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Abstract We performed geochemical analyses of

two lake sediment cores (1.25 and 1.5 m long) from

Lago Rogaguado, which is a large (315 km2) and

shallow lake in the Llanos de Moxos, Bolivian

Amazon, to investigate Holocene environmental

changes based on a multi-proxy dataset (XRF, density,

grain size, C:N, and macrocharcoal). One of the two

cores provides a history of environmental changes in

the Llanos de Moxos from 8100 cal BP until present,

which supplements previously published pollen and

microscopic charcoal records. Our analyses indicate

lake expansion at 5800 cal BP, which may relate to

tectonic activity. This was followed by further increas-

ing lake levels, peaking at approximately

1050–400 cal BP, which supports increasingly wetter

conditions in the Llanos de Moxos after the mid-

Holocene. A fourfold increase in macroscopic charcoal

accumulation rate and a more than fivefold increase in

sedimentation rates supports anthropogenic fire activ-

ity at around 1450 cal BP (500 CE), suggesting that

pre-Columbian populations used fire to actively man-

age the landscape during a period of maximum lake

levels around Lago Rogaguado. From 400–100 cal BP,

higher C:N, larger grain sizes and peaks in macro-

scopic charcoal accumulation rates suggest increased

watershed erosion associated with increased biomass

burning, possibly related to intensified land use.

Keywords Bolivian amazon � Llanos de moxos �
Lake level � Climate � Land use change � Shallow lake

Introduction

Palaeoenvironmental reconstructions can reveal

important information about past interactions between

climate, the environment, and humans (Messerli et al.

2000). Besides contributing to the growing collection

of palaeoenvironmental reconstructions from the

Southern Hemisphere (de Souza et al. 2019), such

studies are highly relevant to the ongoing debate

concerning the extent and impact of human occupation
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in Amazonia (Bush and Silman 2007). Scholars debate

the start of occupation as well as the extent of land use

impact and deforestation through time in Amazonia.

Half a century ago, Denevan (1966) claimed that far

greater populations had existed here for much longer

than had been previously assumed, and this idea has

continued to influence our understanding of the

Amazon (Denevan 1992). Instead of an untouched,

unchanged landscape, it is now widely accepted that

Amazonia has experienced not only climate change

and natural ecosystem shifts, but also the significant

impact of pre-Columbian people throughout the

Holocene (Neves 2008; Schaan 2008; Arroyo-Kalin

et al. 2009; Pärssinen et al. 2009; Lombardo and

Prümers 2010; Whitney et al. 2013). The debate has

now shifted to precisely how densely populated

Amazonia may have been and where these populations

were centered (Koch et al. 2019), with some

researchers pointing to domesticated landscapes (Le-

vis et al. 2017) that would have supported a pre-

Columbian population of several millions (Erickson

2008; Clement and Junqueira 2010; Denevan 2012;

Clement et al. 2015), whereas others found little

evidence of large, widespread populations in the

palaeoecological records (McMichael et al. 2012).

One area in Amazonia that has received attention

for its relevance to the study of human-climate-

landscape interactions is the Llanos de Moxos in the

Bolivian Amazon (11–16�S, 63–69�W) (Fig. 1a).

Interesting features of this area include the presence

of thousands of earthworks (Denevan 1964), as well as

evidence that Holocene climate variability impacted

human settlement, migration (Lombardo et al.

2013a, 2018) and subsistence practices (Erickson

2000; Lombardo et al. 2011; Rodrigues et al. 2015).

A few palaeoenvironmental reconstructions are

available for the Llanos de Moxos (Mayle et al. 2000;

Urrego et al. 2013; Whitney et al. 2014; Carson et al.

2015; Brugger et al., 2016) (Fig. 1a). Brugger et al.

(2016) examined the palynological record of Lago

Rogaguado in the Llanos de Moxos from one of the

same sediment cores used in this study. Their record

indicates expanding gallery forests since 5800 cal BP

that reached their maximum extent 2000 cal BP.

Based on the occurrence of Zea mays and Cerealia-

type pollen, the study also shows that local agricultural

activity has been present since at least 6500 cal BP,

which is much older than previously assumed for the

Bolivian Amazon. This result is consistent with

Lombardo et al. (2020), who show that cultivation

began ca. 10,300 cal BP in the Llanos de Moxos, and

maize was adopted around 6750 cal BP. Finally,

Brugger et al. (2016) show that the local population

and crop cultivation around Lago Rogaguado did not

collapse after the arrival of Europeans 500 cal BP. The

observation of continued occupation around Lago

Rogaguado is similar to the record from El Cerro that

shows a protracted decline (Whitney et al. 2014), but

unlike the record of Laguna Granja (Carson et al.

2014).

Climate reconstructions from the Altiplano provide

a basis for interpreting environmental changes in the

lowlands, because precipitation on the Altiplano is, to

some extent, recycled moisture from the Amazon

(Garreaud et al. 2003). Additionally, speleothems

from the Umajalanta-Chiflonkhakha cave system in

the eastern Bolivian Andes (Apaéstegui et al. 2018)

provide important high-resolution records of regional

climate variability for the last 1400 years.

Lacustrine sediments represent one of the few

suitable local palaeoenvironmental archives available

in the Llanos de Moxos. Lago Rogaguado is one of

many lakes in this area with complex physical

characteristics (shallow, large, turbid), as well as

evidence of extensive human land modification (raised

fields). In this study, we investigate geochemical

records to further constrain the palaeoenvironmental

reconstruction of Lago Rogaguado over the past ca.

12,000 years, and discuss the palaeoenvironmental

record in the context of vegetation changes deduced

from its pollen record (Brugger et al. 2016). Further-

more, our study attempts to track local fire activity

based on macroscopic charcoal and changes in sedi-

ment composition. Conclusions about past environ-

mental changes are based on a multi-proxy dataset

including X-ray fluorescence (XRF), grain size, den-

sity, biogenic silica, carbon:nitrogen (C:N), and

macroscopic charcoal.

