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Mats Sjöberg, Markus Schedl, Guillaume Gravier

Abstract—In this paper, we report on the creation of a publicly available, common evaluation framework for Violent Scenes Detection
(VSD) in Hollywood and YouTube videos. We propose a robust data set, the VSD96, with more than 96 hours of video of various
genres, annotations at different levels of detail (e.g., shot-level, segment-level), annotations of mid-level concepts (e.g., blood, fire),
various pre-computed multi-modal descriptors, and over 230 system output results as baselines. This is the most comprehensive data
set available to this date tailored to the VSD task and was extensively validated during the MediaEval benchmarking campaigns.
Furthermore, we provide an in-depth analysis of the crucial components of VSD algorithms, by reviewing the capabilities and the
evolution of existing systems (e.g., overall trends and outliers, the influence of the employed features and fusion techniques, the
influence of deep learning approaches). Finally, we discuss the possibility of going beyond state-of-the-art performance via an ad-hoc
late fusion approach. Experimentation is carried out on the VSD96 data. We provide the most important lessons learned and gained
insights. The increasing number of publications using the VSD96 data underline the importance of the topic. The presented and
published resources are a practitioner’s guide and also a strong baseline to overcome, which will help researchers for the coming years
in analyzing aspects of audio-visual affect and violence detection in movies and videos.

Index Terms—violent scenes detection, multi-modal content description, VSD96 data set, benchmarking, literature review.
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1 INTRODUCTION

MULTIMEDIA content analysis has a long history of
concept detection in videos. In most cases, tangible

concepts, e.g., “plane”, “car”, “fire”, “rocket launch”, “hand-
shake”, “hug”, are targeted for several practical reasons,
the most significant being the possibility to annotate data
in an almost unambiguous manner, following strict anno-
tation guidelines. The TRECVid evaluation series [1], [2],
[3] is an emblematic illustration where concepts are defined
mostly based on events and actions that can be identified by
humans. In contrast, computing affect induced on viewers
by videos do not follow the same path [4]. Emotions can
hardly be annotated beforehand, being highly dependent on
the viewer. Obviously, the same media material can trigger
distinct feelings in two persons. In addition, the relation
between cues in the videos and the viewers’ feelings and
experience is far less direct than in the case of tangible
concepts. As a consequence, designing algorithms to predict
the user’s reactions to a video remains a mostly unsolved
and highly challenging problem. A workaround is to rely on
the mid-level concepts that, we expect, are strongly correlated
with the viewers’ feelings, and have cues in the video signal.
These concepts are often not as clearly defined as classical
tangible concepts, and they do not rely on measuring human
perception.

Violence in movies and video materials, as dealt with
in this paper, provides a perfect illustration of a mid-level
concept. On the one hand, violent scenes in movies are
obviously impactful on the emotional state of the viewer.
On the other hand, there is an amount of evidence related
to violence, e.g., “gunshots”, “screams”, and “ explosions”,
with explicit cues in the video. In between the emotional
state and the tangible cues there is the perception of vio-
lence, i.e., how violently the viewer perceives the movie. As

for emotions and unlike tangible concepts, the perception
of violence is highly dependent on the viewer. For instance,
children are more likely than adults to be strongly impacted
by violent scenes [5]. Yet, the perception of violence is more
natural (though not easy) to annotate than affect.

In this sense, violence detection in movies provides an
achievable basis for developing previewing tools targeting
parental guidance, e.g., for video-on-demand (VOD) ser-
vices. Traditional parental guidance recommendations is-
sued by national agencies, in the countries where they exist,
are defined globally on the movie and are highly dependent
on time and culture. As discussed by Demarty et al. [6],
these policies are poorly adapted to today’s Internet diffu-
sion of movies, where movies can be viewed only partially
and where cultural and geographical frontiers are blurred.
More fundamentally, global policies do not reflect well the
fact that the notion of offending material is primarily a
personal and cultural matter. Hence, the ultimate idea of
providing previewing services targeting several mid-level
concepts related to affect, such as violent or sexually explicit
scenes, used for the fast, interactive selection of appropriate
video material, is more than needed.

Similar to any concept involving human perception, the
most difficult issue when studying violence detection in
movies is to establish a reference of what is considered as
violent, both for evaluation purposes and machine learning
tasks. Due to the multiple facets of violence, no common
and generic enough definition for violent events has ever
been proposed, even when restricting ourselves to physical
violence. The World Health Organization defines violence
as “the intentional use of physical force or power, threatened
or actual, against oneself, another person, or against a group
or community, that either results in or has a high likelihood of
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resulting in injury, death, psychological harm, maldevelopment, or
deprivation” [7]. This definition is sound but too broad to be
used as guidelines for annotation. More focused definitions
are provided with systems designed to detect violence in
various scenarios, e.g., “a series of human actions accompanied
with bleeding” [8], “scenes containing fights, regardless of context
and number of people involved” [9], “behavior by persons against
persons that intentionally threatens, attempts, or actually inflicts
physical harm” [10], “fast paced scenes which contain explosions,
gunshots and person-on-person fighting” [11]. Inherently, these
definitions are highly correlated to intentional human ac-
tions and physical contact, but they overlook some relevant
situations like accidents, which may result in disturbing
content, or verbal violence.

In this paper, we report on the creation of a publicly
available, common evaluation framework for Violent Scenes
Detection (VSD). We focus, in particular, on the techniques
for automatic violence detection in Hollywood movies and
YouTube videos. These resources have been developed un-
der the framework of the MediaEval benchmarking initia-
tive for multimedia evaluation1. To deal with the diversity of
violent content, we approach the definition of violence from
two perspectives: (i) an objective formulation of violence de-
fined as “physical violence or accident resulting in human injury
or pain”, that implies the segments annotated as violent must
contain both the violent actions and the results of these
actions; (ii) a subjective formulation of violence: something
“one would not let an 8-year old child see in a movie because it
contains physical violence”, with the objective to account for a
broader use case scenario.

The remainder of the article is organized as follows.
Section 2 presents an overview of the existing literature
and positions our contributions. Section 3 introduces the
released, publicly available data sets and discusses their
annotations. Section 4 proposes the evaluation methodol-
ogy. Section 5 deals with the experimental validation of the
data: an overview of the MediaEval benchmarking results,
and comparison to the state-of-the-art methods from the
literature. Section 6 introduces the perspective that goes
beyond the individual systems, proposing the design of a
super system for violence detection. Section 7 concludes the
paper and provides some general perspectives.

2 PREVIOUS WORK

We focus our review of the literature on the existing initia-
tives for creating annotated data sets for VSD. For a thor-
ough analysis of the existing violence detection techniques,
we refer the reader to Section 5.

A wide variety of human actions are recorded in many
action recognition data sets, and a few of these have some
particular actions that are considered violent. For example,
the data sets of Weinland et al. [12] and Liu et al. [13] contain
scenes depicting punching and kicking. In contrast, others
have a broader range of violent human interactions: some
samples of crowd fighting and behavior in the BEHAVE
data set [14], instances of two people fighting in the CAVIAR
data set2, instances of boxing, punching and sumo wrestling

1. http://www.multimediaeval.org/
2. http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/

in the UCF101 data set [15], or car crashes and explosions
in the TRECVid data sets [2]. However, these data sets
were not specifically designed for violence detection, and
therefore sometimes only small parts of them are suited for
developing violence detection algorithms, which fall short
of covering a broad spectrum of violent actions.

In more recent developments, the data set proposed by
Fu et al. [16] is composed of YouTube videos depicting real-
world surveillance scenarios that contain fighting scenes
in different environments, for example, bar fights, street
fights, prison fights. These clips are annotated as fight or
non-fight at a sub-clip level. The individual video clips are
10 seconds long on average, and 119 clips are non-violent,
while 147 clips contain fighting scenes. Marsden et al. [17]
developed the Multi Task Crowd data set consisting of 100
individual images, captured in different settings, serving 3
purposes: (i) crowd counting, (ii) crowd density estimation,
and finally, (iii) crowd violent behavior detection. The subset
of 50 violent images was selected from the WWW Crowd
data set [18], representing images extracted from videos that
are tagged as violent or mob, while the non-violent subset
consists of the other cases.

As one can observe, the existing attempts to provide
a common evaluation framework are either tangential to
the main purpose, e.g., action recognition which also uses
violent actions, or too narrow to address a more general goal
for the detection of the violent scenes, e.g., only a few violent
situations such as fights, accidents, etc. The size of the data
also tends to be very restrained, therefore providing reduced
capabilities for training data greedy systems employing,
for instance, deep learning. There is also a limitation in
what concerns the target detection, most of the data being
annotated at sequence level (short sequences). There are too
few approaches providing annotations for unconstrained
segments, i.e., variable length segments, which are, in fact,
closer to real-world scenarios.

In this paper, we propose a comprehensive evaluation
framework that is robust, both in terms of the size and
variability of the corpus, as well as in terms of the definition
of violence employed for the annotations. These publicly
available data were conceived and validated during the
yearly benchmark campaign run at MediaEval between 2011
and 2015. Although the data was released a few years
ago, we stress on its current importance and impact in the
community. In this respect, Figure 1 provides some statistics
about the interest in violent related detection tasks world-
wide. It is quantified in terms of the number of published
research papers, which we identified using Google Scholar
and Clarivate Analytics Web of Science3, searching for “vio-
lence detection”, “violent events”, and “violent scenes”, and
retaining the articles that use these terms in their body text.
Although the search is not exhaustive, i.e., there are other
keywords covering this topic, such as “violence concepts”,
it is a good indicator of the trend. We have also added to
the plot the number of times external users requested the
VSD96 data.

As can be seen from the values in 2009 and 2010, violence
detection in movies has received very little attention prior
to the establishment of our VSD benchmark data in 2011.

3. https://clarivate.com/products/web-of-science/
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Fig. 1: Evolution of the number of published research papers
related to violence detection and of the number of VSD96
data download requests (search made via Google Scholar
and Clarivate Analytics Web of Science using “violence
detection”, “violent scenes”, and “violent events”).

Hereafter, in contrast, the number of publications shows a
steady upward trend. The same trend is observed for the
number of downloading requests, which reached more than
200 starting with 2016.

In this context, the added contributions of this work
can be summarized as follows: (i) We introduce a publicly
available, common evaluation framework for VSD with more
than 96 hours of video and a high variability of content,
e.g., various genres, both Hollywood and YouTube videos,
annotations for the objective and subjective definitions of
violence as well as different levels of granularity (shot-level,
segment-level, and clip-level), annotations of mid-level con-
cepts (e.g., “blood”, “screams”), various pre-computed mul-
timodal content descriptors and various system output re-
sults as baselines. This is the most comprehensive VSD data
set available to this date; (ii) We provide an in-depth analysis
of the crucial aspects of VSD algorithms, by investigating
the capabilities and evolution of existing systems (analysis
of relevant approaches from the MediaEval benchmark and
from the literature, influence of the employed features and
fusion techniques, influence of deep learning approaches).
This is again the first comprehensive study covering all
these core aspects. It is a practitioner’s guide for best prac-
tice in this field and also a strong baseline to overcome; (iii)
We introduce a super system design based on late fusion to
discuss the possibility of going beyond the state-of-the-art
performance by combining existing systems. The provided
data and evaluation resources will further help researchers
to analyze these aspects, and push forward the field.

