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Introduction

It is now well-accepted that soil microbial communities play a pivotal role in the functioning of terrestrial ecosystems [START_REF] Eisenhauer | Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment[END_REF][START_REF] Bradford | A test of the hierarchical model of litter decomposition[END_REF], in particular through their interactions with plant communities and their influence on nutrient cycling [START_REF] Bardgett | Microbial contributions to climate change through carbon cycle feedbacks[END_REF][START_REF] Van Der Heijden | The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[END_REF]. Because soil microbial communities are diverse and composed of organisms with different evolutionary histories, ecological processes determining their structure are thus expected to be numerous and interacting, and to differ among microbial clades. Some studies have shown that, at the landscape scale, microbial communities β-diversity is mainly determined by pedoclimatic conditions [START_REF] Hazard | The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale[END_REF][START_REF] Lazzaro | Structures of microbial communities in alpine soils: seasonal and elevational effects[END_REF]; while other studies have demonstrated mutual influence between plant and microbial communities [START_REF] Zinger | Contrasting diversity patterns of crenarchaeal, bacterial and fungal soil communities in an alpine landscape[END_REF][START_REF] Yuan | Plant community and soil chemistry responses to long-term nitrogen inputs drive changes in alpine bacterial communities[END_REF]. Plants engineer the habitat of soil microbes [START_REF] Rillig | The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species[END_REF][START_REF] Bardgett | Herbivore-mediated linkages between aboveground and belowground communities[END_REF][START_REF] Van Der Heijden | The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[END_REF]. In turn, soil microbes influence plant fitness, for instance, by mobilizing and stabilizing nutrients or increasing plant host tolerance to a variety of stresses [START_REF] Hacquard | Microbiota and host nutrition across plant and animal kingdoms[END_REF][START_REF] Vandenkoornhuyse | The importance of the microbiome of the plant holobiont[END_REF]).

Among microbial communities, fungal communities are expected to have the strongest covariation with plant communities because of the tight mutualistic relationship between fungi and plants; in contrast, bacterial and archaeal communities are thought to be more influenced by their abiotic environment [START_REF] Roy | Microbes on the cliff: alpine cushion plants structure bacterial and fungal communities. -Name Front[END_REF][START_REF] Lange | Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland[END_REF][START_REF] Van Der Heijden | A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment[END_REF]. Nonetheless, the linkage between plant and microbial β-diversities appears modest in many studies [START_REF] Barberán | Relating belowground microbial composition to the taxonomic, phylogenetic and functional trait distributions of trees in a tropical forest[END_REF][START_REF] Bahram | Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment[END_REF][START_REF] Zinger | Soil community assembly varies across body sizes in a tropical forest[END_REF]). These inconsistencies emphasize that despite considerable advances, there is still no general synthesis on how microbial communities change across space and whether spatial turnover is predictable from basic principles [START_REF] Keddy | Assembly and response rules: two goals for predictive community ecology[END_REF][START_REF] Nemergut | Patterns and processes of microbial community assembly[END_REF]. We argue that this gap in knowledge can be addressed through the study of microbial communities across multiple spatial scales and across multiple phylogenetic scales.

Spatial scale is known to strongly influence the detection of assembly rules [START_REF] Swenson | The problem and promise of scale dependency in community phylogenetics[END_REF][START_REF] Chalmandrier | Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands[END_REF]). Yet spatial scale is often not appropriately considered or is ignored in analyses of soil microbial β-diversity. On the one hand, typical 'large-scale studies' focus on a large geographical area, include a broad range of environmental conditions and are based on communities defined on a large spatial grain (e.g. sampling unit area). These studies tend to detect the effects of broad environmental gradients rather than of local biotic interactions and stochastic population dynamics (Chalmandrier et al. 2013, Araújo and[START_REF] Araújo | The geographic scaling of biotic interactions[END_REF]. On the other hand, typical 'small spatial scale studies' focus on small geographical areas that reflect local pools of species able to survive within the same environmental conditions [START_REF] De Bello | Functional species pool framework to test for biotic effects on community assembly[END_REF]). In such studies, communities are often defined at a small grain, where local processes, such as biotic interactions, are more prominent. A small spatial scale study therefore tends to negate the influence of broad environmental gradients on community structure and better reveal the signal of local assembly processes such as biotic interactions or ecological drift [START_REF] Chalmandrier | A family of null models to distinguish between environmental filtering and biotic interactions in functional diversity patterns[END_REF], 2017[START_REF] Chase | Spatial scale resolves the niche versus neutral theory debate[END_REF]. The integration of different spatial scales into soil microbial studies is thus essential to comprehensively analyze the multiple drivers determining the β-diversity of these communities.