Study area

Lago Rogaguado is located in the Llanos de Moxos in

southwestern Amazonia, Bolivia (Fig. 1a). This area

falls into the upper Madeira River basin, and includes

three major rivers: Beni, Mamoré, and Guaporé (also

called Iténez). The Llanos de Moxos consists of

wetlands spanning 100,000–155,000 km2 (Hanagarth,

1993), and strong seasonality shapes the savannah
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Fig. 1 a. Study location showing Lago Rogaguado’s position

(red square) in the Llanos de Moxos wetlands (blue shading,

outline based on Walker 2011) shown with annual precipitation

contours (mm) from the 0.25� GPCC v2018 dataset from

1951–2000 rain gauge data (Meyer-Christoffer et al. 2018), b.
Google Earth imagery of Lago Rogaguado, showing identified

palaeoriver channels (blue), pre-Columbian raised fields (or-

ange), and the locations of both lake sediment cores analyzed in

this study (LR-400 and LR-398), c. Close-ups of the raised

fields, d. Northern and southern palaeoshorelines, e. Palaeoriver

channel entering the lake. (Color figure online)
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landscape with forest growing on areas elevated above

the seasonally flooded areas, mostly fluvial deposits

(Mayle et al. 2007). Precipitation and local hydrology

are the primary ecosystem drivers in the seasonally

flooded Llanos de Moxos: river avulsions depend

partly on upland precipitation, and lowland seasonal

flooding and droughts drive the expansion of savan-

nah, dry forest, or rain forest (Mayle et al. 2007;

Lombardo 2016). During the rainy season (December-

May), direct precipitation as well as fluvial run-off

from the Bolivian Andes inundates up to 92,100 km2

(Melack and Hess 2011). Though seemingly inhos-

pitable to settlement, the area hosts thousands of

earthworks created by pre-Columbian people, and its

occupation by humans is dated to be at least

10,000 years old (Lombardo et al. 2013a, 2020;

Capriles et al. 2019). Many of the prominent landscape

modifications by pre-Columbian inhabitants, such as

raised fields and canals, may have been made in order

to adapt to this intensely fluctuating hydrological

environment (Erickson 2000; Lombardo et al.

2011, 2013a; Rodrigues et al. 2015, 2016; de Souza

2019).

The Llanos de Moxos sits between the central

Andes Mountains to the west and the Brazilian Shield

to the east. The Nazca Ridge subduction below the

Pacific side of the Andes has been ongoing since 11.2

ma (million years BP), and since 4 ma the buoyancy of

this ridge caused the uplift of the Fitzcarrald Arch—an

elevated boundary at 600 m asl running from southern

Peru to Brazil (Hampel 2002; Espurt et al. 2007). The

area that sits southward of this elevated bulge includes

the Llanos de Moxos (mean elevation of only 150 m

asl). From the perspective of the Andes Mountains to

the west, the Llanos de Moxos is located in the

foredeep of the central Andes Mountain chain, with

thick Cenozoic-aged fluvial deposits that have accu-

mulated over the deeper-lying crystalline Brazilian

Shield (Plafker 1964). Relatively recent neotectonic

shifts may have influenced the topography of the

Fitzcarrald Arch, further affecting areas in the north-

ern Llanos de Moxos (Lombardo 2014). Such tectonic

movements triggered river avulsions, fluvial deposits,

sediment erosion, and formation of numerous oxbow

and ria lakes throughout the lowlands (Dumont and

Fournier 1994; Lombardo 2014). Specifically, the area

around Lago Rogaguado is located south of a proposed

fault line (Linea Bala-Rogaguado). Hanagarth (1993)

and later Dumont (1996) proposed that tectonic uplift

related to this fault dammed a valley and formed

several lakes, among them Lago Rogaguado.

Presently, Lago Rogaguado is a turbid freshwater

basin, located in a transition zone between Cerrado-

like dry savannah and tropical rainforest. Climatically,

the lake is influenced by the strongly fluctuating

hydrological environment of the Llanos de Moxos,

with a combination of pronounced dry and rainy

seasons. The area immediately surrounding the lake is

distinct for the presence of hundreds of elongated

raised fields, created at some point in the past by pre-

Columbian populations (Tyuleneva 2010; Rodrigues

2016).

Lago Rogaguado is flanked by the Yata River and

the Beni River to the northwest and the Mamoré River

to the southeast. Although there are no permanent

fluvial inflows or outflows, the lake receives overflow

from swamps located to the southwest during the rainy

season. Additional groundwater inputs to the lake

could not be ruled out. In the past, the Beni River may

have flowed through the area now occupied by the lake

(Lombardo 2014), as is also suggested by the presence

of a distinct palaeochannel entering the southeastern

shore of the lake (Fig. 1e). The soils on the eastern and

western sides of the lake are lateritic, and therefore

nutrient-poor, low-pH, and high in iron and aluminum

(Navarro-Sánchez 2011; Lombardo et al. 2013b).

Lateritic soils, such as those flanking Lago Roga-

guado, typically have a high density of

2.5–3.6 g cm-3, are quite acidic, and contain mainly

secondary forms of iron (40–90%), secondary alu-

minum (5–50%), and some kaolinite and quartz

(though silica is mostly weathered out) (Young

1980). Rivers stemming from the Andes, such as the

Beni River in the Madeira Basin, are an important

source of Si for leached tropical soils in the Amazo-

nian lowlands, as dissolved Si is up to 50% of the load

in solution and more than half of the rivers’ total

sediment load (ranging from 20–18,000 t km-2 yr-1)

is deposited in the Llanos floodplains each year mainly

between January and March (Guyot 1992). As a result,

tropical soils with high aluminum (Al) and iron (Fe)

can be easily distinguished from fluvial sediments

eroded from the Andes that are enriched in silica (Si)

(Stallard and Edmond 1983; Guyot 1992).

Overall, the vegetation around Lago Rogaguado is

a mixture of woody savannahs and drought-tolerant

forests, as well as swamps to the north and south of the

lake. Two forested islands (around 1 km2 and 0.5 km2)
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are located in the northeastern part of the lake. Some

areas around the lake are actively farmed today

(manioc and various fruit trees were observed), and

large Mauritia flexuosa palm trees surround the

shorelines, partly submerged in shallow water. A full

vegetation description of the surrounding area is given

in Brugger et al. (2016).