Relation to previous work. The reader should note that
some preliminary contributions to the points above have
been already published by the authors and can refer to
those for more detailed information: Demarty et al. [19], an
overview of the 2011 MediaEval campaign and submitted
systems; Demarty et al. [6], a detailed comparison between
the 2011 and 2012 MediaEval campaigns; Demarty et al. [20],
an overview of the 2013 MediaEval campaign and submitted
systems; Demarty et al. [21], a state of the art in multimodal
violence detection, an overview of the 2011 and 2012 Medi-
aEval campaigns and description of two of the top systems
submitted to the task; Schedl et al. [22], release of the 2014
MediaEval data together with the baselines.

Abbreviations. Throughout the paper, we employ the
following abbreviations: BER — band energy ratio, BoW

— bag-of-words, CM — color moments, CNN — Convolu-
tional Neural Networks, CNH — color naming histogram,
DoG — Difference of Gaussian, DT — dense trajectories,
EoH — Edge Orientation Histograms, FBW — frequency
bandwidth, GMM — Gaussian mixture models, HMM —
hidden Markov models, HoF — histograms of optical flow,
HoG — histograms of oriented gradients, kNN — k-Nearest
Neighbours, LBP — local binary patterns, LDA — Lin-
ear Discriminant Analysis, LPC — linear predictive coeffi-
cients, LSF — line spectral frequency, LSP — line spectral
pairs, MBH — motion boundary histograms, MFCC —
mel-frequency cepstral coefficients, MKL — multiple kernel
learning, OBSI — octave band signal intensity, PCA — prin-
cipal component analysis, QDA — Quadratic Discriminant
Analysis, RMS — root-mean-square energy, SC — spectral
centroid, SE — spectral entropy, SF — spectral flux, SIFT
— scale invariant feature transform, STIP — space-time
interest points, SVM — support vector machines, ZCR —
zero-crossing rate, MLP — multi-layer perceptron.

3 PROPOSED DATA SET

We present the proposed VSD data and their evolution over
the years. The section is organized as follows: (i) we discuss
the composition of the data and its evolution through years
(see Section 3.1), (ii) we discuss the annotation protocol and
the quality of the labels (see Section 3.2), (iii) we present the
provided, precomputed, audio and visual features (see Sec-
tion 3.3). Please note that all annotations, metadata, audio
and video features, and where possible the video footage,
are available for download4,5.

3.1 Composition and evolution
As VSD is mainly intended to be a machine learning task,
all VSD96 data are split into a training set (Dev.) for the de-
velopment stage (with released annotations for the training
and validation data), and a test set (Test) for the evaluation
of the participating systems. The former is used to elaborate
algorithms and allow classifiers to learn, and the latter is
used for the actual evaluation.

To provide a sufficient amount of training data for both
classes (violent and non-violent), we selected popular Holly-
wood movies that span a wide range of genres, subjects and
amount of violence, ranging from very violent ones, e.g.,
“Saving Private Ryan” with 34% violent content, to movies
with no violence at all, e.g., “Legally Blond”. One should
note that due to copyright issues, the Hollywood videos are
not provided with the data set. However, they are popular
movies that can be easily purchased.

Accounting for the rising importance of user-generated
content shared on the web, we additionally provide YouTube
videos. These data allow us to assess the generalization
capabilities of algorithms to different types of footage, in
particular to those characterized by low video and audio
quality (e.g., very low resolution, high compression, noisy
audio), as well as short duration. To compose this set, we

4. VSD data sets for 2011, 2012, 2013 and 2014 are avail-
able for download here: https://www.interdigital.com/data sets/
violent-scenes-dataset.

5. VSD data set for 2015 is available for download here: http:
//liris-accede.ec-lyon.fr/ (look for MediaEval 2015 data).
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TABLE 1: Basic statistics of the VSD96 data. Columns indicate usage over years, movie name or source, total playtime in
minutes (Dur.), total number of shots, segments, or clips (#Segm.), amount of violence in percent (V), and average duration
of a violent scene in seconds. The latter two are reported for the subjective definition of violence. The figures in brackets
indicate the number of movies in the corresponding category for each year, where o stands for use of the objective definition
of violence, s for the subjective definition, and Gen. stands for generalization task.

2015 2014 2013 2012 2011 Movie Dur. (m) #Segm. V (%) Dur. (s)

Dev. (24s)

Dev. (18o,s)

Dev. (15o)

Dev. (12o)

Armageddon 145 3,562 7.78 25.01
Billy Elliot 106 1,236 2.46 8.68
Eragon 100 1,663 13.26 39.69
Harry Potter 5 133 1,891 5.44 17.30
I am Legend 96 1,547 15.64 75.36
Leon 106 1,547 16.36 41.52
Midnight Express 116 1,677 7.12 24.80
Pirates of Caribbean 137 2,534 18.15 49.85
Reservoir Dogs 95 856 30.41 115.82
Saving Private Ryan 162 2,494 33.95 367.92
The Sixth Sense 103 963 2.00 12.40
The Wicker Man 98 1,638 6.44 31.55

Test (3o)
Kill Bill 106 1,597 17.47 23.98
The Bourne Identity 114 1,995 7.18 27.21
The Wizard of Oz 98 908 1.02 8.56

Test (3o)
Dead Poets Society 124 1,583 0.58 14.44
Fight Club 133 2,335 15.83 32.51
Independence Day 147 2,652 13.13 68.23

Test (7o,s)

Fantastic Four 1 102 2,002 20.53 62.57
Fargo 94 1,061 15.04 65.32
Forrest Gump 136 1,418 8.29 75.33
Legally Blond 92 1,340 0.00 0.00
Pulp Fiction 148 1,686 25.05 202.43
The God Father 170 1,893 5.73 44.99
The Pianist 143 1,845 15.44 69.64

Test (7s)

8 Mile 106 17 4.70 37.40
Braveheart 170 87 21.45 51.01
Desperado 100 35 31.94 113.00
Ghost in the Shell 83 23 9.85 44.47
Jumanji 100 29 6.75 28.90
Terminator 2 147 83 24.89 53.62
V for Vendetta 127 85 14.27 25.91

Test (86s Gen.) YouTube videos 157 86 44.47 109.75

Dev. (100s) Hollywood-like movie clips 1,014 6,144 4.42 9.90

Test (99s) Hollywood-like movie clips 784 4,756 4.90 9.88

5,792

defined a number of target queries, such as “brutal accident”
or “killing video games”. We only considered the videos
shared under Creative Commons6 Attribution 3.0 Unported
license allowing redistribution. We then selected an approx-
imately uniform number of violent and non-violent videos,
for which we additionally retrieved metadata offered by
YouTube (e.g., publishing date, category, title, number of
likes/dislikes).

The final part of the collection is also addressing user-
generated data and represents an extension of the Discrete
LIRIS-ACCEDE data set [23]. LIRIS-ACCEDE was origi-
nally annotated for its emotional content on the valence-
arousal dimensions. Given the related use case, we imported
some of the data which was re-annotated for violence. It is
composed of short clips extracted from Creative Commons
Hollywood-like movies (i.e., movies replicating Hollywood’s
specific composition and editing style) of various genres:
“action”, “adventure”, “animation”, “comedy”, “documen-
tary”, “drama”, “horror”, “romance”, and “thriller”.

Table 1 presents a global overview of the VSD96 data
together with some basic statistics. Overall there are 31
annotated full movies, 86 annotated YouTube short videos,

6. https://creativecommons.org/

and 10,900 annotated clips extracted from 199 movies. The
total duration of the video data is over 96 hours.

3.2 Annotations
To deal with the diversity of the ’violence’ content, we
approach the definition of violence from two perspectives:
(i) we provide an objective formulation of violence, i.e.,
“physical violence or accident resulting in human injury or pain”,
and (ii) a subjective formulation of violence, i.e., something
“one would not let an 8-year old child see in a movie because
it contains physical violence”. For more details, we refer the
reader to our previous publications [6], [22].

3.2.1 Annotation protocol
The 2011, 2012 and 2013 collections provide video shot seg-
mentation, obtained via automatic shot boundary detection.
Therefore, the localization of violence is first at shot level.
For the 2012, 2013 and 2014 data, the localization of violence
is also provided at frame level, allowing variable length
segment detection. For the 2015 collection, the localization
of violence is provided at clip level.

On general principle, the violence annotations consisted
of marking the violent shots, segments, or clips, using both
visual and audio information. The annotations are binary.
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TABLE 2: Annotation statistics for concepts: duration represented as percentage/Fleiss’ κ agreement between the concept
and the overall violence annotation.

Movies violence (%) blood car chase cold arms explosions fights fire fire arms gore gun shots screams
Armageddon 9.33 0.8/-0.03 0.2/-0.04 0.0/-0.04 5.8/0.41 2.9/0.19 9.3/0.40 3.9/0.02 0.0/-0.04 0.4/0.03 4.5/0.15
Billy Elliot 4.77 0.2/0.02 0.0/-0.01 1.8/-0.02 0.0/-0.01 1.9/0.32 1.0/-0.02 0.0/-0.01 0.0/-0.01 0.0/-0.01 5.0/0.22
Eragon 16.04 5.1/-0.06 0.0/-0.07 13.4/0.16 0.4/-0.01 10.5/0.85 21.2/0.18 0.0/-0.07 2.2/0.11 0.0/-0.07 6.4/0.29
Harry Potter 5 8.93 4.4/0.09 0.0/-0.03 2.4/-0.04 1.8/0.22 4.8/0.58 14.2/0.01 0.0/-0.03 0.0/-0.03 0.0/-0.03 2.9/0.21
I am Legend 17.71 8.8/0.12 1.1/-0.09 3.3/-0.05 0.5/-0.04 5.6/0.38 2.0/0.11 12.9/0.01 9.4/0.33 0.7/-0.01 8.2/0.44
Leon 18.51 12.0/0.07 0.0/-0.09 1.7/-0.09 0.2/-0.06 3.4/0.26 0.8/-0.03 20.2/0.33 0.0/-0.09 1.4/0.07 1.2/-0.02
Midnight Express 8.17 2.0/0.21 0.0/-0.04 0.4/-0.01 0.0/-0.04 5.1/0.67 3.6/-0.06 6.7/0.10 0.1/-0.01 0.2/-0.04 10.4/0.20
Pirates Carib. 1 19.89 0.6/-0.05 0.0/-0.10 25.5/0.09 0.8/-0.03 9.4/0.44 17.9/0.05 20.0/0.03 4.8/0.21 2.1/0.03 10.4/0.36
Reservoir Dogs 34.37 36.8/0.59 0.0/-0.18 1.9/-0.13 0.0/-0.18 4.1/0.07 0.2/-0.18 19.1/0.23 21.6/0.62 0.8/-0.13 4.7/0.05
Saving Private Ryan 34.54 21.5/0.11 0.0/-0.20 18.7/-0.07 12.9/0.04 10.8/0.28 11.7/-0.06 53.9/0.08 8.1/0.13 26.0/0.22 9.4/0.06
The Bourne Identity 9.50 3.3/0.31 2.9/0.06 2.3/0.08 0.1/-0.01 2.6/0.40 0.4/0.00 6.1/0.20 0.0/-0.04 0.4/0.05 2.3/0.10
The Sixth Sense 2.49 1.0/0.23 0.0/-0.01 4.3/-0.02 0.0/-0.01 0.1/0.03 1.9/-0.02 0.8/0.11 0.1/0.09 0.0/0.01 1.4/0.11
The Wicker Man 11.74 0.7/-0.03 0.0/-0.03 1.8/-0.03 0.2/0.03 0.4/0.09 4.8/0.31 6.2/-0.00 0.0/-0.03 0.3/-0.03 7.1/0.28
The Wizard of Oz 1.14 0.0/-0.01 0.0/-0.01 33.3/-0.16 1.1/-0.00 1.2/0.20 6.7/0.14 7.4/-0.04 0.0/-0.01 0.0/-0.01 5.1/0.08
Dead Poets Society 0.72 0.3/0.14 0.0/-0.00 0.8/0.00 0.0/-0.00 0.3/0.42 3.3/-0.02 0.5/-0.01 0.0/-0.00 0.0/-0.00 3.3/0.10
Fight Club 19.24 7.8/0.20 0.0/-0.09 1.1/-0.04 0.2/-0.09 4.4/0.34 2.6/-0.06 5.1/0.06 0.4/-0.04 0.1/-0.08 5.0/0.24
Independence Day 14.62 0.3/-0.06 0.0/-0.07 0.6/-0.07 2.6/0.20 4.9/0.44 7.9/0.34 5.5/0.17 0.0/-0.07 1.4/0.11 4.4/0.12