There is increasing evidence that evolutionary histories of taxa constrain community assemblages [START_REF] Groussin | Unraveling the processes shaping mammalian gut microbiomes over evolutionary time[END_REF][START_REF] Graham | Phylogenetic scale in ecology and evolution[END_REF]. For instance, species from the same lineage may share ecological characteristics that can promote their co-occurrence in a given habitat, resulting in phylogenetic turnover across environmental gradients; conversely, these shared characteristics may hinder coexistence through increased competition, resulting in a low phylogenetic turnover across environmental gradients [START_REF] Chalmandrier | Effects of species' similarity and dominance on the functional and phylogenetic structure of an alpine plant meta-community[END_REF]. To study evolutionary history on microbial community assembly, a promising approach is to define molecular operational taxonomic units (MOTUs) at different phylogenetic grains (or resolution, sensu [START_REF] Hanson | Beyond biogeographic patterns: processes shaping the microbial landscape[END_REF], and then to apply classical community diversity pattern analyses. Since some specific microbial and plant traits show phylogenetic signal [START_REF] Martiny | Microbiomes in light of traits: a phylogenetic perspective[END_REF][START_REF] Valverde-Barrantes | A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants -Valverde-Barrantes[END_REF], one could expect microbial β-diversity patterns to be shaped by different processes depending on the phylogenetic grain at which MOTUs are defined [START_REF] Graham | Phylogenetic scale in ecology and evolution[END_REF]. For instance, stochastic population processes are expected to generate ecological drift [START_REF] Vellend | Conceptual synthesis in community ecology[END_REF] but should be detectable only at fine phylogenetic grain (i.e. when lineages are defined close to the tips and should thus delineate species boundaries). Conversely, if environmental filtering favors certain lineages that exhibit adequate adaptations, we expect its imprint on community β-diversity to be more detectable at a coarser phylogenetic grain.

In this study, we propose to integrate soil organism and plant evolutionary history to investigate how abiotic processes and biotic interactions with plants shape soil microbial β-diversity at large and small spatial scale. To this end, we collected 378 soil cores in eighteen mountain grassland community plots along an elevation gradient (1856-2725 m a.s.l.). We characterized environmental dissimilarities among plots and measured the spatial distances among samples within each plot. We then used DNA metabarcoding to measure fungal, bacterial, archaeal and plant β-diversity across multiple phylogenetic grains and at two spatial scales: between community plots (hereafter referred to aslandscape scale); and between samples within community plots (hereafter, the plot scale). We then tested the following hypotheses.

(H1) At the landscape scale, we expect soil microbial β-diversities to strongly covary with environmental dissimilarities and weakly with plant β-diversity.

(H2) At the plot scale, we expect soil microbial β-diversity to strongly covary with plant β-diversity and spatial distances, reflecting the influence of interactions between microbes and vegetation and of ecological drift, respectively.

(H3) The relative importance of community assembly rules should differ between the three microbial groups: we expect plant β-diversity to covary more strongly with fungal β-diversity than with bacterial and archaeal β-diversity, irrespective of spatial scale.

(H4) As adaptative traits for soil microbes and plants may display different levels of phylogenetic signal, we expect the influence of space, environmental and biotic drivers on microbial β-diversity to vary according to the phylogenetic grain considered.

Material and methods

Study site and sampling

The study was conducted in the central French Alps (45.12°N, 6.40°E) in summer 2012. Nine sites within exclosures were studied along a continuous 869 m elevation gradient (1856-2725 m a.s.l.) in a pasture grazed by cattle. In this region, subalpine grasslands dominated at low elevation and alpine meadows at high elevation. All sites were on the same south-facing slope, which was composed of moderately acidic soils (pH between 4.9 and 5.7) to minimize environmental variations unrelated to elevation. In each site, we set up two 100 m 2 square plots separated from each other by a few meters. Three botanical surveys (in June, July and August) reported a total of 211 plant species across all plots with an average of 57.67 species per plot. In each plot, 21 samples from the top soil layer (0-10 cm) were collected along the two diagonals, for a total of 378 soil samples (Supplementary material Appendix 1 Fig. A1). Each soil sample contained ~50 g of soil, including both bulk soil and plant roots. The position of the samples along these transects was optimized to have the most uniform distribution of between-sample spatial distances (Supplementary material Appendix 1 Fig. A1,A2).

Environmental information

We measured an array of environmental variables to estimate the environmental dissimilarity among plots: 1) mean annual soil temperature was estimated from field meteorological stations placed in each site; 2) growing season length (GSL) and annual number of frost days were based on daily maps of snow cover and air temperature values following the methodology defined in [START_REF] Carlson | Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities[END_REF]; 3) top soil (0-10 cm) characteristics were determined for each plot from the average values obtained from three soil samples collected in August 2012 (C/N ratio, organic matter content and five variables describing soil nitrogen content and fluxes); 4) topographic wetness index and slope, inferred from airborne LiDAR data acquired during the year of the sampling. The environmental dissimilarity between each plot was estimated with Euclidean distances from the first five axes of a principal component analysis of all environmental variables, which were first standardized. These axes explained 90% of the total variance of the environmental dataset. Due to our sampling design, spatial distances among plots were highly correlated with elevation differences (Mantel test, Pearson's r = 0.99, p < 0.001) and environmental dissimilarities (Mantel test, Pearson's r = 0.74, p < 0.001), and were thus ignored in the analysis of microbial β-diversity at the landscape scale. Details about the sampling of environmental variables are available in Supplementary material Appendix 1.

DNA extraction, amplification and sequencing

Extracellular DNA from soil samples was extracted within 8 h after collection following a protocol adapted from [START_REF] Taberlet | Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies[END_REF]. Details about the extraction procedure are available in Supplementary material Appendix 1. Each sample was subdivided into two subsamples of 10 g each, which were used as DNA extraction replicates to allow for controlling amplification biases [START_REF] Ficetola | Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data[END_REF]. Four primer pairs were used to amplify specifically the v8-9 region of the 16S rRNA gene in archaea [START_REF] Taberlet | Environmental DNA: for biodiversity research and monitoring[END_REF], the v5-6 region of the 16S rRNA gene in bacteria [START_REF] Fliegerova | Effect of DNA extraction and sample preservation method on rumen bacterial population[END_REF], the ITS1 in fungi (Fung02 in [START_REF] Pansu | Long-lasting modification of soil fungal diversity associated with the introduction of rabbits to a remote sub-Antarctic archipelago[END_REF][START_REF] Taberlet | Environmental DNA: for biodiversity research and monitoring[END_REF]) and the P6 loop of the chloroplast trnL intron in vascular plants [START_REF] Taberlet | Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding[END_REF]. For each marker, we conducted two PCRs per extraction replicate (i.e. a total of four replicates per sample).

