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Abstract—Fog computing has emerged as a strong distributed
computation paradigm to support applications with stringent
latency requirements. It offers almost ubiquitous computation
capacities over a large geographical area. However, Fog systems
are highly heterogeneous and dynamic which makes services
placement decision quite challenging considering nodes mobility
that may decrease the placement decision quality over time. This
paper proposes a Mobility-aware Genetic Algorithm (MGA) for
services placement in the Fog which aims at supporting nodes’
mobility while ensuring both infrastructures energy-efficiency
and applications Quality of Service (QoS) requirements. We have
compared this approach with two variants of Shortest Access
Point migration strategy (SAP) from the literature, a proposed
Mobility Greedy Heuristic (MGH) and a baseline Simple Ge-
netic Algorithm (SGA). Experiments conducted with MyiFogSim
simulator have shown that MGA ensures good performances in
terms of energy and delay violations minimization compared to
other methods.

Index Terms—Internet of Things, Optimization, Mobility, Fog
Computing, Smart Campus, QoS, Energy.

I. INTRODUCTION

Fog computing is a distributed computation paradigm that

extends cloud infrastructures with computation and storage ca-

pabilities of nodes located between end users and data centers

[1]. It supports latency-constrained applications, by hosting

services and data as close as possible to end-users and leads to

cloud-network traffic reduction . In the context of Internet of

Things (IoT), the Fog infrastructure, composed by constrained

computation and communication nodes, has to deal with a

significant number of mobile IoT objects. Those objects may

request at any time applications with heterogeneous compu-

tation and communication needs and context-usage priorities.

Placing those applications considering the system dynamic

induced by nodes mobility is quite challenging and needs to

be addressed to ensure and maintain the Quality of Service

(QoS) of applications over time. Moreover, the distributed and

large-scale characteristics of IoT and Fog environments lead

to a non negligible impact on energy consumption [4] that

should be considered as a prime parameter for any Fog-IoT

services placement framework.

Mobility support has mainly been investigated with han-

dover/handoff mechanisms and migration process, [11], [12],

defined respectively as the process of managing the connec-

tivity of users between network cells and virtual services

transfer from one computing node to another. Managing the

mobility of nodes with migration induces many questions

such as: ”When the migration should start?”, ”Where to place

services?” and ”How to choose the data transfer path?”. The

migration process undeniably induces an extra processing

time, network usage and energy consumption. Furthermore,

if the requested IoT applications are designed in a distributed

manner and hosted by different data-dependent virtual entities,

it will be necessary to choose which and how services

should be migrated to ensure the communication between

them during the migration. In order to avoid the migration

process and its previous cited drawbacks, this paper proposes

a Mobility-aware Genetic Algorithm (MGA) and a Mobility

Greedy Heuristic (MGH) as placement methods that consider

mobility patterns of nodes while minimizing the infrastructure

energy consumption and ensuring the QoS of applications.

The contributions of this work can be summarized as follows:

(1) A probabilistic Genetic Algorithm and a greedy heuristic

approaches for IoT-Fog services placement with nodes mo-

bility support. (2) Performance comparison between differ-

ent services placement approaches. The metrics considered

are energy consumption and applications delay violations.

(3) An extension of MyiFogSim simulator that integrates some

literature mobility patterns. The remainder of this paper is

structured as follows : In Section II the state of the art of

Mobility and Fog computing services placement is addressed.

Section III gives the motivating scenario and a formalization

of the placement problem. Section IV details the proposed

placement methods. Finally, Section V reports experimental

results using MyiFogSim.

II. RELATED WORK

Fog-Services placement problem has been widely investi-

gated within a static Fog context (without mobility).

Fog and services placement problem in a static environ-

ment: Services placement problem in the Fog is commonly

defined as an optimization problem to ensure one or multiple

system QoS requirements such as response time, resource

usage efficiency, network consumption minimization. For this

purpose, different approaches have been used such as evolu-

tionary optimization, various heuristics and exact resolutions

under different system constraints [2], [3], [20], [21], [22],

[23]. Those works focus only on QoS requirements in a static

Fog environment.