TABLE 3: Annotation statistics for the evaluation data (subjective definition of violence): the amount of violence as
annotated by each assessor, overlap percentage, final amount of violence, and inter-annotator assessment.

Annotator1 Annotator2 An.1&An.2 Final Percent Fleiss’ Randolph’s
Videos dur. (%) dur. (%) Overlap dur. (%) dur. (%) agreement κ κ
8 Mile 7.27 8.70 3.97 4.70 0.9197 0.4538 0.8394
Brave Heart 15.72 20.25 11.44 21.45 0.8692 0.5565 0.7383
Desperado 24.34 28.96 17.55 31.94 0.8180 0.5346 0.6361
Ghost in the Shell 11.82 15.45 6.99 9.85 0.8672 0.4360 0.7343
Jumanji 7.95 8.41 4.37 6.72 0.9238 0.4929 0.8476
Terminator 2 26.35 27.92 20.70 24.89 0.8713 0.6744 0.7425
V for Vendetta 8.83 14.33 8.12 14.27 0.9309 0.6623 0.8617
average values 14.61 17.72 10.45 16.26 0.8857 0.5444 0.7714
YouTube videos (2014) 37.80 28.11 21.18 44.47 0.7646 0.4672 0.5291
Hollywood-like movie clips (2015) 3.55 8.18 3.45 4.90 0.8931 0.7095 0.9369

They were carried out by three expert annotator groups.
Specifically, two groups, first, conducted all the annotations
independently. No discussions were held between the two
groups during this stage. Then, the third master annotator
group merged the two sets of annotations and made deci-
sions for the inconsistent cases. The subjective formulation
of violence, in particular, required panel discussions for
borderline cases, held by people with different cultural
backgrounds. Annotators provided a text description for
each segment, motivating their choice. This helped the final
decision of the panel.

In terms of demographics, the annotators were, across
all the iterations, moderately to highly educated, with age
spans varying from 25 to 50 years and based in Europe and
Asia. The initial annotators were mostly graduate students,
with no children, while the master annotators were senior
researchers, married with children. The number of annota-
tors varied for each year, starting with 7 in 2011, 9 in 2012,
25 in 2013, 11 in 2014, and finally 17 in 2015.

Overall, the consistency of the annotations is ensured
via: (i) using expert annotators instead of crowd-workers,
(ii) providing clear definitions and use cases for violence,
(iii) ensuring at least two annotations per each sample,
(iv) employing master annotators and panel discussions for
settling inconsistencies and borderline cases, (v) selecting
the annotators from different countries and continents, to
reduce cultural bias.

Apart from the binary violence annotation, part of the
data is provided with annotations for several concepts that
are related to violence. The idea is to enforce the learn-
ing by providing mid-level concept annotations. The 17

movies presented in Table 2 are annotated for 7 visual
concepts: “blood”, “car chase”, “cold arms”, “fights”, “fire”,
“firearms”, “gore”, and 3 audio concepts: “explosions”,
“gunshots”, “screams”.

3.2.2 Quality assessment
To better understand the quality of the annotations, we
further investigate the consistency of the labels using three
indicators: (i) the percent agreement, (ii) Fleiss’ kappa [24],
and (iii) Randolph’s kappa [25]. Percent agreement is a
widely used criterion, as stated by McHugh [26], which
calculates the degree to which two or more independent
annotators agree on what they observe when watching the
same events. This measure does not adjust for the agreement
expected by chance. Fleiss’ kappa takes into account the
agreement occurring by chance, therefore it is more robust
than the simple percent agreement. However, Fleiss’ kappa
is a fixed-marginal rater, that assumes that the distribution
of labels (in our case violent vs. non-violent) is known in
advance. This shortcoming would be accentuated in our
binary annotation since the duration of non-violent scenes
is much longer than that of violent scenes, and annotators
have the liberty of annotating as many shots, segments or
clips as violent as they see fit. To overcome this, Brennan and
Prediger [27] suggest using a free-marginal rater. Therefore,
we also apply Randolph’s multirater kappa, which is a free-
marginal rater and does not limit the distribution of labels.
Values range from 0 to 1 for percent agreement, and from -1
to 1 for the other two. For the kappa, the positive/negative
values indicate the agreement/disagreement between anno-
tators. Larger values indicate higher reliability or consis-
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tency. The resulted statistics are presented in Table 3. For
brevity reasons, we provide here only the numbers for the
evaluation data. They extrapolate to the rest of the data.

For the 2014 test data, the two annotator groups pro-
vided labels accounting for similar percentages of violence,
i.e., 14.61 %, and 17.72 %, respectively. For the 2014 YouTube
data, the percentages are different: 37.80 % vs. 28.11 %, ac-
counting for a higher variability of content. The overlap per-
centage between the annotations is 10.45 % for the movies
and 21.18 % for the YouTube videos. For the 2015 test data,
the two annotator groups yielded a percentage of violence
of 3.55 %, and 8.18 %, respectively. This shows again the
higher variability of clip level annotations. The overlapping
between annotations is 3.45 %.

As for what concerns the agreement, for the 2014 test
data, we obtain a percent agreement of 88.57 % for movies
and 76.46 % for YouTube videos. The average Fleiss’ kappa
and Randolph’s kappa are 0.5444 and 0.7714, respectively,
for movies and 0.4672 and 0.5291 for the YouTube videos.
The values show that the annotators were fairly reliable with
consistent annotations, despite the high subjectivity of the
task (according to Landis et al. [28], a score between 0.41
and 0.60 means moderate agreement, while a score between
0.61 to 0.80 means substantial agreement). The agreement
values for the 2015 test data are 89.31% percent agreement,
Fleiss’ kappa 0.7095, and Randolph’s kappa 0.9369. These
are again good indicators for reliable annotations.

As regards the agreement for the annotated concepts,
Fleiss’ kappa is presented in Table 2. The agreement is
computed between each concept and the overall violence
annotation showing the correlation between the two. While
in some cases one can notice a low correlation between
the concepts and the violent content, this has an under-
standable explanation as it depends on the movie genre.
For example, in “Saving Private Ryan”, a war movie, the
characters often carry “firearms” and “cold arms”, without
actually using them. Therefore, a large percentage of the
frames contain these concepts, but without actually being
violent. Nevertheless, most of the concepts are very useful
clues for violence detection, as results in Section 5.1.3 show.

3.3 Audio and visual features

The data comes with several pre-computed common audio
and visual descriptors, to address a broader community.

Audio descriptors. For each video frame (of 40 ms length
at 25 fps), we provide the following descriptors: amplitude
envelop, RMS, ZCR, BER, SC, FBW, SF, and MFCC. While
the first three features describe the audio signal in the time
domain (time vs. amplitude representation), the remaining
ones are computed in the frequency domain (frequency
vs. magnitude representation). As the audio exhibits a sam-
pling rate of 44,100 Hz, and the videos are encoded with
25 fps, we consider windows of 1,764 audio samples in
length. We compute 22 MFCCs for each window, while
all the other features are 1-dimensional. For a detailed
discussion of the audio features, please refer to [29].

Visual descriptors. For the visual information we provide:
CNH [30], CM [31], LBP [32] and HoG [33]. The CNH
features are 99-dimensional, the CM and HoG features 81-
dimensional, and the LBP 144-dimensional. The CNHs are

computed on 3-by-3 image regions and map colors to 11
universal color names: “black”, “blue”, “brown”, “gray”,
“green”, “orange”, “pink”, “purple”, “red”, “white”, and
“yellow”. The global CM in the hue-saturation-value (HSV)
color space (9 values) contains the first three central mo-
ments of an image color distribution: mean, standard devi-
ation, and skewness, which are computed on 3-by-3 image
regions. Also, the global LBP (16 values) and the global HoG
are computed using a 3-by-3 spatial division. The global
HoG contains the average of the HoG features (9 values)
that exploit the local object appearance and shape within an
image via the distribution of edge orientations.

4 EVALUATION METHODOLOGY

To benchmark violent scenes detection, as done in the
MediaEval campaigns, one has to produce a violence pre-
diction for the provided test set data. The systems should
output a violence judgment for each movie segment indi-
cating whether it represents a violent or non-violent scene.
The judgment could be accompanied by a confidence score
or probability estimate (a higher value indicates a higher
probability that the segment is violent; typical values are
between 0 and 1). For the 2011 to 2013 collections, the
prediction is at the video shot level. For the 2012 and
2013 collections, the prediction is also at arbitrary length
segment level. For the 2014 collection, the prediction is only
at segment level, while for the 2015 collection, the prediction
is at clip level.

To assess performance, we provide a number of metrics
that were validated during the MediaEval 2011-2015 bench-
marks. However, the data is not limited to a specific metric,
and other measures can be implemented as well.

MediaEval cost. With the 2011 data we introduced what
we called the “MediaEval cost” which is a cost function
weighing false alarms (FA, or false positives) and missed
detections (MI, or false negatives). It is defined as: C =
CFA ·PFA +CMI ·PMI, where CFA = 1 and CMI = 10 are
selected to reflect the higher cost of missing a violent scene
than making a false positive judgement [19]. The idea is that
when protecting children from seeing violence, it is worse to
miss a violent scene than to erroneously mark a non-violent
scene as violent. PFA and PMI are, respectively, the FA and
MI rates of the system’s output. For the segment-based runs,
FA and MI are computed on a per second basis.