Data processing

We used the data curation procedure detailed in [START_REF] Zinger | Body size determines soil community assembly in a tropical forest[END_REF] and [START_REF] Ohlmann | Mapping the imprint of biotic interactions on β-diversity[END_REF]. This procedure sequentially performs the following steps: assembly of paired-end reads; assignment of reads to samples; removal of low-quality reads, singletons and chimeras; and building of MOTUs (more details are available in Supplementary material Appendix 2). We chose a dissimilarity threshold of three mismatches to define MOTUs. Taxonomic assignments of MOTUs were obtained by comparing sequences against full-length references from the EMBL, SILVA and UNITE databases [START_REF] Pruesse | SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB[END_REF][START_REF] Koljalg | Towards a unified paradigm for sequencebased identification of fungi[END_REF]) and a database specific to arctico-alpine plants [START_REF] Willerslev | Fifty thousand years of Arctic vegetation and megafaunal diet[END_REF]. Finally, we removed MOTUs with less than or equal to two reads from each sample. Basic characteristics of the sample-by-MOTUs matrices that were created for bacteria, archaea, fungi and plants (number of MOTUs, sequence length, number of reads) are available in Table 1 and Supplementary material Appendix 2 Table A2.

Analysis

Step 1 -Generation of MOTU phylogenies Our approach strongly relies on the evolutionary history of all clades surveyed here. However, retrieving the evolutionary history of organisms from DNA metabarcoding data is not a trivial exercise.

First, DNA metabarcoding markers are short (i.e. between 50 and 400 bp), prone to mutational saturation, and hence yield low phylogenetic signal [START_REF] Moreira | Molecular phylogeny: pitfalls and progress[END_REF]Philippe 2000, Deagle et al. 2014). This prevents the direct use of MOTUs defined from DNA sequence dissimilarity thresholds to assess the effect of phylogenetic grain on microbial β-diversity. In addition, these markers are often polymorphic in length and cover a a large taxonomic range. Current reconstruction methods are strongly affected by these characteristics and do not produce reliable phylogenies from DNA metabarcoding markers, when these markers are used in isolation (reviewed by Coissac et al. 2012, Zinger and[START_REF] Zinger | Coalescing molecular evolution and DNA barcoding[END_REF]. Here, we applied a more rigorous approach that consists in placing the observed MOTUs on reliable reference phylogenies (i.e. based on longer DNA sequences and/or multiple loci) from their taxonomic assignment.

Second, the taxonomic resolution of such short DNA metabarcoding markers can be relatively low and/or heterogeneous across lineages, which prevents a consistent identification at the species level for every detected organism of the targeted taxon. In addition, while under constant improvement, DNA reference databases for microbes are still incomplete. Consequently, taxonomic information about MOTUs does not always allow precise location on a reference phylogeny, which can increase uncertainty in diversity estimates. To overcome these issues, we propose here a new method: based on MOTU taxonomic assignations and reference phylogenies (Fig. 1 -blue frame) that seeks to characterize the uncertainty in phylogenetic placement. Briefly, for each marker, we produced a distribution of 50 MOTUs phylogenies to capture the uncertainty in the placement of each MOTU on the reference phylogenies.

Reference phylogenies -we used four reference phylogenies describing the evolutionary relationships of each lineage (archaea, bacteria, fungi and plants). The bacterial and archaeal phylogenies were taken from [START_REF] Lang | Phylogeny of bacterial and archaeal genomes using conserved genes: supertrees and supermatrices[END_REF], and the fungal phylogeny from [START_REF] James | Reconstructing the early evolution of Fungi using a six-gene phylogeny[END_REF]. These three phylogenies were transformed into ultrametric phylogenies using the R-function 'chronos' (R-package ape [START_REF] Paradis | APE: analyses of phylogenetics and evolution in R language[END_REF]). The plant phylogeny was an ultrametric genus-level phylogeny of alpine plants from [START_REF] Roquet | Building megaphylogenies for macroecology: taking up the challenge[END_REF].

Taxonomic information -the taxonomic classification of each tip of the reference phylogenies and each MOTU was automatically retrieved from the NCBI taxonomy database [START_REF] Sayers | Database resources of the National Center for Biotechnology Information[END_REF]) using the R-function 'classification' (R-package taxize [START_REF] Chamberlain | taxize: taxonomic information from around the web[END_REF].

Placing MOTUs on reference phylogenies -we conceived an algorithm that 1) compares the taxonomic information of the reference phylogeny tips to that of MOTUS, and 2) optimally grafts each MOTU sequentially on the reference phylogenetic tree. The algorithm works as follows: given a clade to which the MOTU is assigned, the MOTU is stitched randomly to a tip or a branch in the relevant clade in the reference phylogeny. In some cases, the taxonomic information of the MOTU was too precise compared to the resolution of the reference phylogeny. In this case, the taxonomic information was downgraded to the most precise taxonomic level represented in the tips of the reference phylogeny. The updated phylogeny was then used for subsequent MOTU grafting until all MOTUs were placed on the reference phylogeny (Fig. 2).