Materials and methods

Fieldwork, coring, and correlating cores

Sediment cores were taken from the large (315 km2)

flat-bottomed, shallow (2–3 m average depth) Lago

Rogaguado (13�20S; 65�560W) in two coring loca-

tions: LR-400 and LR-398 (Fig. 1b). While LR-398 is

in the center of the lake 4 km from the nearest

shoreline at 2.9 m water depth, site LR-400 is located

only 2 km from the western shoreline at 2.5 m water

depth (Fig. 1b). In 2012, short sediment cores were

retrieved from each coring location (LR-400-12 and

LR-398-12 of lengths 82 cm and 73 cm, respectively)

using a gravity-coring device (UWITEC). These

locations were re-cored in 2013 with a Livingstone

piston corer from a floating boat platform (Livingstone

1955; Cushing and Wright 1965) in order to obtain

longer sediment records. The lengths of the 2013 cores

were 125 cm and 150 cm for LR-400-13 and LR-398-

13, respectively, and were limited only due to the

increasing density of the sediment and our reliance on

manual power to pull out the cores. GPS-based re-

location of the coring sites between the two fieldwork

campaigns in 2012 and 2013 may differ by up to

100 m. The LR-398-13, LR-400-12, and LR-400-13

cores were subjected to a series of laboratory proce-

dures upon arriving in Bern, Switzerland. The scan-

ning procedures included XRF scanning with an

ITRAX scanner and density measurements with a

Geotek Multi-Sensor Core Logger (MSCL). Subsam-

ples from the other core half were used for 14C dating,

grain size determination, carbon:nitrogen (C:N) ratio,

and macroscopic charcoal. Short core LR-400-12 was

analyzed for pollen, microscopic and macroscopic

charcoal by Brugger et al. (2016) (named core C1A in

their publication).

The short LR-400-12 and long LR-400-13 cores

were correlated based on visual comparison as well as

XRF measurements (ESM Fig. S1). The LR-400-12

core and the top of the LR-400-13 core could be

matched with no offset, so the bottom section of core

LR-400-13 is accordingly treated as an extension of

LR-400-12. Hereafter, the composite core consisting

of LR-400-12 and LR-400-13 is referred to as LR-400,

whereas LR-398 refers to core LR-398-13.

Chronologies

The chronology of core LR-400 is based on 7

radiocarbon dates (Brugger et al. 2016). Three new

radiocarbon dates measured on bulk sediments were

not used to update the depth-age model because such

radiocarbon dates often provide older ages than the

age of sediment deposition (Björck and Wohlfarth

2001). The depth-age model (Brugger et al. 2016) was

made for the upper 8000 years of the record at site LR-

400 using CLAM v2.2 (Blaauw 2010) (ESM Fig. S2).

This model was constrained by 14C dates on terrestrial

plant macrofossils and passes through the 2r error

range of the calibrated ages in order to account for

sample depth and age uncertainties (Birks and Hee-

gaard 2003; Heegaard et al. 2005). For core LR-398,

only two 14C dates are available, which nonetheless

enable comparison of this core to the age model of LR-

400. The SHCAL13.14 dataset was used to calibrate

all of the radiocarbon ages to calendar years before

present (cal BP) (Hogg et al. 2013), using Calib 7.0

(Stuiver and Reimer 1993).

XRF scanning

We determined the elemental composition of the split-

core surface with the ITRAX scanner (Croudace et al.

2006). The LR-400-13 and LR-398-13 cores were

scanned with a Mo-tube at 2-mm resolution for 10 s

per measurement, with a 35 kV and 35 mA setting.

Elemental intensities measured by the XRF ITRAX

are recorded in counts per second (cps); hence, they

are semi-quantitative measures. A total of 51 elements

were scanned, and we focus on seven of these elements

(Al, Fe, K, Rb, Si, Ti, and Zr) because their ratios are

suitable as local environmental indicators (Davies

et al. 2015).

Density and water content

Gamma density measurements (g cm-3) were derived

from the Geotek MSCL, using the Gamma Ray
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Attenuation Porosity Evaluator. All unopened cores

were scanned at 0.5-cm intervals, and measurements

were calibrated using a standard water-filled tube

made of the same material and diameter as the

sediment tubes. Water content by weight loss was

analyzed at 1-cm intervals.

Grain size

Grain size samples for the LR-400-12 and LR-400-13

cores as well as depths 122–66 cm of the LR-398-13

core were prepared at 1-cm resolution following Sun

et al. (2002). 10 ml of 30% H2O2 was added to

approximately 1 g of sediment to remove organic

matter, more H2O2 was added as needed, and the

samples were heated in a warm water bath of 60 �C for

six hours. The samples were then rinsed with distilled

water twice, centrifuged, given 20 ml of a 4.7:1

dispersant mixture of sodium hexametaphosphate

(NaPO3)6 and sodium carbonate (Na2CO3), and filled

with water up to 40 ml. The prepared samples were

measured using the Malvern Mastersizer 2000, which

ran an automated standard operating procedure with

high-stirrer settings. The samples received uniform

treatment: the tubes were shaken by hand for 10 s,

uncapped, tipped at an angle, and approximately 5 ml

of each 40 ml sample was pipetted into the sample

chamber of the Mastersizer instrument.

Biogenic silica (BSi)

The BSi content was investigated in 36 samples from

core LR-400 (every 4 cm throughout the core, and

every cm for the bottom 8 cm). The samples were

prepared as in Carter and Colman (1994): 30% H2O2

was added to 100 mg of dry sample to remove organic

material, followed by washing and centrifuging, and

freeze-drying. In a plastic PP-tube, 10 ml of 1 M

NaOH solution was added for 3 h with heat and

agitation to leach the mineral and biogenic silica from

the sample, followed by centrifuging and extraction of

the supernatant liquid. The silica reaction in the

supernatant was stopped by adding 70 ll of 65%

HNO3 and 12 ml of water to 700 ll of the supernatant.

The supernatant Si and Al was measured by Induc-

tively-Coupled-Plasma Optical Emission Spectrome-

try (ICP-OES) at the Paul Scherrer Institute.

Carbon:nitrogen ratios (C:N)

C:N ratio of the LR-400-12, LR-400-13, and LR-398-

13 cores was measured at a 1-cm resolution (mea-

surements were discontinuous for the top and bottom

of core LR-398-13). Approximately 40 mg of dried/

homogenized sample material was weighed and

wrapped into tin capsules. Approximately every tenth

sample was repeated in triplicate to assess the ± 1 r
standard deviation, which was 0.003 for TN, 0.05 for

TOC, and 0.25 for C:N. The capsules were combusted

by a vario EL cube CNS analyzer, and the resulting

data provides the total organic carbon (TOC), total

nitrogen (TN), as well as C:N of the measured

samples.