Fog and Energy: Authors in [5] try to minimize mobile

nodes energy consumption, time and execution costs by trans-

ferring their tasks to complementary computation devices.

This approach can induce to an excessive usage of bandwidth

and increases the energy consumption of other nodes. Work in

[6] addresses the IoT to Fog nodes assignment problem with

Genetic Algorithm (GA) and Broadcast Incremental Power

(PIP) algorithm to reduce mobile nodes energy consumption

under delay constraints. The approach does not consider the

energy consumption of Fog, cloud nodes and the network.

In [8], authors use a Discrete Particle Swarm Optimization



approach to minimize the infrastructure energy consumption

and applications delay violations in a static Fog environment.

Fog and Mobility support: Although mobility is a key point

to consider in the Fog, only few works investigate it. Authors

in [7] consider the influence of nodes mobility for applications

scheduling problem; however, the mobility information is not

used by the algorithms and the mobility scenario is only based

on increasing and decreasing the number of connected nodes

and does not consider any mobility model. Authors in [9]

propose an Integer Linear Program to minimize applications

makespan while considering a random way point mobility

model. This model neglects the temporal and spatial aspects

that define most of IoT nodes motion. In [10], authors propose

to dynamically re-schedule the placement of Virtual Network

functions (VNF) to minimize end-to-end latency of users

and the number of migrations. Compared to our work, this

approach is only based on latency violation metric. None

of these works introduces the mobility information in the

placement modeling and algorithm.

III. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

This section gives details about the considered scenario, the

system model and the problem formulation.

A. Motivating Scenario, Assumptions and Mobility Model

We consider a Smart Campus area with pedestrians carrying

IoT nodes that request applications and interact with their

sensors and actuators. For instance, a smartphone can request

for an augmented reality (AR) application. The processing

services of the application will interact with the camera of the

smartphone as a source sensor and consider the smartphone

screen as the actuator. We aim to place the AR services

considering the mobility of pedestrians.

For sake of simplicity, but without loss of generality, we

make the following assumptions: (1) We consider a time-slot-

ted system T = {t0, t1, .., tT−1}. One slot duration is defined

as half the time taken by the fastest node in the system to cross

the shortest distance between two points and that one node

movement is negligible within one slot i.e. one node can only

change position at the beginning of a time ti. (2) We suppose

that the service duration is infinite and that if two IoT user

nodes 1 u1 and u2 request the same application a1, each node

will have its own virtual instances (i.e instances are not shared

between two IoT nodes). (3) Following 5G specifications, we

assume that a user u will always be under network coverage

and it will be attached to one and only one access point at

each time t ∈ T. (4) We assume that communications between

IoT users nodes and their services are uniformly distributed

within the time window WT, that represents the studied time

interval of T slots.

In environment that involves humans, mobility patterns are

not as uncertain as in other systems. Moreover, with access

technologies such as 5G and existing 4G-LTE , we may not

need a precise location of nodes to ensure good services and

mobility management. In our approach, we use the Weighted

Waypoints mobility model (WWP) that considers location,

pause duration and weights to choose the next destination

place. It has been built from a mobility survey carried out

on the campus of the University of Southern California.

The WWP defines a set of locations called waypoints. The

1”IoT user node” or ”user node” terms refer to a node that has requested
an application and ”node” term refers to any computation node that includes
also the IoT nodes.

probability that mobile nodes move from waypoint a to

waypoint b depends on current location and time [16].

B. System Representation

1) Physical topology: We consider a hierarchical Fog

infrastructure described by an non directed graph G = (M,L)
and shown in Figure 1, where M is the set of nodes, and L

the set of direct links between them.

Each physical node mk ∈ M is defined by: (1) a

type ηk ∈ {IoT, Fog, Cloud} (2) a capacity vector

Ωk =< cpumax
k , rammax

k , diskmax
k >, parameters units of

elements are respectively in MIPS, MB and MB. (3) a

2D coordinates and a coverage zone vector at time t,

∆t
k =< xt

k, y
t
k, r

t
k >.