Mean Average Precision. The average precision has been
shown to be a stable and discriminating measure for
general-purpose retrieval tasks [34]. MAP is calculated by
taking the arithmetic mean over the uninterpolated average
precision scores for all the test set movies [35]. We use two
MAP-based metrics: (i) mean average precision over the
100 highest ranked shots (MAP@100); (ii) the full MAP. For
the free segment annotations, the ground truth segments
are of variable length and have no a priori positions in
the video like the video shots. Therefore, computing MAP
needs to handle two special situations properly: (i) a single
wide hypothesis segment (system output) matching several
reference segments (ground truth), and (ii) several small
hypothesis segments matching a single reference one. The
first case is taken care of by counting only a single correct
match per hypothesis segment and using the number of
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ground truth segments as the divisor for calculating the
average precision. The second case is covered by count-
ing a maximum of one match per ground truth segment
by picking the one with the highest confidence score. We
avoid a complex combinatorial problem by keeping track
of a single “best” ground truth match for each hypothe-
sis segment. “Best” is here defined as the largest overlap
percentage. The other possible matches are discarded, i.e.,
they are not counted as false positives either. We called
this adaptation MAP2014. This is an alternative to segment
matching with the Hungarian method [36], i.e., finding the
optimal solution to the bipartition graph matching problem,
where the ground truth and hypothesis segments are seen
as the two sets of nodes. This algorithm is slower as it has a
cubic running time compared with MAP2014, which iterates
through all the segments once and match them with the
largest overlapping one. We have decided to remain with
the MAP approach for consistency reasons.

Other metrics. To facilitate further studies and compar-
isons to previous years and other benchmarks, we also com-
pute FA and MI rates, precision and recall, and the detection
error trade-off (DET) curve. The DET curve is formed by
plotting PFA as a function of PMI given a confidence score
for each segment [37].

All the evaluation measures are implemented in the
trec_eval tool7. The tool is available with the data.

5 EXPERIMENTAL RESULTS

To serve as a baseline and reference for future develop-
ments, we analyze the performance of various systems
tested on the VSD96 data, namely: (i) systems submitted
to the MediaEval benchmark (see Section 5.1), and (ii)
state-of-the-art approaches reported in the literature (see
Section 5.2). The objective is to investigate the crucial aspects
such as the capabilities and the evolution of the systems, the
employed features, and the underlying approaches.

5.1 Benchmarking of MediaEval systems
This section provides an in-depth analysis of the perfor-
mance of the systems reported at the MediaEval Violent
Scenes Detection Task (VSD), namely: 2011 — 28 runs, 2012
— 36 runs, 2013 — 57 runs, 2014 — 67 runs, and 2015 — 48
runs (a total of 236 runs).

The section is structured as follows: (i) we overview the
most relevant methods (see Section 5.1.1), (ii) we analyze
the overall performance trends (see Section 5.1.2), (iii) we
study the influence of the employed content descriptors
(see Section 5.1.3), (iv) we investigate the influence of the
prediction methods (see Section 5.1.4), and (v) we analyze
the reliability of the rankings and thus of our conclusions
(see Section 5.1.5).

All the comparisons of the results are mainly carried
out on a common basis, i.e., the official development-test
set split. The systems are grouped according to the version
of the data set they were benchmarked on (2011 to 2015),
definition of violence (objective or subjective), granularity
level (shot level, segment level or clip level detection), and
type of videos (Hollywood or YouTube content).

7. http://trec.nist.gov/trec eval/

5.1.1 Overview of the methods
We first provide a global description of the most relevant
MediaEval systems. The analysis of their performance is
provided in the following sections.

MediaEval 2011: Penet et al. [38] propose several methods
based on K2 and Naive Bayesian Networks that use visual
(e.g., shot duration, average number of blood pixels, average
activity, number of flashes) and audio (e.g., energy, centroid,
asymmetry, ZCR, flatness) features. Temporal aggregation of
these features is achieved through the creation of contextual
representations with the help of: (i) decision maximum vot-
ing, and (ii) probability averaging, that aggregated violence
scores across consecutive segments. Both early and late
fusion implementations are provided.

Glotin et al. [39] introduce the only unsupervised ap-
proach which employs entropic visual and audio confidence
scores. For the visual modality, the authors implement a
histogram of multi-scale LBP features over the whole image,
as described in [40], while for the audio modality they use
MFCC. Visual confidence is computed using the entropy
of a probability mass function, while audio confidence is
computed using the average of the normalized entropy of
each MFCC probability distribution.

Safadi et al. [41] develop a visual violence detection
system based on 3 types of traditional visual features: RGB
histograms, Gabor Transforms, and bag of SIFT features.
These descriptors are optimized in a two-step approach
that involve power transformation in normalizing the dis-
tribution and PCA for decorrelation. The classification is
achieved via kNN, employed for each feature vector, and
a weighted late fusion scheme that aggregates the decision.

Gninkoun et al. [42] employ LDA and QDA for classifi-
cation. The information is represented with audio (e.g., en-
ergy entropy, signal amplitude, short time energy, ZCR, SF,
spectral rolloff), visual (e.g., shot length, shot motion, shot
motion content, skewness of motion vector), and conceptual
(based on swear words) features.

MediaEval 2012: Schlüter et al. [43] propose a MLP system
built on mid-level features. Firstly, visual (e.g., HoG, CNH,
visual activity) and audio (e.g., LPC, LSP, MFCC, ZCR,
SC, SF, rolloff, kurtosis) features are used to train a MLP
concept detector, targeting the provided set of concepts
(see Section 3.2). Secondly, the final violence prediction is
achieved via the fusion of the concept detectors. It uses
the thresholding of the output of the networks, whereas
the cutoff values are individually determined via a cross-
validation process in the training phase.

Penet et al. [44] develop a hybrid learning method that
uses Naive Bayesian Networks and K2, similar to the one
in [38]. The information is represented with visual and audio
features, e.g., color coherence, color harmonization, shot
duration, average number of blood-like pixels determined
in the HSV space, average activity, number of flashes, and
energy, flatness, centroid, asymmetry, ZCR, respectively.
Confidence scores from individual systems are averaged via
a late fusion scheme.

Jiang et al. [45] propose a system that uses low-level
audio and visual features, including motion (e.g., HoG, HoF,
MBH), sparse keypoint detectors (e.g., DoG, Hessian), STIP
features, and MFCC-based features. Two different meth-
ods for temporal aggregation are experimented: (i) feature
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smoothing, consisting of averaging features, and (ii) score
smoothing, consisting of averaging prediction scores. The
classification is carried out via SVM, and several early and
late fusion combinations are tested.

Lam et al. [46] introduce a visual concept detector
system. Five keyframes are extracted from each shot, and
several traditional visual features are extracted, e.g., CM,
color histograms, EoH, and LBP. Features are aggregated at
shot-level using max, min, and average pooling. A visual
concept detector for each of the 7 visual violence concepts
(see Section 3.2) is trained using an RBF kernel SVM. Late
fusion is applied to the output of the 7 detectors to generate
the final violence score.

MediaEval 2013: Tan et al. [47] employ multiple SVMs to
predict mid-level violent concepts. They exploit low-level
audio (e.g., MFCC, LSF, OBSI, linear predictor coefficients),
and visual (e.g., HoG, HoF, MBH describing dense trajec-
tories, the DoG and Hessian features via BoW) features.
The authors use the 10 concepts provided with the data
(see Section 3.2) and infer 42 more, using the external data,
i.e., Youtube videos with automatic ground truth. Based on
the ontology from ConceptNet [48], the authors construct
a Conditional Random Fields [49] model that understands
the relationships and co-occurrences of the 52 concepts. The
SVM classifiers are combined in a late fusion approach, and
score smoothing is applied to generate the final prediction.

Dai et al. [50] use trajectory features (i.e., a combina-
tion of HoG, HoF, and MBH features quantized via visual
codebooks and TrajMF [51]), STIP, MFCC and part-level
attributes based on the work in [52]. PCA is employed to
reduce dimensionality. Each feature group is trained with
a χ2 or linear SVM, and the final violence prediction is
computed via late fusion and temporal score smoothing.

Goto and Aoki [53] propose a system based on visual
and temporal dense trajectory features [54], MBH, RGB
histograms, and MFCC, MFCC with delta components and
audio energy features. All the features are converted into
BoW representations. The authors apply a MKL strategy
for optimizing the weights of multiple SVM systems. The
final system is based on a voting approach that uses a set
of binary decisions extracted from each SVM to predict
each segment, followed by an integration step to restore the
continuity of the segments.

Derbas et al. [55] employ a set of 6 visual and audio fea-
tures (e.g., RGB histograms, texture information via Gabor
transforms, SIFT, MFCC, STIP, audio-visual BoW of MFCC
and HoFs). The information is reduced using the PCA
decorrelation. The classification is carried out independently
for each descriptor, and late fusion with optimized weights
is applied in the final stage. A combination of SVM and kNN
is used for the classification of violence.

Penet et al. [56] introduce an audio concept detection
system. It uses MFCCs, energy, and flatness coefficients. The
authors train different contextual Bayesian Networks for
each feature and aggregate them via a weighted late fusion
scheme. The network classifies each sample according to
its context. The final violence scores are produced using a
simple chunk aggregation that groups contiguous segments
that have the same label.

MediaEval 2014: Dai et al. [57] use visual and audio
features, e.g., HoG, HoF, MBH encoded with Fisher Vec-

tors, TrajMF [51] trajectory shape features encoded with
Fisher Vectors, STIP, MFCC. Dimensionality reduction via
expectation-maximization PCA is used for the TrajMF fea-
tures. Two classifiers compose the best-performing systems:
(i) an SVM classifier that uses Fisher Vectors of HoG, HoF,
and MBH features, and (ii) a DNN-based classifier [58], [59]
that uses the rest of the features. The final violence predic-
tion is achieved via a late fusion scheme. Temporal score
smoothing and clip merging are employed for determining
segment-level predictions.

Sjöberg et al. [60] employ visual (e.g., CNH, CM, LBP,
HoG, Color Structure Descriptor, Grey Level Run Length
Matrix) and audio (e.g., MFCC, amplitude envelope, ZCR,
SC and flux, RMS, band-energy ratio) features with a MLP
which is trained for mid-level violent concept prediction.
The input data is normalized with mean and standard devi-
ation. The low-level audio-visual features, together with the
mid-level conceptual predictions, are fed to the same MLP
classifier for predicting the final violence scores. Temporal
smoothing via median filtering and thresholding is used.

Zhang et al. [61] propose a salient keypoint trajectory-
based detector. The authors extract an accurate detection
of human motion via the method in [62] and then extract
HoG, HoF, and MBH features around these points. These
motion features are normalized with a square root approach,
and the dimensionality is reduced via PCA. The video-level
aggregation is then computed with Fisher Vector represen-
tations. Dense SIFT descriptors are computed at different
scales and grids. MFCC features with delta and double-
delta components, encoded via GMM, represent the audio
description of the samples. SVM classification is processed
separately for the visual and audio features, and the final
result is computed using a non-weighted late fusion that
sums the outputs of each of the SVMs.

