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Opinion Dynamics with Topological Gossiping:
Asynchronous Updates under Limited Attention

Wilbert Samuel Rossi and Paolo Frasca

Abstract—This paper introduces a general model of opinion
dynamics with opinion-dependent connectivity. Agents update
their opinions asynchronously: for the updating agent, the new
opinion is the average of the k closest opinions within a subset
of m agents that are sampled from the population of size n.
Depending on k and m with respect to n, the dynamics can have
a variety of equilibria, which include consensus and clustered
configurations. The model covers as special cases a classical gossip
update (if m = n) and a deterministic update defined by the
k nearest neighbors (if m = k). We prove that the dynamics
converges to consensus if n > 2(m − k). Before convergence,
however, the dynamics can remain for long time in the vicinity
of metastable clustered configurations.

Index Terms—Agent-based systems, Large-scale systems, Net-
work analysis and control, Randomized algorithm.

I. INTRODUCTION

THE control community is witnessing an increasing inter-
est in mathematical models of opinion dynamics in social

networks [1], [2]. A recurring theme of opinion dynamics is
that social influence is countered by some other dynamical
feature, thereby preventing the onset of global consensus and
leading to complex behaviors. In many popular models, this
feature is an opinion-dependent limitation of the connectivity:
chief examples are bounded confidence models [3], [4], where
social agents influence each other when their opinions are
closer than a threshold. This way of defining connectivity,
however, seems at odds with reality: it assumes agents having
always access to the opinions of all fellow agents and may
lead to agents being influenced by a large number of their
fellows, possibly the whole population.

Instead, the number of possible interactions is capped by the
limited attention capabilities of the individuals. Limitations of
attention are well documented in psychology and sociology,
for instance by the notion of Dunbar number, and become
evermore crucial in today’s age of information bonanza. In
online social media, users exchange opinions via the contents
they share: out of a randomly generated pool of fresh contents,
the online platform selects for each user the best contents in
order to maximize engagement, mainly based on similarities
between users [5]. Limitations of attention have also been con-
sidered in biology by a number of theoretical and experimental
studies about flocking in animal groups [6], [7], [8], [9].
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In this paper, we consider for the first time the following
multi-agent dynamics. Agents update their opinions asyn-
chronously and the new opinion of the updating agent is the
average of the k closest opinions from a subset of m agents,
randomly sampled from the population that has size n. This
model combines randomness, by sampling from the whole
population, and biased selection, by selecting the k closest
opinions. Our main result is that the dynamics converges to
consensus if 2(m − k) < n. Even when convergence to
consensus is guaranteed, we observe that the convergence time
can be very large and the dynamics can develop metastable
non-consensus states.

Our convergence result is inspired by classical proofs of
convergence for randomized consensus dynamics [10, Ch. 3],
but its interest and difficulty originate from two distinctive
features whose combination distinguishes our model from
others in the literature: (1) interactions are not reciprocal; (2)
whether two agents interact does not only depend on their two
states, but also on the states of all the other agents.

In the literature, models with any of these features are
still relatively few. In classical bounded confidence models
interactions are reciprocal as long as the interaction thresholds
are equal for all agents [3], [11], [12], [13], and any lack of
reciprocity makes the analysis much more delicate [14], [15],
[16]. In our model, not only interactions are non-reciprocal,
but they are also non-metric: whether two agents interact is not
solely determined by the distance between their two opinions.
For this reason, we follow a consolidated tradition [6] and
refer to our connectivity model where agents can interact
with their k nearest neighbors as “topological”. Topological
interactions are becoming increasingly popular in the applied
mathematics community, especially for second order (flocking)
models: it has been found that k must be logarithmic in n to
ensure connectivity [17] and flocking behavior [18]. Kinetic
and continuum models with topological interactions are also
actively studied [19], [20], [21]. In the control community,
[22] has recently used Petri nets to define a class of models
where interactions depend on the opinions of multiple agents:
despite some similarity, our model does not belong to this
class. Closely related papers are also [23], where the authors
define a dynamics in which each agent is influenced by a
fixed number of neighbors, and our recent paper [24], which
deals the case m = n: this special case is simpler to study
and does not exhibit metastable states. Instead, the paper [25]
introduces random sampling in the metric bounded confidence
model. However, the combination of random sampling and
topological interactions is unique to the model we present here,
which also includes as special case the classical Voter Model
when m = k = 1.