Nodes have additionally characteristics depending on their

type: (1) IoT node: It has computation and storage capacities

and a set of sensors H
0
k and actuators H

1
k components. IoT

nodes move according to a probability mobility model ϑk

(e.g. Manhattan model) [16], and have a set of requested

applications A
t
k at time t ∈ T. The coverage zone is fixed

to rtk = 0. Let U be the subset of M with only IoT nodes.

(2) Fog node: It has the ability to connect IoT nodes to

external network through Access point equipment and has

computation and storage capacity through a server cloudlet

device. (3) Cloud node: It is defined as a limitless computation

data center server. The coverage zone is fixed to rtk = 0.

Each network link l(k,k′) ∈ L between nodes mk and mk′

is defined with its bandwidth bw(k,k′) in (Mb/s) and latency

lc(k,k′) in (ms). l(k,k′) can be one direct link from mk to mk′

or be composed by several links.

2) Internet of Things applications: We consider a set of

IoT applications A = {a0, .., ai, .., aA−1} designed in a

distributed manner. Each application ai ∈ A has a class type

Υ which can be: Mission Critical (MC), Real Time (RT),

Streaming (ST) and Best Effort (BE), having respectively pri-

ority level ψ of 0, 1, 2, and 3 and response delay requirement

φ of 20ms, 50ms, 150ms and ∞, details are given in [8].

An application ai has a set of size ni of communicating

data-dependent services represented with a directed graph

G(ai) = (Sai ,Eai). Each service sj ∈ S
ai is defined by its re-

quested CPU mij (MIPS) and RAM ramj (MB), deployment

technology tecj (either a virtual machine, a container, OSGi

plugin, Java Virtual Machine or a combination of them). We

consider two specific nodes in the graph G(ai) that represent

respectively sensor sending service (source node) and actuator

receiving service (sink node).

Each directed edge e(j,j′) ∈ E
ai , from service sj to service

sj′ represents a data dependency between sj and sj′ and

carries data(j,j′), the volume of data sent from sj to sj′ in

(KB). We would like to draw the reader’s attention to the fact

that we have willingly ignored the application index i while

using the notation sj rather than sij to lighten the model.

C. Problem Formulation and Objective Function

We consider a set of mobile IoT nodes U requesting a set

of applications A
t0 at initial time t0. Each IoT node u ∈ U

has a set At0
u of requested applications and N

t0
u , the set of all

services in A
t0
u . Let’s consider the binary decision variable

xu
jk equals to 1 if service j ∈ N

t0
u requested by node u is

placed on node k and equals to 0 otherwise.



Fig. 1. Physical Topology representation highlighting the system’s
variables

1) Energy consumption: The first metric we consider,

defined in Eq (1), is the sum of computation and network

energy consumption during T time slots. As the energy model

does not impact our resolution approach, we have chosen,

similarly to work [17] a linear model, but other models could

be used [19].

f1 = fC + fN (1)

The computation part is estimated according to the follow-

ing equation:

fC = T
∑

u∈U

∑

j∈Nu

∑

k∈M

x
u
jkα

u
jkγ

c
k (2)

αu
jk is the computation time of service instance j associated

to the IoT user node u and placed on node k as defined in Eq

(3). As the placement is made at the beginning and will remain

unchanged, the computation cost is time independent. Placing

service j on node k depends on the maximum processing

capacity of the physical node cpumax
k in MIPS, the amount

of MIPS allocated to other services placed on the machine k

and the amount of requested MIPS of service j.

α
u
jk =

mij +
∑

u∈U

∑
l∈Nu−{j} milx

u
lk

cpumax
k

(3)

γc
k is the computation power of node k: It represents

the difference between node maximum and minimum power

consumption γc
k = Pcmax

k −Pcmin
k . The communication part

is estimated according to the following equation:

fN =
∑

z∈M−u,t∈T

P
t
uz

∑

j,j′∈Nu

∑

k,k′∈M

x
u
jkx

u
j′k′β

ut
jj′,kk′γ

n
kk′ (4)

βut
jj′,kk′ defines the communication time between service

instances j and j′ placed respectively on nodes k and k′ at

time t for user node u. In contrast to the computation time,

the communication time βut
jj′,kk′ varies over time, because it

is impacted by the fluctuation of latency between the mobile

node and its processing services placed on the infrastructure.