MediaEval 2015: Dai et al. [63] use traditional visual and
motion features (e.g., MBH, HoG, HoF, TrajShape encoded
with Fisher Vectors, STIP encoded with BoW), audio fea-
tures (e.g., MFCC) and a series of features extracted from
DNN layers. The authors fine-tune AlexNet [64] using a
subset of ImageNet composed of 2,614 manually selected
classes representing categories of scenes, weapons, people,
etc., that are semantically linked with violence, and extract
features from the FC6, FC7 and FC8 layers of the network.
Another DNN feature is obtained via the two-stream CNN
from [65], which is composed of a spatial component, pre-
trained on the full ImageNet data set, and a temporal stream
that takes stacked optical flow information as input. The last
3 layers of the spatial component and the last layer of the
temporal component are then used as input for an LSTM
network, pre-trained on the UCF-101 data set, that models
the dynamic information. The average output of the last
LSTM layer is used as a feature. The final classification is
performed with linear and χ2 SVMs, and kernel-level fusion
is adopted in generating the final violence scores.

Lam et al. [66] employ an SVM based system that uses
motion features (e.g., a combination of HoG, HoF and MBH
encoded with Fisher Vectors), audio features (e.g., MFCC
encoded with GMM), and deep learning features (e.g., the
FC6, FC7 and FC8 layers of the pre-trained VGG16 [67]
model). The authors use a linear kernel for the motion
and audio features, while a χ2 kernel is used for training



9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

MAP MAP MAP MAP MAP MAP MAP MAPCost MAP@100 MAP@100 MAP@100 MAP@100 MAP2014 MAP2014
VSD2011H-obj.shot VSD2012H-obj.shot VSD2013H-obj.shot VSD2013H-obj.seg. VSD2013H-subj.shot VSD2014H-subj.seg VSD2014YT-subj.seg VSD2015H-subj.clip

Fig. 2: Boxplot representation of the overall performance (interquartile range IQR of 50%, median values, lower and upper
adjacent values calculated as 1.5·IQR, and outlier values marked with red crosses). Two metrics are presented for each
data set: standard MAP and the official metric on which the submitted methods were optimized (H - Hollywood movies,
YT - YouTube movies, obj - objective definition of violence, subj - subjective definition of violence, shot - video shot
level, seg - video segment level, clip - video sequence level). No representation is provided for the VSD2012H-obj.seg and
VSD2013H-subj.seg data sets due to the very reduced number of submitted systems, i.e., 1 and 2, respectively.

the deep features. The final results are generated using an
average weighting approach.

Seddati et al. [68] also use a deep feature approach. The
authors extract the TV-L1 optical flow map features using
the implementation from [69], and use a 24-layer deep CNN
as classifier for predicting violence.

Yi et al. [70] extract traditional visual features (e.g.,
IDT, dense SIFT, Hue-Saturation histograms), audio fea-
tures (e.g., MFCC) and deep features (e.g., based on the
CNN M 2048 model from [71], pre-trained on ImageNet).
The features are aggregated with Fisher Vectors, and classi-
fication is carried out via the use of SVM models for each
feature. A linear late fusion approach generates the final
violence scores. Several combinations of features are tested.

5.1.2 Analysis of the overall performance

We provide a global analysis of the results achieved during
the MediaEval VSD campaigns. Figure 2 presents a box-
plot representation of the results in terms of general mean
average precision (MAP) and the original metrics of each
year’s campaign, namely: “MediaEval cost” for the 2011
data normalized between 0 and 1, mean average precision
at a cutoff of 100 highest ranked shots (MAP@100) for the
2012 and 2013 data, mean average precision with special
constraints for the 2014 data (see Section 4), and standard
mean average precision for the 2015 data. It should be
noted that a direct comparison between the general MAP
score and the official metrics should be treated cautiously,
as systems were not optimized in the same way. However,
both metrics account for the same principle, i.e., capturing
the prediction performance, and an overall statistical inter-
pretation is valid.

For VSD 2011 to 2013, each movie is pre-segmented into
video shots via shot boundary detection, and the algorithms
are expected to conduct the prediction at shot level. Analyz-
ing the data for the objective definition of violence, a small
decrease in the maximum performance can be observed in
2012 (MAP of 0.318), compared to 2011 (MAP of 0.339).
However, systems show a significant increase of MAP in
2013, reaching up to 0.51, an increase of 18 percentage
points over 2011. This can be explained by the increase in

the number of training movies (see Table 1) and by the
increasing diversity of runs submitted by the participants,
including the use of more multimodal features and more
advanced algorithms (see Section 5.1.3 and 5.1.4). Compared
to the results achieved for the segment-level prediction in
2013, i.e., the systems are expected to predict the exact
(variable length) violent parts of a movie, the best MAP
is visibly lower, 0.34 vs. 0.51. This is expected, given the
additional difficulty of localizing the segments precisely.

Looking at the subjective definition of violence, the
results in 2013 for shot-level prediction show a signifi-
cantly higher MAP compared to the objective definition,
i.e., 0.67. Though this may seem surprising, an analysis of
the annotations from VSD 2013 shows that more shots are
labeled as violent under the subjective definition (20.24%)
than under the objective definition (10.49%). This creates a
lower class imbalance, and systems may be able to train
better on the subjective task. Segment-level prediction, is
also solved better for 2014, i.e., MAP of 0.7, compared to 0.35
in 2013. The robustness of the methods is sustained with the
experimentation on the YouTube videos in 2014. Although
the systems were trained on Hollywood movies, they were
able to generalize well when evaluated on user-generated
content, generally achieving slightly higher performance
than the systems tested on Hollywood movies. The better
performance for the YouTube videos may have also been
the result of a lower class imbalance, i.e., on average, 44.47%
violence duration for YouTube videos versus 16.26% for the
movies in the testset.

In 2015, we noticed a significant drop in performance for
the subjective definition of violence and clip-level predic-
tion, i.e., the best MAP is 0.29. There is a higher number
of individual clips, and the variety of content is a bit
lower compared to Hollywood and YouTube data. Then,
the systems are required to be more general, as the 2015
data was also shared for the prediction of induced affect [4].
Participants are asked to develop systems that can solve
both violence detection and affect classification. This mostly
implied using the same data preprocessing algorithms, fea-
ture sets and training models, while separately training their
systems on the two concepts. This is not a regression of
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Fig. 3: Performance of the employed features and methods (gray and white columns, respectively). Two metrics are
presented for each data set: standard MAP and the official metric on which the submitted methods were optimized.
Different shapes and colors (generated using color blindness rules for maximal perceptual discrimination via the tool
from https://medialab.github.io/iwanthue/) account for different modalities/techniques used and their combinations (H
- Hollywood movies, YT - YouTube movies, obj - objective definition of violence, subj - subjective definition of violence,
shot - video shot level, seg - video segment level, clip - video sequence level).

the methods, but on the contrary, the systems became more
general, validated in-the-wild.

Finally, some systems stand up as outliers compared
to the others. We review the positive ones. These systems
achieved notable results in the 2012 campaign. Schlüter et
al. [43] employ low-level visual and auditory features (e.g.,
HoG, LPC, MFCC) and train a MLP via mid-level concepts,
achieving a MAP@100 of 0.65 and a MAP of 0.318, which is
the best result. Penet et al. [44] employ traditional visual and
audio features and use a hybrid classification system (via K2
for audio and Bayesian Networks for visual information)
achieving a MAP@100 of 0.6182 and a MAP of 0.2947 (see
Section 5.1.1). One noteworthy mention is that both these
systems use a multimodal approach, exploiting visual and
audio features and concepts, therefore analyzing violence
from different perspectives and improving on more simple
unimodal approaches.

5.1.3 Analysis of the employed features
We provide an in-depth analysis of the employed features
for the various submitted systems. The results are presented
in Figure 3. The main modalities used are: (i) visual con-
tent (e.g., DT, dense SIFT, GIST features), (ii) audio content
(e.g., ZCR, MFCC, SC), (iii) conceptual features, represent-

ing the mid-level concepts presented in Section 3.2 (e.g.,
“gunshots”, “blood”), and (iv) deep features, representing
the feature vectors extracted from the output of different
layers of different DNNs (e.g., AlexNet, VGGNet). The dif-
ferent feature combinations are also represented. However,
for practical reasons, not all the existing combinations are
reported here. Investigating the best performing feature
combinations on a per data set basis, we observed that
several types of combinations consistently achieve the best
results. In particular, 4 multi-modal feature combinations
stand out: (i) visual + audio, (ii) audio + conceptual, (iii) visual
+ audio + conceptual, and (iv) visual + audio + deep. While
some systems use only one type of concepts, e.g., only
audio concepts, in our analysis, we consider them a different
category than audio features, representing a higher-level
symbolic description.

Multimodal. A first analysis reveals that out of the total
of 236 runs, 69 % (163 runs) employ multimodal features,
as combinations of audio, visual, conceptual, or deep fea-
tures. Multimodal approaches are able to provide superior
performance and have constantly been the best performers
for each of the data sets. Single modal systems achieve, on
average, across all the data sets, a MAP of 0.208, while
the multimodal systems reach 0.3138. For instance, Dai et
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al. [57] use shape, motion and temporal visual features and
MFCC audio features [58], [59], achieving a MAP score of
0.706 (VSD2014H-subj.seg). Other impressive performances
are also multimodal, with MAP results of 0.675 and 0.674
(VSD2013H-subj.shot). Tan et al. [47] extend the concepts
list to up to 52 violence-related concepts based on external
Youtube videos and ontology models extracted from Con-
ceptNet. Motion and SIFT visual features, as well as MFCC,
LSF, OBSI and linear predictor coefficients audio features
are extracted from the frames/shots, corresponding to the
detected concepts.

Traditional visual and audio features achieve the best re-
sults on 4 data sets: VSD2013H-obj.shot, VSD2013H-obj.seg,
VSD2013H-subj.shot, and VSD2014H-subj.seg. For instance,
Dai et al. [50] use a combination of features such as
trajectory-based motion features, STIP, MFCC, obtaining a
MAP@100 of 0.553 (VSD2013H-obj.shot). Goto and Aoki [53]
achieve a MAP@100 of 0.42 using visual and temporal
dense trajectory features [54], MBH, RGB histograms, MFCC
and audio energy features (VSD2013H-obj.seg). All these
features are concatenated and converted to a BoW represen-
tation. Two runs from Derbas et al. [55] reach a MAP@100
of 0.69 on VSD2013H-subj.shot. They employ color, texture,
SIFT, STIP, MFCC, and joint audio-visual BoW features and
PCA for decorrelation.

Audio and conceptual features provide the best results
on VSD2013H-subj.seg, with a MAP@100 of 0.447. Penet
et al. [56] use an audio concept detector based on MFCC,
energy, and flatness.

The visual, audio and conceptual features are the
best performers for the VSD2011H-obj.shot, VSD2012H-
obj.shot, VSD2012H-obj.seg, and VSD2014YT-subj.seg data
sets. Penet et al. [38] attain a MediaEval cost value of
0.761 (0.931 normalized) by using 5 audio features: energy,
centroid, asymmetry, ZCR, and flatness, together with 4
visual features: shot duration, average number of blood
pixels, average activity, and number of flashes (VSD2011H-
obj.shot). The authors also use contextual representations
to improve results. Schlüter et al. [43] achieve a MAP@100
of 0.65 (VSD2012H-obj.shot) using visual features based on
color, shape and visual activity and 8 types of spectral and
temporal audio features for predicting visual, audio, and
audio-visual mid-level violent concepts. Sjöberg et al. [60]
obtain a MAP2014 of 0.663 (VSD2014YT-subj.seg) using
mid-level concepts based on color, texture, spectral and
temporal audio features.