Most MOTUs have an identifiable classification in the highest taxonomic ranks. Consequently, they are always associated with the same lineages when those are defined at a coarse phylogenetic grain. However, numerous MOTUs are not assigned accurately to low taxonomic ranks. Consequently, lineages defined at a fine phylogenetic grain, have more variable MOTU composition. To control for this degree of randomness, we generated 50 phylogenies for each of the four clades surveyed here (archaea, bacteria, fungi and plants).

Step 2 -Estimating β-diversity across phylogenetic grain and spatial scales Sample and plot scale MOTU relative abundance -we used DNA abundances to calculate our diversity metrics as a way to down-weight low-abundance sequences that may be false Table 1. Basic characteristics of archaeal, bacterial, fungal and plant communities. We report the total number of detected MOTUs for each clades, the median of their length and the number of reads per samples (and in brackets, 2.5% and 97.5% quantile) as well as the median of sample diversity, between-samples β-diversity within plots, plot diversity and between-plots β-diversity (and in brackets, 2.5% and 97.5% quantile). All diversity indices are based on the inverse of Simpson and are computed before exclusion of rare MOTUs (≤ 2 reads) and rarefaction (see Methods). positives [START_REF] Haegeman | Robust estimation of microbial diversity in theory and in practice[END_REF][START_REF] Brown | Scraping the bottom of the barrel: are rare high throughput sequences artifacts?[END_REF]. In other words we used read counts not as true abundances but as a way of weighting sequences that are more likely to be genuine more heavily than those sequences that are likely to be methodological artifacts [START_REF] Calderón-Sanou | From environmental DNA sequences to ecological conclusions: how strong is the influence of data curation strategies[END_REF]. For example, we detected more plant MOTUs larger than expected from our botanical survey (543 plant MOTUs against 221 plant species), indicating that some rare DNA sequences are probably artefacts. However, because we are aware that the reliability of estimating MOTU relative abundance through read counts is a topic of debate [START_REF] Deiner | Environmental DNA metabarcoding: transforming how we survey animal and plant communities[END_REF][START_REF] Fonseca | Pitfalls in relative abundance estimation using eDNA metabarcoding[END_REF], we also performed our analyses with presence/absence matrices and presented those in Supplementary material Appendix 4. The total number of sequences per sample was uneven across samples, a feature that may be due to variation in initial concentration of DNA in the sample or to extraction, amplification and sequencing biases. To solve this issue, we used a rarefaction procedure. We randomly sampled a fixed number of sequences per sample. This fixed number was the minimum number of sequences observed across all samples of all plots and was specific to each clade [START_REF] Weiss | Normalization and microbial differential abundance strategies depend upon data characteristics[END_REF]). This rarefaction procedure did not induce any significant difference on β-diversity estimates (Supplementary material Appendix 2 Table A2).

Archaea

We then estimated the relative abundance of each MOTU in each sample using the following relationship between the number of sequences of MOTU i in the sample j, N ij and its estimated relative abundance p ij .

p N N i j ij ij i , log( ) log( ) = + + ∑ 1 1
The log-transformation of MOTUs read abundances prior to the standardization was justified by a preliminary study on positive control samples which showed that such relative abundance estimates of plant MOTUs were better correlated to the initial DNA concentrations of their corresponding taxa before amplification and sequencing (Pearson correlation: r = 0.68, p < 0.05, Supplementary material Appendix 2). At the landscape scale, MOTU relative abundance was estimated by averaging these relative abundance estimates between samples from the same plot.

Defining phylogenetic grain -for all clades, the MOTU relative abundance matrices at the landscape and at the plot scale were aggregated at 139 different phylogenetic grains (a coarse phylogenetic grain reflects ancient lineages, while a fine grain reflects recent lineages). These age values were defined to reflect the age distribution of each phylogeny nodes (see Supplementary material Appendix 2 for details). Each phylogenetic grain defines lineages of MOTUs. MOTU relative abundances were then summed within each lineage at both the landscape scale and the plot scale. We thus obtained for each clade, each spatial scale (landscape and plot) and each phylogeny, 139 matrices of MOTU lineage relative abundances (i.e. one per phylogenetic grain).

Pairwise MOTU β-diversity estimation -we estimated pairwise β-diversities between plots (landscape scale) and between samples (plot scale) across phylogenetic grains. We used the inverse of Simpson that varies between 1 (identical samples/plots) and 2 (completely dissimilar samples/ plots). This metric was used because 1) it is independent of α-diversity [START_REF] Jost | Partitioning diversity into independent alpha and beta components[END_REF], which is advantageous as the diversities of microbes and plants are expected to change across the elevation gradient and 2) it more heavily weights MOTUs Figure 1. Workflow for the plot scale analysis. (I -blue) From a reference phylogeny and the assignation table of detected MOTUs (referred below as MOTU1, MOTU2…), a MOTU phylogeny is generated. (II -red) For a given phylogenetic grain, lineages are defined and based on this grouping (here MOTU1 and MOTU2 on one hand and MOTU4 and MOTU5 on the other are grouped together), the rows of the MOTU by samples relative abundance table are summed. (III -green) From this new 'MOTU lineage by sample' relative abundance table, the β-diversity distance matrix between samples is calculated. This distance matrix is then used as the response variable of the linear mixed models that aimed to measure the respective influence of plant β-diversity (a β-diversity distance matrix generated through a similar process with plants MOTUs) and spatial distance. The workflow for the landscape scale analysis is similar but uses a MOTU by plot relative abundance table obtained by summing MOTUs relative abundance across samples of each plot, and use an environmental dissimilarity matrix instead of a spatial distance matrix. that are relatively more abundant which makes the metric more robust to rare and sometimes artifactual MOTUs [START_REF] Haegeman | Robust estimation of microbial diversity in theory and in practice[END_REF]. Since the resulting distribution of pairwise β-diversity values was right-skewed, we transformed them with the function f ( ) ( ) β β-1 = to approach a normal distribution. Basic diversity estimates are available in Table 1.