There are two possible causes for this fluctuation : (1) The IoT

node does not host services; then the latency variation is due

to the communication between sensors and their destination

services and actuators and their source services. (2) The

IoT node hosts services; then the communication latency

between those services and other services will vary over time

depending on the localization of the IoT node’s.

β
ut
jj′,kk′ =

1

T

data(j,j′)

bwt
(k,k′)

+ lc
t
(k,k′) (5)

γn
kk′ is the communication power constant between node k

and node k′ and is defined by γn
kk′ = Pnmax

k + Pnmax
k′ −

Pnmin
k −Pnmin

k′ , where Pnmax and Pnmin are respectively

the maximum and minimum power consumption of nodes

network interfaces.

P t
uz is the probability that an IoT node u is under the

coverage zone of a Fog node z at time t. Its computation varies

according to the chosen mobility model. This work considers

the Weighted Waypoints Model (WWP). Considering a set

of Waypoints and Access points located in a 2D area, we

compute the Euclidean distance between each waypoint and

Access point. Then, under the assumption that each waypoint

is attached to one and only one Access point, we associate

Waypoints to their closest Access point. P t
ur is the probability

that user u will be in waypoint r at time t and is equal to

Puz previously defined. P t
uz = P t

ur.

2) Delay violations : The second considered metric is the

QoS violation metric defined in Eq (6) by the average number

of applications delay violations.

f2 =
1

T

∑

u∈U

∑

a∈A

w
t
a(u) (6)

where wt
a(u) is equal to 1 if the application response delay

dta(u) is greater than its maximum delay requirement Da.

Otherwise it is equal to 0. The maximum response delay

Da of the application a varies according to its class type Υ
as presented in III-B. The estimated response delay dta(u)
corresponds to the time between the sending of one data

packet from the sensor of node u and its corresponding action

on the actuator. The delay depends on the position of the

IoT nodes and the placement of the used services. For each

instance of the application a ∈ A requested by an IoT user

node u ∈ U, we compute the dta(u) according to the possible

position of the user at time t as follows:

d
t
a(u) =

∑

j∈Nu

∑

k∈M

x
u
jkα

u
jk

+
∑

z∈M−{u}

P
t
uz

∑

j,j′∈N

∑

k,k′∈M

x
u
jkx

u
j′k′βjj′,kk′

(7)

3) Objective function: We combine considered the ob-

jectives into a single function, defined in Eq (8), to have

Mono-objective (MAM) optimization approach which is rec-

ommended in many works such as [18], instead of computing

the Pareto front that could be time consuming. We aim to find

a solution that is a trade-off between the two objectives and

gives a little advantage to the energy aspect.

F = f1(1 + f2) (8)

IV. PLACEMENT ALGORITHMS

A. Mobility-aware Genetic Algorithm (MGA)

Genetic Algorithm (GA) is an evolutionary based opti-

mization approach, efficiently used for NP-hard problems

resolution [13]. It has shown its efficiency in static Fog envi-

ronments placement problems [20]. We propose to apply the

GA method with a probabilistic objective function enhanced

by nodes mobility information. A chromosome c, is a vector

representing the placement solution. Each vector element is

indexed by the service Id suj and gives the node Id mk that will

host the service. IoT users nodes are sorted by the increasing



number of requested applications. The applications of each

user node are sorted by the increasing priority values, and

services of each application are sorted by increasing CPU

demand. Through experiments we have chosen the following

parameters values: mutation rate λ = 0.01, crossover rate

σ = 0.8, population size P = 20, number of generations

µ = 20 and a 1-way tournament selection. The fitness of

chromosomes is computed according to Eq (8) where the

mobility model is used. For each user node u that requested

an application at time slot t0 and for each time step t ∈ T

of the time window, we get the mobility information of u.

The mobility information P t
uk is the probability that the user

node u is under the coverage zone of Fog node k. MGA is

presented in Pseudo Algorithm (1).

