis of n-pentanol oxidation in an adiabatic constant volume batch reactor at T = 748 K, p = 10 bar and φ = 1.0 (fuel conversion ~20%). Numbers are rates of production/consumption in 10⁻⁴ mol cm⁻³ s⁻¹. Bold: CRECK model, italics: Sarathy et al. [11]

References

[1] T. Faravelli, A. Frassoldati, E. Ranzi, A. Cuoci, M. Mehl, A. Stagni, M. Pelucchi, CRECK Modeling Lab, Politecnico di Milano. <u>http://creckmodeling.chem.polimi.it/menu-kinetics/menu-kinetics-detailed-mechanisms</u> (accessed June 2020 2020).

[2] W.K. Metcalfe, S.M. Burke, S.S. Ahmed, H.J. Curran, A hierarchical and comparative kinetic modeling study of C1– C2 hydrocarbon and oxygenated fuels, International Journal of Chemical Kinetics 45 (2013) 638-675.

[3] S.M. Burke, U. Burke, R. Mc Donagh, O. Mathieu, I. Osorio, C. Keesee, A. Morones, E.L. Petersen, W. Wang, T.A. DeVerter, An experimental and modeling study of propene oxidation. Part 2: Ignition delay time and flame speed measurements, Combustion and Flame 162 (2015) 296-314.

[4] G. Bagheri, E. Ranzi, M. Pelucchi, A. Parente, A. Frassoldati, T. Faravelli, Comprehensive kinetic study of combustion technologies for low environmental impact: MILD and OXY-fuel combustion of methane, Combustion and Flame in press (2020).

[5] M. Pelucchi, C. Cavallotti, A. Cuoci, T. Faravelli, A. Frassoldati, E. Ranzi, Detailed kinetics of substituted phenolic species in pyrolysis bio-oils, Reaction Chemistry & Engineering 4 (2019) 490-506.

[6] E. Ranzi, A. Frassoldati, A. Stagni, M. Pelucchi, A. Cuoci, T. Faravelli, Reduced kinetic schemes of complex reaction systems: fossil and biomass-derived transportation fuels, International Journal of Chemical Kinetics 46 (2014) 512-542.

[7] W. Pejpichestakul, E. Ranzi, M. Pelucchi, A. Frassoldati, A. Cuoci, A. Parente, T. Faravelli, Examination of a soot model in premixed laminar flames at fuel-rich conditions, Proceedings of the Combustion Institute 37 (2019) 1013-1021.

[8] M. Pelucchi, S. Namysl, E. Ranzi, A. Rodriguez, C. Rizzo, K. Somers, Y. Zhang, O. Herbinet, H. Curran, F. Battin-Leclerc, T. Faravelli, Combustion of n-C3–C6 linear alcohols: an experimental and kinetic modeling study. Part II: speciation measurement in a jet stirred reactor, ignition delay time measurement in a rapid compression machine, model validation and kinetic analysis. , Submitted to Combustion and Flame, (2020).
[9] M. Pelucchi, S. Namysl, E. Ranzi, A. Rodriguez, C. Rizzo, K. Somers, Y. Zhang, O. Herbinet, H. Curran, F. Battin-Leclerc, T. Faravelli, Combustion of n-C3–C6 linear alcohols: an experimental and kinetic modeling study. Part I: reaction classes, rate rules, model lumping and validation. , Submitted to Combustion and Flame, (2020).

[10] Y. Song, L. Marrodán, N. Vin, O. Herbinet, E. Assaf, C. Fittschen, A. Stagni, T. Faravelli, M. Alzueta, F. Battin-Leclerc, The sensitizing effects of NO2 and NO on methane low temperature oxidation in a jet stirred reactor, Proceedings of the Combustion Institute 37 (2019) 667-675.

[11] S.M. Sarathy, P. Oßwald, N. Hansen, K. Kohse-Höinghaus, Alcohol combustion chemistry, Progress in energy and Combustion Science 44 (2014) 40-102.