Concepts. Concept features are a particular case of de-
scriptors and account for higher-level information. The
audio and visual concepts annotated in the data sets are
presented in Section 3.2, while the correlation between the
concepts and violence is presented in Table 2. Many of the
teams use the 10 concepts as classes for an intermediary
system, creating machine learning methods to predict the
presence of violent events, and then use the output pre-
dictions as features for their systems. For instance, Schlüter
et al. [43] achieve the highest concept prediction recall for
the detection of “blood” and “coldarms”, while the highest
precision and F-score, 0.24 and 0.3, respectively, are achieved
for the detection of “fire”. The authors use low-level visual
features (HoG, CNH, and visual activity) and audio features
(LPC, LSP, MFCC, ZCR, SC, SF, rolloff, and kurtosis). The

results prove that some concepts such as “firearms” and
“fire” show a good performance, while others, such as
“carchase”, perform badly.

Deep features. Deep features are now state of the art for
many classification systems, in various domains like image
recognition [72], generating artificial data [73] and action
detection [74]. In the context of the VSD data, some partic-
ipants choose to fine-tune existing DNNs and extract some
of the CNN layers [63], others use pre-trained networks [66],
while some create new models for this particular task [68].
Dai et al. [63] base one of their features on the FC6, FC7,
and FC8 layers of a fine-tuned AlexNet model and manage
to achieve the highest score on VSD2015H-subj.clip, MAP
of 0.296. The tuning process consists of manually picking
2,614 classes from the ImageNet data set that are related
to violence, and a retraing of the network. Lam et al. [66]
use the pre-trained VGG [67] model, and it is worth noting
that the addition of a feature set containing, among other
descriptors, the feature vectors extracted from the FC6 and
FC7 layers of the VGG network improves their results sig-
nificantly, from a MAP of 0.22 to 0.268 (VSD2015H-subj.clip).
Finally, the 2D architecture created by Seddati et al. [68] uses
optical flow maps as inputs for the network. However, MAP
was not as high as the one achieved by other approaches,
reaching 0.09 (VSD2015H-subj.clip) with methods that used
an adapted deep CNN with 5 convolutional layers (Con-
vNet).

Deep features are much more effective in combination
with other modalities. For instance, Dai et al. [63], the best
performers on VSD2015H-subj.clip, use visual, audio, and
deep features, achieving a MAP of 0.296. In particular, they
employ an AlexNet [64] based violence CNN descriptor,
spatio-temporal CNN features aggregated with an LSTM
model [75], conventional trajectory features encoded using
Fisher Vectors, STIP features, and MFCC audio features. It
is worth noting that overall, only 12% (29 runs) of the total
number of runs employ deep features, with the first appear-
ance of such features in 2014. In the following year, 2015,
up to 50% (24 runs) of the runs used deep features, which
shows an increasing interest in these approaches. A boost in
performance is also visible if we compare the average MAP
obtained with the runs employing deep features, 0.179, and
the average MAP of the other type of features, 0.142, for the
2015 data.

Fusion. In terms of fusion techniques, the most employed
approach is early fusion. Overall, 80% (188 runs) of the total
number of runs use some kind of fusion technique; 163 runs
use early fusion (by ensembling unimodal features before
classification) and 97 runs use late fusion (by reducing
unimodal features to separately learned model scores, and
then ensemble to generate new predictions). These include
also methods that use both, early and late fusion combined.
However, an estimate of the average MAP across these runs
shows that early fusion achieves 0.294, which is lower than
late fusion with 0.343. Surprisingly, a higher performance is
achieved when mixing both fusion techniques, an average
MAP of 0.407.

5.1.4 Analysis of the detection methods
We analyze the performance of the deployed methods for
VSD. The following categories were prominent: (i) SVM,
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(ii) statistical approaches (e.g., HMM, GMM, Bayesian ap-
proaches), (iii) Neural Networks (e.g., MLP with one hidden
layer), (iv) Discriminant Analysis (e.g., QDA, Probabilistic
LDA), (v) Deep Neural Networks (e.g., CNNs with multiple
hidden layers), (vi) clustering (e.g., kNN), (vii) unsuper-
vised learning (e.g., entropic confidence), and (viii) hybrid
approaches combining more than one type of methods8. An
overview of the results is presented in Figure 3.

Support Vector Machines. The use of SVMs is consis-
tently predominant with 65 % of the runs using one of its
variants. Three top runs use it on the VSD2013H-obj.shot,
VSD2014YT-subj.seg and VSD2015H-subj.clip data sets,
and three top runs on the VSD2013H-obj.seg, VSD2013H-
obj.shot, and VSD2013H-subj.shot data sets. For instance,
Dai et al. [50] use a standard χ2 SVM to classify the 4
types of audio-visual features. This approach achieves the
top performance with a MAP@100 of 0.553 (VSD2013H-
obj.shot). Tan et al. [47] employ multiple SVM classifiers to
predict mid-level violent concepts using low-level audio-
visual features. Furthermore, the authors use the provided
audio and visual concepts (see Section 3.2) and inferred ad-
ditional concepts by training over the external data gathered
from YouTube. This approach generates a more diverse set
of mid-level violent concepts and achieves the best results
in terms of MAP, namely 0.675 (VSD2013H-subj.shot). For
the VSD2013H-obj.seg data, Goto and Aoki [53] obtain the
best result in terms of MAP@100, 0.420, using multiple SVM
kernels, one for each feature type. The goal was to find
the optimized weights when multiple SVM kernels are em-
ployed. The final system is based on a voting approach that
uses a set of binary SVMs to predict each segment, followed
by an integration technique to include the continuity of the
segments. A multi-SVM approach is also employed for the
VSD2015H-subj.clip data, where the best run in terms of
MAP is obtained by Dai et al. [63], namely 0.296. The authors
use two variants of SVM, namely a linear kernel and a χ2

kernel, one for each different category of features, i.e., neural
network-based and handcrafted.

Statistical approaches. Statistical methods account for 13%
of the total number of runs, the second most frequently
used approach. For the VSD2013h-subj.seg data set, Penet et
al. [56] achieve the best results in terms of MAP@100, 0.447,
using a late fusion approach based on multiple Bayesian
Networks for each audio feature type. The final scores are
produced using a simple chunk aggregation technique via
grouping the contiguous segments which yield the same
label. The decision is set by a voting system where a segment
inherits the probability of being violent from the highest
probability of the segments that lie within the chunks. The
K2 greedy methods are only used for VSD2011H-obj.shot
data with good results. Penet et al. [38] obtain a MAP
of 0.33, which is the top run in the aforementioned data
set using the K2 algorithm to learn from the features that
are extracted only from the visual modality. The authors
refine the decision by exploiting the temporal structure of

8. Please note that some of the categories might seem to include
each other, e.g., deep networks and neural networks. In our analysis,
“neural networks” refer to shallow networks with a single hidden layer,
while “deep networks” refer to deep networks with multiple hidden
layers. The scope of this analysis is to identify the performance of some
subclasses of techniques and not to propose a categorization.

the movies, employing a temporal window, and taking the
maximum decision over samples. The GMM/HMM-based
methods do not produce notable results.

Neural networks. Standard neural networks represent 8%
of the total number of runs. Schlüter et al. [43] achieve the
best results in terms of MAP@100 for the VSD2012Hobj.shot
and VSD2012H-obj.seg data sets, namely 0.650 and 0.548,
respectively, by training a frame-wise violence predictor
based on a MLP network. The system is built on a set of
visual and auditory features, to predict violence from mid-
level concepts (e.g., “blood” or “fire”). The final violence
prediction score is obtained by thresholding the output
of each network. The cut-off points are determined by
maximizing the official metric in the training phase, using
cross-validation. A similar approach is employed for the
VSD2013H-obj.seg data, where the top run is obtained by
Sjöberg et al. [76], with a MAP@100 of 0.350, and for the
VSD2014YT-subj.seg data, where Sjöberg et al. [60] achieve
the best MAP2014 of 0.663.

Deep neural networks. Deep network-based methods ac-
count for 2% of the total runs. While, in general, these
methods are less effective than the other approaches, two
runs stand out: one for the VSD2014H-subj.seg data and
one for VSD2014YT-subj data, being situated over the third
quartile. Dai et al. [57] use audio-visual features to train
a DNN that captures the relationships between distinct
features. This approach achieves a MAP2014 of 0.45 on
VSD2014H-subj.seg, and a MAP2014 of 0.6 on VSD2014YT-
subj.seg.

Discriminant analysis. Discriminant analysis methods ac-
count for 2 % of the total runs. The majority of the runs
are concentrated on the VSD2011H-obj.shot data. These
approaches do not achieve notable results, as the best run of
Gninkoun et al. [42] is placed in the second quartile for both
MAP and cost, 0.17 and 0.81, respectively. The authors train
an LDA classifier based on audio-visual-textual features.

Clustering. Clustering-based techniques, such as the
kNN, are employed in around 1% of the total number
of runs and do not achieve notable results. They are first
introduced on the VSD2011H-obj.shot data by Safadi et
al. [41], achieving a MAP of 0.04 and a cost of 0.27.

Unsupervised approaches. It is worth mentioning here the
only such approach, suggested by Glotin et al. [39], for the
VSD2011H-obj.shot data. The authors use entropic audio-
visual confidences computed as the average of the entropies
of visual and acoustic features achieving a MAP of 0.07 and
a cost of 0.41. Although the results are low, it is a first notable
attempt towards unsupervised approaches.

Hybrid approaches. Hybrid approaches consist of using
more than one type of classifier, e.g., using SVM and kNN,
and they account for 8 % of runs. Four top runs use this class
of approaches. For instance, on the VSD2013H-subj.shot
data, the top run, with a MAP@100 of 0.690, is obtained by
Derbas et al. [55]. The authors use a hierarchical fusion of
outputs based on a temporal re-ranking method using two
different classifiers, one based on multiple SVMs for better
handling of the class imbalance problem and one based on
kNNs. Dai et al. [57] obtain the top run over the VSD2014H-
subj.seg data, with a MAP2014 of 0.63, using a late fusion
approach based on two classifiers: a DNN that models both
feature correlation and feature diversity, and a χ2 SVM.
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Fig. 4: Reliability scores of the system rankings (along the x-axis is the subsampling percentage and along the y-axis is
the reliability score value). Relative sensitivity scores are marked with •, Kendall’s tau with N, and weighted Kendall’s
with H. Shot-based sampling is marked with dashed lines. Use of objective definition of violence is marked with black,
of subjective definition with green, and the YouTube clips from 2014 with blue. Finally, the reliability limits for the scores
τ = 0.9 and δr = 0.25 are indicated with horizontal red dotted lines.

5.1.5 Reliability analysis of performance scores

We analyze the reliability of the previous method rankings,
and therefore the reliability of our conclusions about the ef-
fectiveness of the systems. We test whether the same ranking
results are obtained with different data configurations, and
analyzes the stability of the results across different trials.

Systems are ranked using an evaluation metric based on
comparing their responses to the ground truth for a set of
queries q ∈ Q. If we denote the score achieved by system
A with λQ,A, and the score received by a different system B
with λQ,B, we say that system A is better than system B if
λQ,A > λQ,B. As demonstrated by Urbano et al. [77], if this
ranking is reliable, it could be replicated with another set of
queries Q′, so that λQ′,A > λQ′,B still holds.