Algorithm 1 Mobility-aware Genetic Algorithm (MGA) for

IoT service placement

Get mobility information for each mobile node that has requested an application at

time t0.

Generate uniformly the initial population of size P and compute the fitness value for

each chromosome with Eq (8).

while The number of generations µ is not reached do

while Next generation population size does not reach σP individuals do

On (100 ∗ σ)% of the population apply 1-way tournament selection to select

a pair of parents chromosomes c1, c2.

Apply Crossover operation on c1, c2 to get a resulting new chromosome c3
by taking first genes from c1 and the rest from c2.

Apply mutation operation on c3 with probability λ.

Compute fitness of c3 according to Eq (8) where the probabilistic part related

to mobility is detailed in Eq (4).

Put c3 in the next generation population

end while

Keep (100∗ (1−σ))% of the best individuals from the previous population and

add them to the new generation population.

Increment the number of generations (µ value).

end while=0

B. Mobility Greedy Heuristic (MGH)

The main idea of the MGH heuristic is to consider the

most probable path for each mobile device and then compute

the placement that will reduce the energy consumption and

communication delay based on those paths. MGH steps are

as follows: (1) The most probable path is composed greedily

by taking the next position that has the highest probability

value within the transition matrix of the WWP model. (2) User

nodes are sorted by increasing number of applications demand

and then services within each application are sorted first by

data dependency (within sensor to actuator data path), and

second by increasing CPU demand. (3) For each time t ∈ T ,

user u ∈ U, application ai ∈ Au, we try to place sj ∈ ai. We

estimate system computation energy consumption fC , com-

munication time dta and communication energy consumption

fN of the sub-graph composed of previous placed services

and the service sj . The computed values of fC ,fN and dta
are normalized and then the chosen placement is the one

that gives the minimum value of G = 1
T
(fC + fN + dta).

The placement of sj is never reconsidered when placing

the remaining services. MGH has a different fitness formula

from MGA one but it has same objectives : minimize delay

violations and energy consumption. MGA approach places

services of all applications at the same time, so it is possible to

estimate delay violations in the set of applications. In contrast,

the MGH places services gradually and for each new service

to place it tries to minimize greedily the communication

delays between this last and previous placed services.

Fig. 2. Experiments map representing mobility and the Fog layers

(a) (b)

Fig. 3. Applications topologies : (a) Sequential Data flow and (b)
Master-Slave Data flow processing graphs.

V. EVALUATION

A. Experimentation description

For the validation of our placement approaches, we propose

a Fog infrastructure deployed in a 18Km2 square geograph-

ical area, represented in Figure 2 and simulated with Myi-

FogSim [15]. Experiments have been conducted on an Intel

Core i5-7200U CPU @ 2.50GHz x 4. MyiFogSim has been

extended to allow the integration of various mobility models.

As it is shown in Figure 2 from section III-A, the computing

infrastructure is composed of fixed-located Fog nodes at each

waypoint in the mobility layer. Fog nodes are connected to

the cloud with wireline links and they are reachable by IoT

nodes via access point devices. Nodes capacities values are

taken uniformly within intervals specified in Table I. Each IoT

node (smartphone) requests an application chosen uniformly

within applications class set defined in Section III-B2. Each

application ai has a services set size of ni = 3 and its graph is

either modeled with a Sequential Unidirectional or a Master

Slave data flow processing graphs with one sensor as data

source and one actuator as sink. The graphs are represented in

Figure 3. Service demand in terms of processing, memory and

storage are taken from applications presented in [14]. The time

window WT is composed of T homogeneous time slots. At t0,

IoT nodes request their applications (one application per IoT

node). For the mobility aspect, we consider several pedestrians

carrying smartphones moving between five waypoints in the

campus according to the Weighted Waypoints model. The

considered waypoints are: ”Classroom”, ”Library”, ”Cafe-

teria”, ”Other area on the campus”, ”Off campus area”.