To assess only the organic and not inorganic carbon

content of the sediments, we used a two-step loss-on-

ignition (LOI) procedure (Dean 1974; Heiri et al.

2001). After testing four samples for a reaction with

10% HCl, as well as checking LOI at 1100 �C for four

additional samples, the Lago Rogaguado sediments

were deemed to contain negligible amounts of inor-

ganic carbon (ESM Fig. S3), and thus the LOI analysis

was omitted for all other samples.

Macroscopic charcoal

We use macroscopic charcoal to track local fire history

because the large size of macroscopic charcoal

particles restricts their transport, unlike microscopic

charcoal particles (Tinner et al. 1998; Whitlock and

Larsen 2001). For macroscopic charcoal, 1-cm thick

samples were taken contiguously from core LR-400-

12. The samples (2 cm3 in volume) were defloccu-

lated, sieved to[ 160-lm mesh size, identified,

counted, and measured under a stereomicroscope

following Finsinger et al. (2014). The data were first

interpolated at a 150-year time interval and then

smoothed with a lowess filter (Cleveland 1979) using

an 800-year window width that maximizes the signal-

to-noise index, as implemented in the CharAnalysis

software (Higuera et al. 2009).
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Results

Chronology of the sediment cores

The two lowermost radiocarbon dates of core LR-400

reached an age of ca. 11,300 cal BP (ESM Table S1).

For the rest of the core we used the depth-age model

for the sediments in the top 80 cm of site LR-400 as

previously published by Brugger et al. (2016) (ESM

Fig. S2).

The depth-age model of core LR-400–12 revealed a

shift in sedimentation rate after 36 cm depth (1050 cal

BP). The average sedimentation rate for the top 36 cm

was 0.04 cm yr-1, while the average rate for

80–37 cm was far lower (0.006 cm yr-1). The

inferred sediment deposition time was 160 yrs cm-1

for the bottom part of the core, and 30 yrs cm-1 for the

top part of the core—a more than fivefold increase in

sediment accumulation rate from the bottom to the top

of the core. The variations in sediment accumulation

matched density, with denser sediments at the bottom

(Fig. 2).

Geochemistry of the sediment cores

The coring sites LR-400 and LR-398 are separated by

a distance of 8 km and receive different amounts of

sediment based on their distance from the shoreline

(LR-398 is twice as far from the shoreline as LR-400).

Nevertheless, based on XRF data, 14C dates, and

visual stratigraphic changes, the records of the two

cores could be correlated with some confidence (ESM

Fig. S4). The lacustrine records began to match at

68 cm (LR-400) and 59 cm (LR-398), as confirmed by

the radiocarbon dates as well as by elemental ratios.

Early Holocene

The age of the material in the lowest 43 cm of LR-400

(125–82 cm depth) was uniform, and there were no

laminations: two bulk sediment dates from depths

118 cm and 85 cm yielded ages of 11,279 ± 70 and

11,278 ± 78 cal BP, respectively. Grain size at the

very bottom was predominantly clay, followed by

mostly fine silt and clay above 118 cm (ESM

Fig. S5a). We observe an increase in Zr:Rb and Si:K

(ESM Fig. S4) from 125–82 cm and a lack of biogenic

silica in core LR-400 (ESM Fig. S6). The highest Al,

Fe, and K counts were also recorded in the bottom of

core LR-400, along with total organic carbon (TOC)

values of\ 1% and highest density (Fig. 3a). A Prin-

ciple Component Analysis (PCA) of core LR-400

helps to further visualize the variability explained by

the XRF data, mean grain size, and TOC (ESM

Fig. S7).

The bottom of core LR-398 (150–118 cm) was

characterized by high and decreasing Al, Fe, and K

counts, while Ti, Zr, and Si counts reached a relatively

high plateau from 118–70 cm (Fig. 3b). In addition,

the bottom of the core is rich in bright orange-colored

oxides. An organic-rich layer followed the oxidized

sediments until 70 cm, and the grain size data showed

high variance in the entire Section 150–70 cm (ESM

Fig. S5b).

Mid-late Holocene

We found a prominent change in C:N ratio (Fig. 3a) of

core LR-400 at 81–82 cm depth (around 8100 cal BP).

The C:N ratio peaked to a value four times its previous

levels – from around 4 to 16. This shift was matched

by the peak in TOC ([ 3%) at this depth. At the same

time, XRF elemental counts showed a drop in Al, Si,

and Ti (Fig. 3a). The Si:K ratio started to decrease,

whereas the Zr:Rb ratio maintained its highest values

until 66 cm (5650 cal BP). This change in sediment

composition (high TOC, lower Si:K) occurred despite

continued input of coarser particles and higher water

transport energy (high Zr:Rb). C:N in core LR-400

dropped sharply from 14 to 10 at 68 cm depth

(5700 cal BP), and the Zr:Rb ratio dropped immedi-

ately afterwards.

Core LR-398 changed dramatically with the

appearance of the distinct clay layer between 70 and

59 cm that was not found in core LR-400. The age of

this shift (5792 ± 149 cal BP) was constrained by a
14C-dated wood fragment just above the clay layer in

core LR-398. After this point, cores LR-400 and LR-

398 represent similar lacustrine sediment deposition.

The clay layer was characterized by its light gray color

and very high K, Rb, and Sr counts juxtaposed against

low Si, Ti, and Zr (all elements besides calcium

showed a very distinct change in this layer) (Fig. 3b).

The shift at 70 cm was also shown clearly by the sharp

drop and decreased variance of Rb:K, which persisted

until the top of the core.

At * 63 cm depth (5350 cal BP) in core LR-400,

the grain size record reached its peak in sand and
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thereafter transitioned to fine silt. XRF data showed

relatively gradual changes between 68 and 36 cm

(5700–1050 cal BP), accompanied by decreasing C:N.