Step 3 -Variance partitioning

We teased apart 1) at the landscape scale, the effects of plant community structure and environment and 2) at the plot scale, the effects of plant community structure and spatial distance using a variance partitioning approach. It was based on sets of linear mixed models that included a random effect factor to account for the non-independence of pairwise distances [START_REF] Clarke | Confidence limits for regression relationships between distance matrices: estimating gene flow with distance[END_REF][START_REF] Lexer | Genomics of the divergence continuum in an African plant biodiversity hotspot, I: drivers of population divergence in Restio capensis (Restionaceae)[END_REF].

Landscape scale -we modeled the β-diversity of each microbial group as a function of the β-diversity of plants and the environmental dissimilarity between plots. All variables were standardized. We compared the linear mixed effect models with the following fixed effects:

Full model: b b ij y i j x ij a b c , , ( ) ( ) ( ) MIC V EG Dis env = ´+ ´+ Environmental model: β ij y i j b c , ( ) ( ) MIC D is env = × + Biotic model: b b ij y i j x a c , , ( ) ( ) MIC V EG = ´+
where β ij,y (MIC) is the β-diversity of the focal microbial clade at phylogenetic grain y between plots i and plot j; β ij,x (VEG) is the β-diversity of plants at phylogenetic grain x between plots i and j; Dis ij (env) is the environmental dissimilarity between plot i and plot j; and a, b, c the parameters to estimate in each model.

We then calculated the marginal variance explained by each model [START_REF] Nakagawa | A general and simple method for obtaining R2 from generalized linear mixed-effects models[END_REF] and expressed the fractions of variance explained by plant community structure alone mR xy (VEG), environmental dissimilarity alone mR xy (ENV) and the fraction where the effect of plant community structure and the effect of environmental dissimilarity cannot be distinguished mR xy (VEG∩ENV) given microbial lineage y and plant lineage age x as follows [START_REF] Legendre | Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis[END_REF] xy (full model) The analysis was repeated for 50 different couplets of unique microbial and plant phylogenies. We then visualized the median of the corresponding fractions of variance across phylogenies using heat maps (Fig. 3) and further reported the median, 2.5% and 97.5% quantiles of those fractions when exposing the results. We then compare mR 2 xy (VEG), mR 2 xy (ENV) and mR 2 xy (VEG∩ENV) to answer H1, compare their values across microbial taxa to answer H3 and across phylogenetic grains x and y to answer H4. The covariation between plant β-diversity and environmental dissimilarity was also investigated (Supplementary material Appendix 3).

Plot scale -we used the same approach as above at the plot scale, except that i and j refers to samples rather than plots. We only considered the β-diversity pairs within plots and added a random effect for each plot. The fixed effects were the plant community β-diversity (VEG) and the spatial distances (DIS). We then compare mR 2 xy (VEG), mR 2 xy (DIS) and mR 2 xy (VEG∩DIS) to answer H2, compare their values across microbial taxa to answer H3 and across phylogenetic grains x and y to answer H4. We also studied the covariation between plant β-diversity and spatial distance within plots (Supplementary material Appendix 3).

For fungi, the results suggested a covariation between fungal and plant lineages at the plot scale that was not observed for bacteria and archaea. To further explain this pattern, we conducted a supplementary analysis of the partial correlation between plant and fungal lineages relative abundances within each plot (R-package: netassoc, [START_REF] Morueta-Holme | A network approach for inferring species associations from co-occurrence data[END_REF]. For this, plant and fungal lineages were defined at the age values for which mR 2 xy (VEG) was maximal. We then reported the plant-fungi associations that exhibited the largest with partial correlation coefficients (in absolute values). Detailed methods and results of this analysis are available in Supplementary material Appendix 5.

Data deposition

The data and the scripts associated to this analysis are available from the Dryad Digital Repository: < http://dx.doi. org/10.5061/dryad.m905qftwt > [START_REF] Chalmandrier | Data from: Environmental and biotic drivers of soil microbial β-diversity across spatial and phylogenetic scales[END_REF].