Pause time distributions and transition for each waypoint and

transition matrices are detailed in [16]. At t0, IoT mobile

nodes are uniformly distributed between the waypoints. We

compare the proposed placement methods with a Simple

Genetic Algorithm (SGA) and with two other strategies using

migration from the literature (SAP and K-SAP). (1) Static

Genetic Algorithm (SGA) has the same parameters values

and fitness function as MGA but it does not consider the

mobility model of IoT nodes. That means that for each IoT

node u ∈ U, Fog node k ∈ M and time t ∈ T we have

P t
uk = P t0

uk. (2) Shortest Access Point migration Server

Cloudlet (SAP) consists in placing initially the requested

services on the Fog node which is associated to the IoT node



closest Access point. Then at each time slot, those services are

migrated to the distance-closest cloudlet (Fog node) following

user’s nodes path through Access points. (3) K-Users Shortest

Access Point migration Server (K-SAP) consists of applying

SAP migration process for K mobile nodes chosen randomly.

For the other nodes, services will remain placed on Fog nodes

associated to their closest Access point at t0. The minimum

value of parameter K is 0 and gives us a non migration

strategy (a static placement based on initial position of nodes).

The maximum value of K is the maximum number of mobile

nodes and leads the K-SAP to act as the SAP strategy. After

conducting experiments with various values of K we have

chosen to present the most advantageous configuration for

K-SAP which is K equal to 50% of IoT users nodes. We

set the time window WT to 1000 ∗ 60 ∗ 30 with a time

slot duration of 1000 ∗ 60 ∗ 5 respectively equivalent to 30
minutes and 5 minutes. We vary uniformly the characteristics

of nodes according to values in Table I 10 times. For each

infrastructure configuration we vary IoT nodes size from 2

to 100. For each infrastructure configuration and IoT nodes

size, we vary mobility seeds 30 times. For each infrastructure

configuration, IoT nodes size and mobility seed, we vary the

characteristics of applications 30 times with priority values

and maximum response delay taken uniformly within values

given in Section III-C, graphs are taken uniformly between

Maser-Slave and Sequential unidirectional processing data

flow. Computation and storage demands of services are taken

from [14]. Presented results are the average values by IoT

nodes size experiment. We would like to draw the reader’s

attention to the fact that those experiments focus on the

mobility aspect of IoT nodes and the placement of their

associated services. For this reason, the dimension of the

problem that is increased is the number of IoT nodes and

consequently the number of requested application.

TABLE. I.
INFRASTRUCTURE NODES DETAILS

Node Number CPU Interval

(MIPS)

RAM Interval

(MB)

Min-

Max

CPowera

Min-

Max

NPowerb

Up

Bandwidth

Inter-

val(GB/s)

Cloud 1 [2400000, 9600000] [25000, 100000] [320.339-
120.43]

[60.21-
160.16]

-

Fog 6 [1400000, 5600000] [12500, 50000] [107.339-
83.433]

[41.7165-
53.66]

[1,10]

IoT [2, 100] [500, 2000] [512, 2948] [87.53-
82.44]

[41.22-
43.76]

[1,10]

aComputation Power, bCommunication Power.

B. Results

a) Impact of number of IoT nodes on computation

energy: Figure 4a plots the average computation energy

consumption fC in joules by increasing number of mobile

nodes for each placement method. We observe that both

MGA and SGA methods minimize the computation energy

consumption and give similar results. The energy consumption

due to the services computation is not impacted by nodes

mobility: services are still hosted by the same machine during

nodes movements. These algorithms give better results than

MGH, SAP and K-SAP, the latter two giving similar results

which are the worst. The migration process in SAP and K-

SAP increases the energy computational cost because it uses

VMs replica to ensure services continuity for the IoT nodes.