From 36–22 cm (1050–400 cal BP), there was a

period of minimum C:N, lowest TOC, higher Si:K

and increasing Zr:Rb, increased density and lower

water content, shift to higher sedimentation rate, as

well as higher Ti, Sr, and lower Fe. A transition to

slightly higher C:N, TOC, and silt-sized fraction starts

at 22 cm (400 cal BP) and a general shift in all XRF

series was seen at 20 cm (350 cal BP). The most

recent sediments (top 20 cm) were characterized by

relatively higher C:N values, slightly coarser grain

Fig. 3 XRF scans for ten elements (Al, Si, K, Ca, Ti, Mn, Fe,

Rb, Sr, Zr), density, % water content, C:N ratio, Total Organic

Carbon (TOC), and Total Nitrogen (TN) as percentage of dry

weight (% wt) presented for a. site LR-400 and b. site LR-398.

Horizontal dotted lines show sedimentological changes in the

cores, and vertical dashed lines represent the mean value of the

records. Note that C:N measurements were discontinuous for the

top and bottom of core LR-398, and error bars represent-

ing ± 2r are shown for the triplicate samples in both C:N plots
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size and increased Zr:Rb, decreased Si:K, and some

spikes in the Ca record.

Core LR-398 shows a sequence of geochemical

transitions similar to LR-400 after 5800 cal BP,

although this location features a lower sedimentation

rate. The two sediment cores were separated by a

distance of several kilometers in Lago Rogaguado

(Fig. 1b).

Macroscopic charcoal of site LR-400

Our 1-cm resolution macroscopic charcoal record

doubled the resolution of the previously published

record (Brugger et al. 2016), and excellent agreement

between both records validates the consistency of this

proxy. Both count-based and area-based macroscopic

charcoal accumulation rates were highly correlated in

core LR-400 (Fig. 2). Macroscopic charcoal accumu-

lation rates (macroCHAR) remained almost entirely

below average for depths 80–40 cm (8100–1600 cal

BP), and then jumped to the highest values of 0.4

pieces cm-2 year-1 at 39 cm (1450 cal BP). After the

maximum at 1450 cal BP, macroCHAR values grad-

ually but variably decreased. A smaller maximum was

centered between 400 and 100 cal BP. In the top

sediments, macroCHAR values remained consistently

higher than what was observed in the bottom half of

the core.

Discussion

A comparison of the grain size and geochemical

records shows differences between the cores prior to

5800 cal BP (ESM Fig. S4 and S5). We interpret these

to be a result of different depositional environments

and explore several mechanisms (tectonics, climate,

river runoff) that could have caused the lake level and

environmental changes suggested by our proxies. We

also focus on changes in several proxies over the past

1500 years because this is a key period in the land use

history of the Llanos de Moxos (Walker 2004;

Lombardo et al. 2013b; Prümers and Betancourt

2014; Rodrigues et al. 2015). Thus, we extend the

pollen-based understanding of the past human–envi-

ronment interactions at this site (Brugger et al. 2016)

with information from additional geochemical

proxies.

Lake basin formation and fluvial dynamics

The causes and timing of the formation of Lago

Rogaguado’s basin are uncertain; however, a tectonic

history for the area around Lago Rogaguado has been

proposed (Hanagarth 1993; Dumont 1996). Dumont

(1996) concluded that the parallel positioning of lakes

along a faultline, their elongated shape, and hardened

clay deposits were related to subsidence and faulting.

Lombardo (2014) described the fluvial and neotec-

tonic dynamics in the region, and suggested the uplift

of the Fitzcarrald Arch as a possible formation

mechanism for the lake basin itself. Prior to the basin

formation during the late Pleistocene or early

Holocene, the Beni River (now located to the north-

west of Lago Rogaguado) likely flowed through the

former valley that is now Lago Rogaguado (Lombardo

2014). Indeed, the remnants of a large river channel

cut by the southeastern shores of Lago Rogaguado are

apparent in satellite imagery (Fig. 1e). The dense,

unstratified, and Si-enriched basal sediments from

cores LR-398 and LR-400 support the hypothesis of

periodic overbank flooding over tropical swamp soils.

The uniform ages of the material in the lowest 43 cm

of LR-400 (125–82 cm depth) likely reflect a biotur-

bated soil/swamp setting rather than a discrete depo-

sition event, and such radiocarbon dates measured on

bulk sediments (both ca. 11,300 cal BP) often provide

older ages than the age of sediment deposition (Björck

and Wohlfarth 2001). The increase in Zr:Rb and Si:K

(ESM Fig. S4) from 125–82 cm and the lack of

biogenic silica in core LR-400 (ESM Fig. S6) suggests

that the silica content in Lago Rogaguado is lithogenic

rather than biogenic, probably resulting from an input

of coarser silica-enriched sediments. The bright

orange-colored oxides at the bottom of core LR-398

indicate a hydromorphic soil, compatible with a soil

forming in a backswamp. The Beni River frequently

shifted course in the past, and at some point (likely

before 5800 cal BP) it crossed the Bala-Rogagua line

to a channel north of Lago Rogaguado (Hanagarth

1993; Dumont 1996; Plotzki et al. 2011). Like other

shallow lowland Amazonian lakes that preserve

biogenic silica poorly (Bush et al. 2016), the high

Si:K of Lago Rogaguado’s basal sediments in both

cores represents fluvial input of Si-rich sediment

sources. We found that these Si-enriched sediments in

LR-398 (150–70 cm) included heavily weathered

clays (high Rb:K; Brown 2011; Burnett et al. 2011),
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and the accompanying lack of stratification and higher

C:N and density (Fig. 3b) supports the hypothesis that

this was a tropical swamp soil. Likewise, for LR-400

(125–82 cm), sediments were denser and unstratified,

with higher Si and uniform ages that likely reflect

mobile carbon in a shallow, bioturbated swamp soil

(Fig. 3a).

Mid-Holocene lake expansion

Due to Lago Rogaguado’s combination of large

surface area and shallow depth, any significant lake

level changes would have had an impact on the

composition and grain size of sediments being

deposited. Cores LR-398 and LR-400 show different

sedimentation histories in their lower sections. A start

of lake sediment accumulation in core LR-400 at

around 8100 cal BP indicates that site LR-400 was

located in a shallow lake or wetland. This is supported

by the high amounts of the alga Botryococcus (which

prefers calm, shallow water) found in core LR-400

between 80 and 69.5 cm depth (8100–5800 cal year

BP), as well as semiaquatic pollen indicating the

presence of a wetland or shallow lake (Brugger et al.