Results

Landscape scale drivers of soil microbial β-diversity

In general, the between-plot variance of β-diversity of microbial communities was well explained by both plant β-diversity and environmental dissimilarity (H1) albeit in different proportions among microbial taxa (H4 -Fig. 3). Fungal β-diversity was mainly explained by the joint effect of plant β-diversity and environmental dissimilarity (Fig. 3 B) with a maximum mR 2 (VEG∩ENV) median value across phylogenies of 0.383 (95% confidence interval: [0.371-0.391]), and more moderately by a vegetation effect alone (Fig. 3 A, maximum mR 2 (VEG), 0.238 [0.0837411-0.289]). Archaeal β-diversity exhibited a similar pattern: it was mainly explained by a joint effect of plant β-diversity and environmental dissimilarity (Fig. 3 H) with a maximum mR 2 (VEG∩ENV) median value across phylogenies of 0.297 [0.282-0.308], and a vegetation effect alone (Fig. 3G, maximum mR 2 (VEG), 0.138 [0.111-0.167]). Finally, the effect of environmental dissimilarity, alone or joined with plant β-diversity better explained bacterial β-diversity than plant β-diversity: (Fig. 3D-F, maximum mR 2 (ENV): 0.477 [0.453-0.494], maximum mR 2 (VEG∩ENV): 0.307 [0.296-0.321], maximum mR 2 (VEG), 0.112 [0.0811-0.140]).

Plot scale drivers of soil microbial β-diversity

Plot scale models of archaeal, bacterial and fungal β-diversities explained much less variance than at the landscape scale (maximum mR 2 value across taxa, phylogenetic grains and predictors was ≤ 0.15, Fig. 4). We found that spatial distances moderately explained fungal β-diversity (maximum mR 2 value: 0.119 [0.115-0.123]) and weakly explained bacterial and archaeal β-diversity (H3, maximum mR 2 value: 0.0703 [0.0658-0.0732] bacteria; 0.04671 [0.0426-0.0472], archaea). Plant β-diversity had a smaller explanatory power for fungi and bacteria both when considered alone (H2, H3, maximum mR 2 value: 0.0461 [0.0314-0.0529], fungi; 0.0607 [0.0535-0.0687], bacteria) and when joined with spatial distances (maximum mR 2 value: 0.0551 [0.0507-0.0606], fungi; 0.0436 [0.0402-0.0459], bacteria); and had almost no explanatory power for archaea (maximum mR 2 (VEG): 0.0107 [0.00708-0.0139]; mR 2 (VEG∩DIS): 0.0183 [0.0157-0.0204]).

Influence of phylogenetic grain

At the landscape scale, the fractions of variance explained by plant β-diversity alone, environmental dissimilarity alone or their joint effects depended on the phylogenetic grain. Fungi (and to a lesser extent, bacteria and archaea) exhibited a stronger covariation with plant β-diversity when microbial or plant MOTUs were aggregated in lineages (H4). The maximum covariation between fungi and plant β-diversity was observed when fungi MOTUs were considered at a fine phylogenetic grain and plant MOTUs at a coarse phylogenetic grain corresponding roughly to plant families (Fig. 2,3A). It is noteworthy that plant lineages do not exhibit a stronger covariation with environmental dissimilarities when defined at this phylogenetic grain compared to when they are defined at a fine phylogenetic grain (Supplementary material Appendix 3 Fig. A5).

At the plot scale, microbial β-diversity co-varied with spatial distances only when defined at fine phylogenetic grain and were only marginally influenced by the plant phylogenetic grain (Fig. 4). The effect of plant β-diversity was also dependent on both microbial and plant phylogenetic grain but changed across microbial clades: the covariation between bacterial and plant ß-diversities was maximal at a fine phylogenetic grain for both bacteria and plants; while for fungi, it was maximal at intermediate phylogenetic grains for both plants and fungi. These intermediate phylogenetic grains represented a situation where plant lineages roughly correspond to orders or families and fungal lineages to classes (Fig. 2, Supplementary material Appendix 1 Table A1). Plant lineages defined at this phylogenetic grain did not exhibit a high covariation with spatial distances (0.0384 [0.0366-0.0408], Supplementary material Appendix 3 Fig. A5).

Figure 2. Examples of phylogenies obtained by grafting MOTUs on a reference phylogeny for plant and fungi. Colors represent the main orders (plant) and classes (fungi) identified from MOTUs taxonomic assignments. Light grey branches represent minor clades or unassigned MOTUs. The algorithm (see Methods) then placed the latter at random in the phylogeny while constraining them by available taxonomic information. Lines on the plant and fungal phylogenies indicate the phylogenetic grain at which the covariation between plant and fungal β-diversity is maximal at landscape scale (full line -Fig. 3A) and at plot scale (dashed line -Fig. 4A).

Our supplementary analysis revealed what associations between fungal and plant lineages are behind this covariation (Supplementary material Appendix 4 Fig. A6). Among the strongest detected associations, we found that the relative abundances of Glomeromycetes lineages were positively associated with Fabacaeae, Euphorbioideae and Poaceae abundances (partial correlation coefficient averaged across plots are respectively of 0.0128, 0.00925, 0.0113), and were also negatively associated with Cyperoideae (-0.009). Agaricomycetes were positively associated to Cyperoideae (0.0124) and negatively to Poaceae (-0.0104). We also detected a positive association (0.00935) between Pezizomycotina and Ericaceae.

Discussion

Despite considerable advances, there is still inconsistencies on how microbial communities are expected to change across environmental gradients. Here, we show that assessing soil microbial communities at different spatial scales while accounting for their evolutionary history can inform our understanding of the processes forging their assembly.