We studied the reliability of rankings by randomly
sampling pairs (Q′,Q′′) of query subsets with the same
size from the set of all queries used, Q. We can then
compare the system evaluations achieved with Q′ with
the ones achieved with Q′′. Urbano et al. [77] suggested
several reliability indicators for performing this comparison.
These measures can be grouped into two types: (i) score-
based and (ii) ranking-based. As most of the measures were
found to be relevant and highly correlated to each other,
we have chosen one of each type for this study, namely
the relative sensitivity and Kendall’s rank correlation. The
relative sensitivity δr is defined as the minimum difference
(λQ′,A−λQ′,B)/max(λQ′,A, λQ′,B) that needs to be observed
with Q′ such that the differences with Q′′ have the same
sign, at least 95 % of the time. Relative sensitivity should
tend to 0 and δr = 0.25 is given as the limit for reliabil-
ity [78].

Kendall’s rank correlation τ depends on the ranks of
the systems only and does not consider the specific scores
received by each system [79]. It counts the number of inver-

sion of pairs of objects that would be needed to transform
the ranking induced by Q′ with the one by Q′′. The rank
correlation ranges from 1 (identical rankings) to -1 (inverse
ranking). Voorhees [80] establishes τ = 0.9 as a limit for
reliable ranking. In addition, we also compute a weighted
version of Kendall’s rank correlation τw, where exchanges
of highly ranked objects are considered more influential
than exchanges of low ranked objects [81]. We believe this
is well-motivated in this case as the worst systems are per-
forming essentially randomly, and their ranking can thus be
considered somewhat arbitrary. We have used the additive
hyperbolic weighting scheme, as suggested by Vigna [81].

For the different data sets, depending on the granularity
of the annotations, we employ two different subsampling
schemes: (i) movie-based and (ii) shot-based. In most cases,
the data set consists of a small number of movies, from
which several shots were extracted. Shots sampled from
the same movie cannot be considered to be statistically
independent, and thus, in theory, sampling on the movie
level is more appropriate. Unfortunately, for the years 2011
to 2013, the number of movies was too small for movie-
based subsampling to make sense. For those years, we
have relied only on shot-based sampling. For movie-based
sampling, we have subsampled in decrements of one, so
that if the total number of movies is N , we have proceeded
to randomly generate pairs of N − 1 movies, N − 2, and
so on. For shot-based sampling, we have subsampled in
decrements of 10 percentage points, i.e., 90 %, 80 %, and so
forth. For each subsample size, the reported numbers are
averages across at least 50 randomly generated pairs.

Figure 4 shows the reliability scores for each data set
based on the official metrics for that particular data (see
also Figure 2). For all plots, the horizontal axis shows the
subsampling percentage, while the vertical axis indicates the
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average reliability score for the pairs sampled at that level.
Shot-based lines are dashed, while movie-based ones are
full lines. The reliability limits for the scores τ = 0.9 and
δr = 0.25 are indicated by horizontal red dotted lines.

Analyzing the numbers, one can observe that τ ≥ 0.9
is reached in all cases at 90 % sampling, or even earlier.
In all cases, τw gives the same or a better correlation, in
most cases reaching the reliability limit already at 60 %.
This indicates that the ranking is often more reliable for
the top ranks, which is expected, as often the poorest re-
sults can be essentially random. The limit for the relative
sensitivity was reached in all years at 60 % or earlier, in-
dicating high reliability. For 2015, where both movie and
shot-based sampling was employed for the same videos,
we can see that the scores are better for the shot-based
one, as expected. In 2014, the YouTube clips were marked
as shot-based sampling, but they are, in fact, independent
shots and do not have common movies. In fact, in 2014,
we can see that the YouTube runs are less reliable than the
regular movie runs. In 2013, the only year to have both
objective and subjective definitions of violence, we can see
that the subjective rankings were more reliable indicators
of system performance. Finally, and most importantly, both
Kendall’s scores tend to 1, and the relative sensitivity tends
to 0 as the number of queries that are evaluated increases.
With weighted Kendall’s and relative sensitivity scores, we
cross the reliability limit in most cases already at 60 %
subsampling.

5.2 Benckmarking of the state-of-the-art methods

To have a complete analysis of the existing systems’ perfor-
mance, we provide an in-depth analysis of the representa-
tive methods from the literature, trained and tested on the
VSD96 data. These were not submitted to the MediaEval
benchmark, and most importantly, they were developed
without any time constraints. Figure 5 gives an overview of
the results (note that some of the methods provide different
runs with different parameters). To be able to compare them
with the best results from the MediaEval campaign (see
Section 5.1.4), we present, where available, the same official
metrics. However, in some cases, these are not reported
in the publication. In those cases, we present the metric
reported by the authors (e.g., accuracy, AP@100).

For the VSD2012H-obj.shot data, 2 methods were par-
ticularly interesting due to their multimodal approach, the
ones proposed by Eyben et al. [82] and Acar et al. [83].
Compared to the results achieved at MediaEval, all methods
perform worse than the best method (see the green MediaE-
val runs in Figure 5).

For the VSD2013H-obj.shot, VSD2013H-subj.seg, and
VSD2013H-subj.shot data sets, we have selected 8 ap-
proaches that stood out due to their diverse classification
methods and features. They were proposed by Goto and
Aoki [84], [85], Moreira et al. [86], Tan et al. [87], Lam et
al. [88], [89], Derbas et al. [90], and Mironica et al. [91].
The majority of them achieved a score above the MediaEval
average, 3 of them outperforming the best MediaEval run.
Goto et al. [84], [85] used visual (HoG, MBHx, MBHy) and
auditory (first derivative of MFCC and its energy) features
in a multimodal approach. Starting from the premises that

the features might be largely different depending on the
characteristics of violence, the authors used a clustering
process where each cluster is trained via MKL. The obtained
scores are integrated, and the final decision of violence is
obtained by thresholding. It achieves a MAP@100 of 0.55 for
the objective definition of violence. Tan et al. [87] exploited
a set of relations between the concepts from an ontology,
such as spatial, temporal, social, physical, and psychological
relations for synthesizing sentences with implied meaning.
The approach uses three types of features, including visual
(DoG, Hessian Affine and SIFT), audio (LSF, OBSI, LPC,
MFCC, and their first and second-order derivatives), and
action-oriented (HoG, HoF, and MBH). Furthermore, an
SVM classifier is trained to detect the occurrence of an
extended list of concepts crawled from YouTube, achiev-
ing a MAP@100 of 0.62 for the objective definition and a
MAP@100 of 0.74 for the subjective one. Mironica et al. [91]
creates a dictionary of frame words, based on a Random For-
est approach, by computing a Fisher Kernel representation
for each descriptor type, namely: visual (HoG and CNH),
motion (HoF) and audio (LPC, LSP, MFCC, ZCR, SC, SF, roll-
off, and kurtosis). The classification is performed via SVM,
achieving a MAP@100 of 0.76 for the objective definition and
a MAP@100 of 0.72 for the subjective one. This approach
represents the state of the art for both data sets (objective
and subjective definitions of violence).

For the VSD2014H-subj.seg and VSD2014YT-subj.seg
data sets, we have selected 5 approaches that stood out
due to their diversity. They were proposed by Khokher
et al. [92], Ali et al. [93], Lam et al [94], [95], Sarman et
al. [96], and Acar et al. [97]. From the aforementioned,
the approach proposed by Khokher et al. [92] is the only
one to surpass the best run at MediaEval. The authors use
MFCC auditory features and DT visual features. To retain
the structure of interactions between features, the vectors
are further arranged in the form of tensors that undergo a
tensor decomposition process. For the classification, robust
features are selected using Fisher ranking, and then they
are used to train a linear SVM. This approach achieved a
MAP2014 of 0.6 for the Hollywood movies and a MAP2014
of 0.68 for the YouTube clips.

For the VSD2015H-subj.clip data set, we have selected
2 approaches that showcase two different methods to infer
sub-concepts for violence detection. The methods were pro-
posed by Acar et al. [98] and Li et al. [99]. The approach
proposed by Li et al. [99] overcomes the best MediaEval
run of Dai et al. [63] by a narrow margin. The authors
extended the training annotations by manually labeling a set
of sub-concepts to help the system better interpret the cross-
data set divergence and consequently reduce the difficulty
of generalizing the learned features to unseen data. The
system learns from a handful of features such as the CNN
features extracted from three pre-trained popular models,
i.e., the last fully-connected layer of VGGNet trained on
ImageNet, and the pool5 layer of GoogleNet [100] and
GoogletNet4k [101], trained on ImageNet and a bottom-
up reorganization of the ImageNet hierarchy, respectively;
motion features based on Improved Dense Trajectory, and
the auditory features based on MFCC. Finally, a set of linear
SVMs is trained, and the late fusion is used for the final
decision. It achieves a MAP of 0.3. This is again a good



15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MAP MAPMAP@100 MAP@100 MAP@100 AP@100MAP2014 Accuracy MAP2014MAP@100

VSD2012H-obj.shot

VSD2013H-obj.shot

VSD2013H-obj.shot

VSD2013H-subj.seg

VSD2013H-subj.shot

VSD2014H-subj.seg
VSD2014H-subj.seg

VSD2014H-subj.seg

VSD2014YT-subj.seg

VSD2015H-subj.clip

Fig. 5: Performance of the state-of-the-art methods. Different shapes and colors account for different approaches. In
particular: green upward-pointing triangle accounts for the best MediaEval run on that data, orange right-pointing triangle
accounts for the overall average score, and red downward-pointing triangle accounts for the lowest MediaEval run on that
data (H - Hollywood movies, YT - YouTube movies, obj - objective definition of violence, subj - subjective definition of
violence, shot - video shot level, seg - video segment level, clip - video sequence level).

example of the effectiveness of mid-level-based systems that
are able to capture more discriminant information compared
to the use of other types of features.

6 SUPER SYSTEM DESIGN

In this final experiment, we take a holistic approach by
investigating the possibility of building a super system on
top of existing systems. To do so, we investigate some ad-
hoc and standard late fusion schemes that are described
below. Our goal is to create a late fusion scheme that can
achieve significantly better results than the individual sys-
tems composing the scheme. While a drawback for this kind
of approach is the high computational complexity necessary
for running such a system, a significant improvement of the
results would be hard to ignore and, given the ever-growing
GPU-based parallel processing power, the implementation
of such a system could be feasible. We do not aim to
introduce a novel fusion scheme but to prove that although
individual systems are powerful, and declared state of the
art (even including on their own, some fusion schemes),
there is always the possibility of achieving a greater per-
formance via an ad-hoc fusion system.

To achieve our goal, for each year of the MediaEval
benchmark, we have considered the best systems. We tested
different groupings of the participants’ runs, e.g., all runs
altogether and diverse selections of the runs, e.g., by taking
only those above a certain empirically determined threshold
in terms of official metric and/or MAP. For the free segment-
level prediction, we keep either the intersection (inter) or the
union (union) of the predicted segments. For shot-level and
clip-level prediction, there is no need for such aggregation
as the boundaries are the same for all the systems. Once
the segments’ aggregation is ready, the modified prediction
scores are determined by considering only the scores of
temporally coherent segments from the original systems,
i.e., the segments should have an intersection of at least a
given fixed duration (e.g., 0.02 s, empirically determined) to
be tagged as coherent.