2016). In contrast, a hydromorphic soil persisted until

5800 cal BP at site LR-398. This was buried by a

distinctive clay layer and followed by lake sediment

deposition after 5790 ± 150 cal BP (date from a wood

macrofossil at the top of the clay layer), which marked

the expansion of the lake area. Based on the evidence,

the area around Lago Rogaguado was probably

partially covered with small wetlands and oxbow

lakes during the early-mid Holocene.

An abrupt shift in several of Lago Rogaguado’s

proxies occurred between 5800 and 5700 cal BP, all

pointing to a rapid lake expansion. Most prominently,

an 11-cm clay layer was deposited at the second coring

site (LR-398) located in the middle of the present-day

lake. In core LR-400, a drop in the C:N ratio from 14 to

10 occurred in just one centimeter (Fig. 3a) along with

an increase in sedimentation rate and a drop in the

Zr:Rb ratio (ESM Fig. S4b). Sediments are generally

size-sorted with increased transport distance from the

inflow (Håkanson and Jansson 2002; Last 2002), and

the deposition of coarser material can be interpreted as

higher transport energy from increased water inflow or

closer sediment source due to lower lake levels. A

drop in the Zr:Rb ratio supports a decrease in water

transport energy, again due to more distant shorelines,

with Zr representing heavy minerals and Rb repre-

senting lighter clays (Kylander et al. 2011; Chawchai

et al. 2013). A rapid decrease in C:N ratio points to a

decreased influx of terrestrial organic material to site

LR-400, which could happen if a smaller wetland area

expanded into a much larger lake. Furthermore,

despite the lower resolution in core LR-398, the C:N

ratio values in that core (60–0 cm) were substantially

lower than in core LR-400, likely because coring site

LR-398 was further away from the shoreline. For

instance, in Lake Victoria, the C:N ratio of surface

sediment samples decreased with distance from

shoreline—from 16.4 at the swampy margin to only

11.6 at a distance 400 m offshore (Talbot and Laerdal

2000; Meyers and Teranes 2001). In a parallel case

from Laguna Potrok Aike in Argentina, lake level

changes were reconstructed based on C:N ratios,

which reflected increased input from shallow water

macrophytes (tested to have a C:N of 24–29) that were

tied to lower lake levels and less transport distance to

the coring site (Haberzettl et al. 2005). While C:N

ratios may additionally reflect changes in lake internal

productivity or sediment reworking of the shoreline

(Lombardo and Veit 2014; Zhan et al. 2014), the

alignment with grain size and XRF proxies such as

Zr:Rb lends additional support to the scenario of lake

level changes at Lago Rogaguado. The two sediment

cores were separated by a distance of several kilome-

ters in Lago Rogaguado (Fig. 1b) and their distance to

the shoreline differed substantially, influencing the

amount of run-off from the catchment reaching each of

the coring locations. Sediment reworking and deposi-

tional adjustments after the major lake expansion

event may have continued for several centuries, as

seen by the peak in the sand grain size fraction

between 5800 and 5400 cal BP (Fig. 2).

Both neotectonic (Lombardo 2014) and climatic

(Brugger et al. 2016) causes have been proposed for

the expansion of Lago Rogaguado at 5800 cal BP. We

argue that a neotectonic origin for the expansion of

Lago Rogaguado at 5800 cal BP is more likely, based

on the evidence of rapid sedimentological and geo-

chemical changes in both cores. Local geologic

evidence of tectonics has been attributed to subduction

of the Nazca Ridge, which could have caused uplift

and dammed the valley at the northern limit of Lago

Rogaguado to form a so-called ria lake (Lombardo

2014). Concurrently, climate reconstructions from the

Altiplano (Baker et al. 2001; Tapia et al. 2003; Weide
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et al. 2017), Peruvian Andes (Kanner et al. 2013), and

southwestern Amazonia (Mayle and Power 2008;

Urrego et al., 2009; Novello et al., 2017), show that the

period between * 8000 and 4500 cal BP was excep-

tionally dry. Notably, Lake Titicaca salinity peaks

around 4500 cal BP (Tapia et al. 2003). At Laguna La

Gaiba in the Brazilian Pantanal, forest decline was

forced by drought in the mid-Holocene (Whitney et al.

2011) matching drier conditions inferred from leaf

wax isotopes between 9000 and 6000 cal BP (Fornace

et al. 2016), while carbonate content indicates contin-

ued evaporative lake conditions until * 4500 cal BP

(Metcalfe et al. 2014). This supports a non-climatic

cause for Lago Rogaguado’s rapid expansion at

5800 cal BP, though it does not rule out further lake

level rise due to climatic changes afterwards.

Mid-late Holocene lake level fluctuations

Trends in Amazonian moisture over the Holocene can

be explained by solar insolation changes that drive the

position of the Intertropical Convergence Zone

(ITCZ) (Mayle et al. 2000) and strength of the South

American Monsoon (SAM) (Zhou and Lau 1998).

Overall, palaeoclimate studies from southwestern

Amazonia show decreased moisture availability over

the early-mid Holocene, in contrast to increased

moisture over this time in northeastern Amazonia

(Cruz et al. 2009; Cheng et al. 2013). In southwestern

Amazonia, most palaeoecological studies show evi-

dence of wetter conditions since the mid-Holocene,

though with staggered onset: 5800 cal BP (Brugger

et al. 2016), 3000 cal BP (Mayle et al. 2000), 2500 cal

BP (Carson et al. 2014), and 1200 cal BP (Taylor et al.

2010). Continuous forest cover over the mid-Holocene

was reconstructed in the Upper Beni, suggesting that

such ecotones were relatively stable and resilient

despite changes in moisture availability (Urrego et al.

2013). The discrepancy between Amazonian palaeo-

climate reconstructions highlights the heterogeneity of

Amazonian climate and ecosystems, as emphasized by

Bush et al. (2011) and Mayle et al. (2004).

After the expansion of Lago Rogaguado at 5800 cal

BP, the C:N ratio of LR-400 steadily decreased until

reaching its minimum at 1050 cal BP. The values

remained below 6 until 400 cal BP, indicating a

relatively long period of elevated lake levels. Simul-

taneously, the sand fraction of grain size was progres-

sively replaced by silt between 5800 and 400 cal BP

(Fig. 2). These new findings provide pollen-indepen-

dent evidence for increasing moisture availability,

which was hypothesized as the trigger for expanding

gallery forests at Lago Rogaguado (Brugger et al.