Moreover, those strategies aim at reducing latency between

services and mobile nodes and do not consider the energy

cost. Also, K-SAP is less efficient compared to MGA and

SGA, due to its greedy logic for choosing a host to place

a service (it does not reconsider the placement decision for

previous placed services).

b) Impact of number of IoT nodes on communication

energy: Figure 4b plots the communication energy consump-

tion fN of the infrastructure in joules by increasing number

of mobile nodes for each placement method. In contrast to

the previous Figure 4a and as expected, the SAP approach,

which migrates the services following nodes paths, gives

the lowest communication energy, followed by MGA. By

avoiding the migration process, MGA gives as good results as

migration strategies while minimizing communication energy

consumption. The MGA reduces in average, for all problem

size (IoT nodes set size), communication energy consumption

by 73%, 55% and 93% compared respectively to K-SAP,

SGA and MGH, while SAP outperforms MGA by less than

20%. K-SAP approach is less efficient because it migrates

only K nodes services. In this scenario the network cost due

to migrations is less important than the network cost due to

communications between IoT nodes and their services. SGA

method is less efficient to minimize this metric because it

takes only the initial position of IoT nodes as input.

c) Impact of number of IoT nodes on delay violations:

Figure 4c shows the average number of delay violations f2
for different number of IoT mobile nodes for each placement

approach. We notice that SAP gives the lowest delay, followed

by MGA, MGH and SGA (the latter giving similar results).

At each slot t, SAP migrates initial services directly on the

closest Fog server which minimizes at each slot t the delay

between mobile node and its services and reduces in average,

for all problem sizes, delay violations by 48% compared to

MGA. K-SAP, by migrating only services for half mobile

nodes and keeping others on the initial nodes (the closest Fog

server), gives worse results. MGA is as good as K-SAP with

an average reduction of violations by 0.68% compared to K-

SAP, which is due to its probabilistic mobility-based approach

for delay violations minimization. MGA also reduces the

number of violations by 28% and 29% compared respectively

to SGA and MGH.

d) Impact of number of IoT nodes on execution time of

the placement method: Figure 5b shows the average compu-

tation time of MGA, SGA and MGH methods. MGH is a fast

greedy method compared to SGA and MGA which are both

evolutionary algorithms and usually those techniques are more

time consuming compared to greedy heuristics. Moreover,

MGA has an additional computation time compared to SGA

which is due to mobile nodes paths estimation. Nevertheless,

we notice that MGA takes only 6 seconds to place 270

services (3x90) in an infrastructure containing 90 mobile

nodes. In this figure we present the time taken by the place-

ment approaches to choose a services placement combination

that minimizes the previously defined objectives. K-SAP and

SAP are migration approaches, so their computation time is

not comparable with the computation time of the described

placement strategies.

e) Results analysis: Figure 5a plots average normalized

values within [0, 1] of computation energy, communication

energy, delay violations and execution time for all experiments

and for each placement method. This Figure comes as a

summary to previous presented results. MGA outperforms

other placement methods in terms of computation and network

energy consumption and gives as good results as K-SAP
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Fig. 5. (a) Normalized average values of computation and network
energy consumption, delay violations and execution time for all
experiments and methods through radar graph, (b) Average values
of execution time per increasing number of IoT nodes for each
placement method.

migration strategy to minimize delay violations. From the pre-

vious analyzed results, we can conclude that the MGA gives

a good trade-off between both energy and delay violations

values and gives better results than some migration strategies.

The MGA strategy can be considered as a good alternative

to avoid migration operations that can be time and energy

consuming approaches. MGA offers a new way to handle

dynamic environments with mobile nodes.

VI. CONCLUSION

In this work we have presented a probabilistic mobility-

based Genetic Algorithm (MGA) and a mobility greedy

heuristic (MGH) for an efficient services placement in the

Fog that minimizes the infrastructure energy consumption and

applications delay violations over time. We have extended

MyiFogSim with mobility models and implemented a pedes-

trian mobility scenario in a smart campus with a Weighted

Waypoints mobility model [16]. The proposed placement

method MGA, outperforms the migrations strategies SAP and

K-SAP for energy minimization and it outperforms SGA, K-

SAP and MGH for delay violations minimization. As future

work, we will extend our model with vehicles mobility models

and study the scalability of the proposed approaches by in-

creasing the number of application services, since preliminary

experiments have shown that it does not impact significantly

the approaches performances. We plan to work with various

applications topologies to investigate their impact on the

placement approaches behaviors.
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