Predominant drivers of microbial assembly

Soil microbial diversity is known to be structured by elevation gradients [START_REF] King | Biogeography and habitat modelling of high-alpine bacteria[END_REF][START_REF] Pellissier | Soil fungal communities of grasslands are environmentally structured at a regional scale in the Alps[END_REF]), but it remains unclear whether this results directly from variation in environmental conditions or whether it is mediated by biotic interactions with plant communities. Our results show an important covariation between plant and microbial communities (H1). However, plant importance differed among microbial groups (H3): direct effects were especially high for fungi, moderate for archeae and low for bacteria. For bacteria, the direct effects of environmental conditions (or joint effect of environment and plant) were more important, confirming previous studies that have consistently linked pedoclimatic variations to bacterial community turnover along elevation gradients [START_REF] Zinger | Contrasting diversity patterns of crenarchaeal, bacterial and fungal soil communities in an alpine landscape[END_REF][START_REF] Singh | A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan[END_REF].

At the plot scale, a large part of the turnover of soil microbial communities was left unexplained by our predictors (H2), suggesting that their assembly is more stochastic than deterministic [START_REF] Stegen | Stochastic and deterministic assembly processes in subsurface microbial communities[END_REF][START_REF] Bahram | Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment[END_REF]) or that we did not include critical factors such as local environmental variation or microbe-microbe interactions [START_REF] Darrouzet-Nardi | Hot spots of inorganic nitrogen availability in an alpine-subalpine ecosystem, colorado front range[END_REF]Bowman 2011, Ohlmann et al. 2018). Nonetheless, we detected that fungal and bacterial β-diversity co-varied with that of plants with a magnitude on par with other similar studies [START_REF] Pellissier | Soil fungal communities of grasslands are environmentally structured at a regional scale in the Alps[END_REF][START_REF] Barberán | Relating belowground microbial composition to the taxonomic, phylogenetic and functional trait distributions of trees in a tropical forest[END_REF]. This may indicate that microbe-plant interactions structure, to a certain extent, the local heterogeneity of those communities. Plant communities are known to interact with specific soil microbial communities in their rhizosphere, which can influence the structure and function of both plant and microbial assemblages as well as ecosystem functioning, such as nutrient fluxes [START_REF] Rillig | The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species[END_REF][START_REF] Ohlmann | Mapping the imprint of biotic interactions on β-diversity[END_REF]. [START_REF] Vandenkoornhuyse | The importance of the microbiome of the plant holobiont[END_REF] go as far as describing plants and their attached microbial community as 'holobionts' because of the mutualistic links between plants and soil microbes that built on, for instance, local soil modifications or root exudate production [START_REF] Broeckling | Root exudates regulate soil fungal community composition and diversity[END_REF][START_REF] Lange | Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland[END_REF][START_REF] Legay | Plant species identities and fertilization influence on arbuscular mycorrhizal fungal colonisation and soil bacterial activities[END_REF]. Our study shows that these local processes likely scale up to structure microbial communities at the landscape scale and bacterial and fungal communities at the plot scale.

Fungal, and to a lesser extent bacterial, within-plots β-diversity exhibited minor distance decay in line with previous studies [START_REF] Martiny | Drivers of bacterial β-diversity depend on spatial scale[END_REF][START_REF] Sayer | Grassland management influences spatial patterns of soil microbial communities[END_REF][START_REF] Lear | Fine-scale spatial patterns in bacterial community composition and function within freshwater ponds[END_REF]. Because of ecological drift, some bacterial or fungal strains may become locally dominant due to stochastic demographic processes [START_REF] Vellend | Conceptual synthesis in community ecology[END_REF][START_REF] Nemergut | Patterns and processes of microbial community assembly[END_REF] and would result in a patchy pattern of microbial community consistent with a local distance decay pattern [START_REF] Bahram | Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment[END_REF]. Alternatively such a distance-decay pattern could be also due to the effect of unmeasured spatially structured soil variables that would generate patch dynamics (e.g. through nutrients or organic matter patches; Darrouzet-Nardi and Bowman 2011, [START_REF] Burns | Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus[END_REF]. Support for the ecological drift hypothesis over the latter hypothesis comes from the β-diversity pattern analysis across phylogenetic grains: the 'distance-decay' signal was strongest at the tip level (i.e. close to the species level) and broke down quickly at coarser phylogenetic grains, a result expected for ecological drift. If the pattern was generated by local environmental filtering, we would have expected the distance-decay pattern to be maintained when microbial MOTUs are considered at an intermediate phylogenetic grain because niche characteristics are expected to exhibit a degree of phylogenetic signal.

Compared to fungi and bacteria, archaeal β-diversity was not as well explained by plant β-diversity or spatial distances at the plot scale (H2, H3), confirming results from previous studies in grassland microbial communities [START_REF] Zinger | Contrasting diversity patterns of crenarchaeal, bacterial and fungal soil communities in an alpine landscape[END_REF][START_REF] Prober | Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide[END_REF]. However, archaeal communities were also much less diverse than bacterial and fungal communities, and exhibited reduced heterogeneity at the plot scale (Table 1). This suggests that 1) the variation of local biotic conditions may not affect archaeal communities as dramatically; and/or that 2) the phylogenetic resolution of our archaeal marker is too coarse, and lumps together archaeal species or lineages with different ecology.