2016). Increased moisture in the late Holocene is well-

documented in the Altiplano (Baker et al. 2001; Tapia

et al. 2003; Weide et al. 2017). A diatom-based study

of lake level changes in Lake Titicaca’s southern basin

showed an increase in freshwater planktic species at

1250 cal BP, marking conditions of lowest salinity

(Weide et al. 2017). This is supported by Lake

Titicaca, which reached modern high lake levels at

around 1500 cal BP (Tapia et al. 2003). Similarly, a

speleothem-based palaeoclimate reconstruction from

the eastern Bolivian Andes showed especially wet

conditions during the Medieval Climate Anomaly

(MCA) * 1050–850 cal BP (Apaéstegui et al.,

2018). These increases in moisture occurred during

the time of highest lake levels at Lago Rogaguado.

From 400–0 cal BP, the C:N ratio increased again

slightly, indicating an increase in terrestrial input and a

possible decrease in lake levels. A sequence of

undated palaeoshorelines at the northern and southern

limits of the lake, visible from satellite images

(Fig. 1d), may be remnants of former higher-than-

present lake levels. Around 400 cal BP, the Zr:Rb

ratio also increased, while the clay fraction of grain

size was progressively replaced by silt. This indicates

increased erosion, perhaps from a change in anthro-

pogenic land use. Figure 4 illustrates the proposed

hydrological scenario for Lago Rogaguado from

8100 cal BP until present.

Our new findings further clarify and add to the

pollen-inferred environmental changes around Lago

Rogaguado (Brugger et al. 2016). The lake expansion

at 5800 cal BP may have been caused by tectonic

activity that dammed the outflow and rapidly enlarged

the lake surface area. We were not able to exclude the

possibility that additional neotectonic events shaped

lake level changes since 5800 cal BP. However,

subsequent sediment accumulation showed no sharp

breaks, accumulation of clay layers, or other indica-

tions of sudden lake level changes. After the lake

expansion event, our geochemically based dataset

supports a climatically induced long term increase in

lake levels, peaking between 1050 and 400 cal BP.

This fits well with the presence of algae (Botryococcus

and Coelastrum) that indicates large expanses of

shallow water between 2700 and 500 cal BP (Brugger
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et al. 2016). Moreover, Brugger et al. (2016) found

Tetraedron algae from 500–0 cal BP, possibly indi-

cating lower pH driven by laterite erosion. The

geochemical proxies (C:N, Zr:Rb, and grain size)

likewise support a scenario of increased watershed

erosion from 400–0 cal BP. This may be a result of

human influence such as erosion and land cover

changes in the surrounding watershed, but also

coincides with higher precipitation in the eastern

Bolivian Andes (Apaéstegui et al., 2018).

Influence of human presence

The sedimentary record from Lago Rogaguado also

provides information on possible effects of human

activity in the region. Human presence in the imme-

diate area dates to at least 10,800 cal BP, with squash

first cultivated around 10,250 cal BP, manioc around

10,350 cal BP, and maize adopted around 6850 cal BP

(Lombardo et al. 2020). Interestingly, this means that

people were cultivating crops before the lake expan-

sion event around 5800 cal BP. Surprisingly, the

relatively low macroscopic charcoal accumulation

rates (macroCHAR) prior to 1450 cal BP point to

Fig. 4 Palaeohydrological

scenario developed for Lago

Rogaguado, based on

sedimentary evidence.

Shoreline positions and the

course of the Beni

palaeoriverbed inside the

modern lake in the scenarios

are hypothetical to serve the

purpose of illustrating the

scenario. The lighter-yellow

colored areas of this DEM

represent relatively lower

lying areas (148 m),

whereas darker areas show

progressively higher

elevations ([ 170 m). The

points labeled 400 and 398

represent the two coring

sites discussed in this study.

(Color figure online)
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minimal fire-related disturbances in these early occu-

pation phases.

Based on the lack of pollen from cultivated crops

between 2800 and 500 cal BP and low microscopic

charcoal accumulation rates (microCHAR; Fig. 2),

Brugger et al. (2016) argued that little agricultural

activity occurred during this time. However, the new

contiguously-sampled macroCHAR record provides

evidence that a distinct biomass-burning phase

occurred around 1450 cal BP. The elevated macro-

CHAR values coincided with the beginning of a five-

fold increase in sedimentation rate around the same

depth, suggesting that the sudden rise in macroCHAR

could be influenced by the modeled sediment-accu-

mulation rates (Finsinger et al. 2016). However,

macroscopic charcoal concentrations also increase at

this point, and we therefore exclude that the rapid

macroCHAR increase was solely due to changing

sediment accumulation rates. The marked increase in

sedimentation rate after 1450 cal BP supports the

hypothesis of increased sediment erosion, which could

be due to a land use change around the lake, as a

decrease of vegetation cover in the buffer zone

between agricultural land and the lakeshore is a

primary reason for increased sedimentation rates in

lakes (Gasiorowski 2008). The increase in sedimen-

tation rate was coeval with an expansion of pioneer

Cecropia species (Brugger et al. 2016), which is

linked to disturbance and deforestation (Leyden 1987;

Bush and Colinvaux 1994; Northrop and Horn 1996).

The marked increase in macroCHAR and sedimen-

tation rate also coincides with the earliest radiocarbon

ages from the monumental mound regions in the area

of Trinidad (Lombardo et al. 2013b; Prümers and

Betancourt 2014; de Souza et al. 2019), and the period

when agricultural raised fields were first built in the

central (Rodrigues et al. 2015) and northern (Walker

2004) Llanos de Moxos. Based on this evidence, it

appears that 1500–1400 cal BP was a period of great

expansion of pre-Columbian settlements in the Llanos

de Moxos; both a time when new sites were occupied

and old sites like the area around Lago Rogaguado

may have been re-occupied.

LR-400 had a less pronounced local maximum in

macroCHAR values between 400 and 100 cal BP.

This occurred during a period of substantial agricul-

tural changes around Lago Rogaguado from 500 cal

BP to present, with peaks in Cerealia-type pollen,

reappearance of maize pollen, and the first appearance

of Avena-type pollen that indicate intense land use

even after the arrival of Europeans (Brugger et al.