Finally, the late fusion is carried out via the fusion of the
scores by taking the minimum (min), the maximum (max),
or the average (avg). We also tested a combination of min-
max (minmax) that consists of taking the minimum value for
resulting non-violent segments and the maximum value for
violent segments. However, this was applied only to the free
segment-level prediction.

The results are summarized in Table 4. Except for
the VSD2013H-subj/obj.shot data sets, the super system
achieves better, sometimes significantly higher performance
(+11 % on average) over, both, the best MediaEval runs and
the state-of-the-art approaches from the literature. This leads
to the idea that the corresponding individual systems were
complementary in terms of detection and did not generate
too many false alarms, which could be foreseen as those
systems reached already high recall levels, at the cost of
lower precision. For the 2013 data and shot-level prediction,
on the contrary, the recall of individual systems was globally
lower and even lower than the precision. In this specific
case, this leads to the incapability of any of the super system
approaches to outperform the individual systems. Their
fusion could not increase their global recall sufficiently.

7 DISCUSSION AND CONCLUSIONS

Violent Scenes Detection (VSD) is an increasingly important
topic, especially with the exponential proliferation of the
Internet among young children. There is an urgent need
for tools able to automatically predict affect content on
the spot, and therefore of machine learning resources for
developing them. We have introduced a common evaluation
framework for VSD that comes with a very large annotated,
publicly available data set, i.e., the VSD96 data set: 31 full
Hollywood movies, 86 YouTube video clips, and 10,900 clips
extracted from 199 Internet Hollywood-like movies, sum-
ming up to more than 96 hours of video. These resources
were developed and validated during the yearly MediaEval
benchmarking initiative for multimedia evaluation.
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TABLE 4: Super system design (MediaEval — the best result
from the benchmark, see Section 5.1; SotA — the best result
from the literature, see Section 5.2; inter/union — segment
aggregation; min/max/avg/minmax — late fusion scheme;
any union scheme — union/avg, union/min, union/max).

VSD2011H-obj.shot data set

parameters any union MAP>0.17 MAP>0.17
scheme inter/avg union/min
MediaEval cost MAP MAP@100

super system 1 0.369 0.501
MediaEval 0.761 0.339 0.406
SotA NA NA NA
VSD2012H-obj.shot data set

parameters
all best MAP MAP>0.2 MAP>0.2
runs/any MAP100>0.6 MAP100>0.6
union scheme inter/avg union/avg
MediaEval cost MAP MAP@100

super system 0.908 0.633 0.77
MediaEval 1 0.318 0.651
SotA NA NA 0.42
VSD2013H-obj.shot data set

parameters MAP@100>0.49 MAP@100>0.46
union/avg union/avg
MAP MAP@100

super system 0.444 0.544
MediaEval 0.511 0.553
SotA 0.229 0.72
VSD2013H-obj.seg data set

parameters MAP@100>0.35 MAP@100>0.35
union/minmax union/avg
MAP MAP@100

super system 0.428 0.632
MediaEval 0.345 0.42
SotA NA NA
VSD2013H-subj.shot data set

parameters MAP@100>0.49 MAP@100>0.49
union/max union/max
MAP MAP@100

super system 0.504 0.6
MediaEval 0.675 0.69
SotA NA 0.761
VSD2014H-subj.seg data set

parameters MAP2014>0.5 all MAP2014>0.37
union/minmax union/minmax union/avg
union/max
MAP2014 MAP MAP@100

super system 0.6398 0.719 0.788
MediaEval 0.63 0.706 NA
SotA 0.602 NA NA
VSD2014YT-subj.seg data set

parameters MAP2014>0.5 MAP2014>0.6 MAP2014>0.6
union/avg union/min union/min
inter/minmax
MAP2014 MAP MAP@100

super system 0.722 0.828 0.828
MediaEval 0.655 0.664 NA
SotA 0.678 NA NA
VSD2015H-subj.clip data set

parameters MAP>0.14
union/avg
inter/avg
MAP

super system 0.384
MediaEval 0.296
SotA 0.303

We have provided an in-depth analysis of the crucial
components of the VSD algorithms, by reviewing the ca-
pabilities and the evolution of the existing systems with
the objective to offer a complete practitioner’s guide for
this task. We reviewed 236 systems that were submitted
to MediaEval and selected 17 state-of-the-art systems from
the literature that were tested on VSD96 data, which con-

stitute a strong baseline. We analyzed the reliability of the
annotations and system rankings, examined various aspects,
e.g., overall trends and outliers, the influence of content
descriptors, the prediction methods employed, and the pos-
sibility of aggregating the systems’ outputs into an ad-hoc
super system to achieve even greater performance. Below
we summarize the most important insights and lessons.

Where are we with the current capabilities of the algorithms?
(i) Regardless of the subjectivity of the task, as results
show, machine learning is successfully employed, the best ap-
proaches reaching a performance above 75% (MAP). The
free segment-level prediction is intuitively harder than the
pre-segmented video shot prediction. The prediction of a more
general definition of violence, i.e., subjective definition, is
more successful than the prediction of the less general
objective definition. Methods are robust enough to generalize
well to different data types, as proved by the evaluation on
YouTube data when learning was performed on Hollywood
content. The difficulty of the prediction increases signifi-
cantly with the generalization of the task. An example is
the prediction on the Hollywood-like movie clips, where
systems were expected to be even more general and pre-
dict both violence and the emotional impact of a video.
It is worth noting that, by far, the most predominant and
successful approach is still the use of classic Support Vector
Machines, despite all current popularity of deep learning.
(ii) As for what concerns the modalities used, the multi-
modal (audio-visual) approaches are naturally the best per-
formers given the characteristics of the data set. The va-
riety of employed features is quite impressive, and this
leads to the conclusion that accurate predictions can be
made with any reliable content representation. Among the
considered features, the learning of mid-level concepts, i.e.,
symbolic intermediate descriptors, such as the presence of
“blood”, “screams”, or “gore”, stands out as it outperforms
the sole use of low-level features. The average MAP over
the methods employing these concepts is 0.304, compared
to 0.273 for the rest of the methods. The early fusion was
by far more popular than the late fusion of systems, but
surprisingly, the mix of the two approaches, early-late fusion,
was the best performer. (iii) It is important to notice that
regardless of the superiority of deep learning approaches
in other tasks, for VSD, deep learning methods are not native
state-of-the-art approaches. One explanation could be the
inherently multimodal nature of the data as well as the
subjectivity of the task, which requires more adapted data
representation models. Deep learning is able to achieve high
performance, mostly when addressing a specific modality
or type of data. Among all the analyzed systems, only one
pure deep learning approach is able to achieve state-of-the-
art performance, while the deep features proved to be more
effective in combination with other features and standard
classifiers. An analysis of the performance of the 8 predom-
inant classes of VSD techniques shows that the best per-
forming approach are the hybrid methods, with an average
MAP across all the analyzed systems of 0.423. Simple MLPs
with one hidden layer are the second-best performers, with
an average MAP of 0.408, while deep learning methods are
only third-best with an average MAP of 0.282. This would
seem to further suggest that in building a top-performing
system, researchers may need to develop several modality-
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specific approaches and fuse their results. (iv) The final
experiment, i.e., the use of late fusion for creating a super
system, proved that an ad-hoc standard late fusion approach
is able to boost the performance significantly and even surpass
the state-of-the-art individual approaches by a large margin,
e.g., more than 11 percentage points on average (MAP).
This opens the possibility of considering a “blind” hybrid
multi-system over a heavily crafted individual approach.
However, there are also some inherent limitations. First,
there is the very high computational complexity of the super
system, which makes it less suitable for real-time applica-
tions. Then, the experiments show that not all the systems
are suitable for fusion. Fusing only high performing systems
allowed to achieve better performance. The inclusion of
lower-performing systems decreased performance.

Where are we heading to with the capabilities of the algo-
rithms? (i) Unsupervised or weakly supervised systems are a
future milestone and a promising alternative to example-
based learning. Creating manually annotated data to ac-
count for the ever-increasing diversity of the video ma-
terial is a tedious task. In this respect, the exploration
of Generative Adversarial Networks for generating VSD
data would be an interesting lead. Among the analyzed
systems, only one attempted an unsupervised approach, but
the performance is still unsatisfactory. However, it may be
seen as a proof of concept, and it can encourage further
developments. (ii) Deep learning network architectures tailored
to the VSD task could be devised, including the native
integration of multimodal data processing, that would allow
multiple modalities to be analyzed in an end-to-end manner.
These networks are already available for other tasks, such as
video hyperlinking. (iii) The text modality could be exploited
much more intensely, given the availability of this infor-
mation in online materials (e.g., YouTube videos). Among
the analyzed systems, very few leveraged the provided text
information, but those that did, achieved promising results.
(iv) Migrating to a more general approach by linking VSD
with the prediction of user perceptions of multimedia content,
e.g., emotions or memorability, would be the next step
towards creating a computer system capable of holistically
recognizing how humans perceive audio-visual input.
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Daniel Ştefan, and Bogdan Ionescu’s work was supported
by the Ministry of Innovation and Research, UEFISCDI,
project SPIA-VA, agreement 2SOL/2017, grant PN-III-P2-
2.1-SOL-2016-02-0002. Mats Sjöberg’s work was supported
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[69] J. S. Pérez, E. Meinhardt-Llopis, and G. Facciolo, “Tv-l1 optical
flow estimation,” Image Processing On Line, vol. 2013, pp. 137–
150, 2013.

[70] Y. Yi, H. Wang, and B. Zhang, “Mic-tju in mediaeval 2015 af-
fective impact of movies task,” in Working Notes Proceedings of the
MediaEval 2015 Workshop, vol. 1436 of CEUR Workshop Proceedings,
14–15 Sep 2015.

[71] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Re-
turn of the devil in the details: Delving deep into convolutional
nets,” arXiv preprint arXiv:1405.3531, 2014.

[72] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Conference on Computer Vision and Pattern
Recognition, pp. 770–778, 2016.

[73] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski,
“Plug & play generative networks: Conditional iterative genera-
tion of images in latent space,” in Conference on Computer Vision
and Pattern Recognition, pp. 4467–4477, 2017.

[74] X. Yang, X. Yang, M.-Y. Liu, F. Xiao, L. S. Davis, and J. Kautz,
“Step: Spatio-temporal progressive learning for video action de-
tection,” in Conference on Computer Vision and Pattern Recognition,
pp. 264–272, 2019.

[75] Z. Wu, X. Wang, Y. Jiang, H. Ye, and X. Xue, “Modeling spatial-
temporal clues in a hybrid deep learning framework for video
classification,” in 23rd Annual Conference on Multimedia Conference,
pp. 461–470, ACM, 26–30 Oct 2015.
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[90] N. Derbas and G. Quénot, “Joint audio-visual words for violent
scenes detection in movies,” in International Conference on Multi-
media Retrieval, p. 483, ACM, 1–4 Apr 2014.
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