An evolutionary perspective on soil microbial assembly

The main drivers of microbial β-diversity changed with the microbial and plant phylogenetic grains that were considered (H4). At both spatial scales, plant β-diversity best explained fungal and bacterial β-diversity when plant communities were considered at an intermediate phylogenetic grain. This hints that relevant innovations promoting plant-microbe associations evolved approximately at the plant family level (at the landscape scale) and at the plant order level (at the plot scale). Candidates features could be various aspects of plant ecology that exhibit phylogenetic signal. For instance, root nitrogen content is typically low within the Asterales order and high within Fabales [START_REF] Valverde-Barrantes | A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants -Valverde-Barrantes[END_REF]). Variation in proportion of those clades within a plant community could drive changes in soil chemistry and in the associated soil microbial communities [START_REF] Orwin | Linkages of plant traits to soil properties and the functioning of temperate grassland[END_REF][START_REF] Bardgett | Going underground: root traits as drivers of ecosystem processes[END_REF]. Another example are plant mycorrhizal preferences: Poaceae species tend to have arbuscular mycorrhizae while Cyperaceae species have been characterized as ectomycorrhizal [START_REF] Cripps | Distribution of mycorrhizal types among alpine vascular plant families on the Beartooth Plateau, Rocky Mountains, U.S.A., in reference to large-scale patterns in arctic-alpine habitats[END_REF][START_REF] Brundrett | Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis[END_REF][START_REF] Gao | Ectomycorrhizal fungi associated with two species of Kobresia in an alpine meadow in the eastern Himalaya[END_REF]. Along elevation gradients, vegetation tends to shift from Poaceae to Cyperaceae dominated grasslands [START_REF] Descombes | Uneven rate of plant turnover along elevation in grasslands[END_REF], which may in turn change the structure of fungal communities.

At the plot scale, fungal communities presented a singular pattern where the maximal covariation was found at intermediate phylogenetic grains that roughly correspond to fungal classes and plant orders. This can indicate that traits associated with plants-fungi relationships developed early in their evolutionary history. Our supplementary analysis showed the associations potentially responsible of this pattern (Supplementary material Appendix 5). Partial correlation coefficients had only small values which suggests that these associations are loose and/or mainly based on generalist fungi-plant relationships [START_REF] Sieber | Fungal root endophytes[END_REF]. Some of the strongest observed associations point to known preferences of plant families for certain mycorrhizal associations: Cyperoidae species were positively associated with Agaricomycetes, which can be related to their preference for ectomycorrhizal associations, while the endomycorrhizal families Fabaceae and Poaceae were positively associated with Glomeromycetes; the clade of arbuscular mycorrhizal fungi [START_REF] Cripps | Distribution of mycorrhizal types among alpine vascular plant families on the Beartooth Plateau, Rocky Mountains, U.S.A., in reference to large-scale patterns in arctic-alpine habitats[END_REF][START_REF] Brundrett | Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis[END_REF][START_REF] Gao | Ectomycorrhizal fungi associated with two species of Kobresia in an alpine meadow in the eastern Himalaya[END_REF]. Other associations that we detected are however, to our knowledge, not documented yet. They may be due to the limitations of our methodology or indicate gaps in the current knowledge of plant-fungi relationships.

Compared to fungi, the covariation of bacteria and archaea β-diversity with plant β-diversity decreased quickly as phylogenetic grain became coarser. This may indicate 2154 that adaptations underlying the covariation with plants have evolved recently. This conclusion is tentative, however, because the bacterial and archaeal backbone trees characterized more ancient divergences compared to plant and fungal backbone trees. Thus the absence of phylogenetically-dependent covariation between bacteria or archaea and plants may be due to the lack of characterization of bacterial and archaeal divergences contemporary to the diversification of plants.

Conclusion

Our study shows how soil microbial assembly results from multiple interacting ecological and evolutionary processes. Although the strong environmental variation along the elevation gradient was expected to exercise a substantial and direct filtering on microbial communities, vegetation was an essential factor co-varying with microbial community structure. We further observed that the relative importance of co-factors of microbial community structure varied across spatial scales and among microbial clades. Bacterial communities co-varied mainly with environmental variations and less so with vegetation at the landscape scale while fungal communities co-varied with variation in vegetation structure at both large and small spatial scales. This strengthens the idea that plant and fungal trees of life are 'interwoven' [START_REF] Arnold | Interwoven branches of the plant and fungal trees of life[END_REF] and that these eco-evolutionnary contingencies scale up to affect plant and fungal community structure. Beyond its scope, our study stresses the importance of devising more complete diversity pattern analyses of microbial communities that consider multiple spatial scales and phylogenetic grains to better disentangle interacting assembly rules and uncover new eco-evolutionary aspects of community assembly.

Figure 3 .

 3 Figure 3. Explained variance (marginal R 2 ) of fungi (A-C), bacteria (D-F) and archaea (G-I) β-diversities at the landscape scale by plant β-diversity alone (A, D, G), environmental dissimilarity alone (C, F, I) and their joint effects (B, E, H, see Methods). Each plot represents how the relationship varies with the considered plant and microbial phylogenetic grain (aka. lineage age), x and y axes represent the rank of phylogenetic grain values. The effect is quantified as the median of the value across phylogenetic tree distributions. The white point indicates the position of maximal effect. The plant lineage age indicated by the white point in panel (A) is reported in Fig. 2.
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 4 Figure 4. Explained variance (marginal R 2 ) of fungi (A-C), bacteria (D-F) and archaea (G-I) β-diversities at the plot scale by plant β-diversity alone (A, D, G), spatial distance alone (C, F, I) and their joint effects (B, E, H, see Methods). Each plot represents how the relationship varies with the considered plant and microbial phylogenetic grain (aka. lineage age), x and y axes represent the rank of phylogenetic grain values. The effect is quantified as the median of the value across phylogenetic tree distributions. In each panel, the white point indicates the plant and microbial lineage age where the explained variance is maximized. The plant and fungal lineage age indicated by the white point in panel (A) are reported in Fig. 2.
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