2016). Concurrent increases in C:N and Zr:Rb, as well

as a shift in the clay grain size fraction to silt (Fig. 2)

point to greater erosion. However, we cannot exclude

that higher precipitation during the LIA (Apaéstegui

et al. 2018) may have contributed to increased

sedimentation rate. Interestingly, a site located

250 km to the east of Lago Rogaguado showed a

possible population decline around 600–500 cal BP

(Carson et al. 2014), while another site only 30 km to

the east of Lago Rogaguado showed a decline in

burning and a protracted abandonment of raised field

agriculture around 750–500 cal BP (Whitney et al.

2014). Our findings suggest that Lago Rogaguado’s

population continued to thrive until 400–100 cal BP –

a time marked by significant land use changes and the

arrival of Europeans.

Today, less than a hundred villagers live around

Lago Rogaguado. Slash and burn methods are used to

clear land, however the present-day fire-activity signal

based on macroCHAR reaches only 25% of the

amplitude of the level reached at 1450 cal BP. This

probably relates to a decrease in population size as

well as a change in subsistence strategies, which

includes a major shift to cattle ranching in the Llanos

de Moxos since the late eighteenth century (Denevan

1964).

Conclusions

The discovery of tropical soils underlying lacustrine

material suggests that the site of present-day Lago

Rogaguado was a heterogeneous environment that

probably included swamps as well as seasonally dry

savannahs prior to 8100 cal BP. At 8100 cal BP, site

LR-400 began to accumulate sediment regularly,

suggesting the presence of a precursor lake or

continuously flooded backwater swamp. At 5800 cal

BP, an abrupt shift in proxies at both coring sites LR-

400 and LR-398 points to a rapid lake level rise and

expansion of Lago Rogaguado over the former

floodplain of the Beni River. The lake expansion

event at 5800 cal BP occurred during a regionally dry

climatic period, and tectonic activity likely dammed

the valley and led to a sharp increase in the water level.

Lake levels increased further until reaching a maxi-

mum level between 1050 and 400 cal BP, as
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evidenced by the decreases in C:N ratio, sedimentation

rate, Zr:Rb, and grain size. Based on nearby climate

records, this long-term increase in lake levels coin-

cided with a wetter climate.

Concurrently, the effects of human activities

around Lago Rogaguado can be tracked using char-

coal, grain size, geochemistry, and sedimentation

accumulation rates. Around 1450 cal BP, an unprece-

dented maximum in macroscopic charcoal accumula-

tion and a marked five-fold increase in sedimentation

rate point to major anthropogenic fire activities around

the lake. This timing coincides with the highest lake

levels as well as the start of raised field agriculture.

Extensive floods, which occur even today, may have

been a very significant control on the settlement

locations of populations in the Llanos de Moxos

during this time. After 1450 cal BP, macroscopic

charcoal accumulation subsided gradually, with sub-

dued increases between 400 and 100 cal BP that may

be explained by a periodic maintenance of open areas.

This was accompanied by higher C:N, Zr:Rb, and

grain size, which support a scenario of increased

watershed erosion over the same time period. Over the

last century, fire activity decreased substantially, and

agricultural activities using burning techniques faded

to a minimal level. This probably marks the disap-

pearance of the original indigenous population in the

local area. Nowadays, cattle ranching dominates

human impact in the area around Lago Rogaguado.

Lago Rogaguado’s sediments, exemplified in cores

LR-400 and LR-398, result from a combination of

tectonic, fluvial, climate, and human landscape inter-

actions in southern Amazonia throughout the mid-late

Holocene. The previously published palynological

record from the lake (Brugger et al. 2016) combined

with the geochemical proxies analyzed in this study

provide a record of environmental and human impacts

that expand our understanding of how the Llanos de

Moxos has changed over the past 8000 years.
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Amazonian Floodplain Forests. Springer, Netherlands,

pp 43–59. https://doi.org/10.1007/978-90-481-8725-6_3

Messerli B, Grosjean M, Hofer T, Nunez L, Pfister C (2000)

From nature-dominated to human-dominated environ-

mental changes. Quat Sci Rev 19(1–5):459–479. https://

doi.org/10.1016/S0277-3791(99)00075-X

Metcalfe SE, Whitney BS, Fitzpatrick KA, Mayle FE, Loader

NJ, Street-Perrott FA, Mann DG (2014) Hydrology and

climatology at Laguna La Gaiba, lowland Bolivia: com-

plex responses to climatic forcings over the last 25 000

years. J Quat Sci 29(3):289–300. https://doi.org/10.1002/

jqs.2702

Meyer-Christoffer A, Becker A, Finger P, Schneider U, and

Ziese M (2018) GPCC Climatology Version 2018 at 0.25�:
Monthly Land-Surface Precipitation Climatology for

Every Month and the Total Year from Rain-Gauges built

on GTS-based and Historical Data. https://doi.org/10.5676/

DWD_GPCC/CLIM_M_V2018_025

Meyers PA, Teranes JL (2001) Sediment organic matter. In:

Last WM, Smol JP (eds) Tracking Environmental Change

Using Lake Sediments, vol 2. Springer, Netherlands,

pp 239–269. https://doi.org/10.1007/0-306-47670-3_9

Navarro-Sánchez G (2011) Clasificación de la Vegetación de

Bolivia. Centro de Ecologı́a y Difusión Simón I. Patiño,

Santa Cruz, Bolivia

Neves EG (2008) Ecology, Ceramic Chronology and Distribu-

tion, Long-term History, and Political Change in the

Amazonian Floodplain. In: Silverman H, Isbell WH (eds)

Handbook of South American archaeology. Springer,

Berlin, pp 359–379. https://doi.org/10.1007/978-0-387-

74907-5_20

Northrop LA, Horn SP (1996) PreColumbian agriculture and forest

disturbance in Costa Rica: palaeoecological evidence from

two lowland rainforest lakes. Holocene 6(3):289–299. https://

doi.org/10.1177/095968369600600304

Novello VF, Cruz FW, Vuille M, Strı́kis NM, Edwards RL,

Cheng H, Emerick S, de Paula MS, Li X, Barreto EDS,

Karmann I, Santos RV (2017) A high-resolution history of

the South American Monsoon from Last Glacial Maximum

to the Holocene. Sci Rep 7:44267. https://doi.org/10.1038/

srep44267

Pärssinen M, Schaan D, Ranzi A (2009) Pre-Columbian geo-

metric earthworks in the upper Purús: a complex society in
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