Outline: Section II introduces the model and studies its
equilibria. Section III studies convergence properties: consen-
sus and metastability. Section IV proves the main convergence
result before the concluding remarks in Section V.

II. THE DYNAMICAL MODEL

Let n, m and k be three integers such that 1 ≤ k ≤ m ≤ n,
and let V = {1, . . . , n} be the set of agents. Each agent
is endowed with a scalar opinion xi ∈ R, to be updated
asynchronously. The update law

x+ = f(x, i, S) (1)

goes as follows. An agent i and a subset S with m elements are
selected from V . The elements of S are ordered by increasing
values of |xj − xi|, where j ∈ S; then, the first k elements
of the list (i.e. those with smallest distance from i) form the
set NS

i of current neighbors of i. Should a tie between two
or more agents arise, priority is given to agents with lower
index. Note that agent i may not belong to NS

i . 1 Once NS
i

is determined, agent i updates her opinion xi to

x+
i = 1

k

∑
j∈NSi

xj ,

while all the remaining agents do not change their opinions

x+
j = xj for every j 6= i .

In the rest of this section, we present some basic properties
of (1), as well as some instructive special cases. We begin by
some natural definitions. A configuration x ∈ Rn is said to be
an equilibrium for the asynchronous dynamics (1) if

x = f(x, i, S) for every choice of i and S .

Let 1 ∈ Rn be the all one vector and let the notation xNSi
indicate the sub-vector of x whose indexes belong to NS

i . A
configuration is said to be clustered if

xNSi = xi1NSi for every choice of i and S ,

that is, if for every node all her neighbors have the same
opinion, irrespective of the sampling. Furthermore, a clustered
configuration x = c1, with c ∈ R, is termed consensus.

Clustered configurations are equilibria and are formed by
clusters with a sufficiently large number of agents that share
the same opinion. In order to make the latter claim more
precise, let Vi = {j : xj = xi} denote the cluster of nodes
that share i’s opinion.

Lemma 1 (Clustered configurations): A configuration is
clustered if and only if |Vi| ≥ n−m+ k for every i.

Proof: Assume |Vi| ≥ n−m+k for every i. Fix i and note
that at least n−m+k agents j (including i) have xj = xi: such
nodes have zero distance from i. The choice of S excludes at
most n−m agents out of those, so |S ∩ Vi| ≥ k and, hence,
NS
i ⊆ Vi. Since this fact holds for every i, the configuration

is clustered. For the converse, assume that there exists i with
|Vi| ≤ n−m+ k− 1. Then, there is a choice of S for which

1Agent i not belonging to NS
i arises in two ways: if i /∈ S or if i ∈ S but

so do other k elements with xj = xi and j < i. However, in the latter case
the opinion of i remains well represented by its neighbors NS

i .

NS
i contains a node j with xj 6= xi and not in Vi, violating

the definition of clustered configuration.
This lemma implies that clustered configurations allow up to⌊

n

n−m+ k

⌋
distinct clusters Vi, since each cluster must contain at least n−
m+ k agents. For the special case of consensus we therefore
have the following immediate corollary.

Corollary 2 (Consensus): Consensus is the only feasible
clustered configuration if and only if

n < 2(n−m+ k) . (2)

We shall see in the next section that actually condition (2)
is also sufficient to guarantee convergence to consensus. The
consensus condition (2) can be rewritten as

n > 2(m− k) or as k > m− n/2 ,

thus making it more readable: the condition requires m to
be small and k to be large. Large values of k imply more
interactions, while small values of m imply that interactions
are more random than determined by the distance between
opinions. Both randomness and volume of the interactions
favor the mixing of opinions, that leads to consensus.

The reader can build a more concrete understanding of
dynamics (1) (and of our last comment) by considering the
extreme cases when m equals either k or n. If m = k, then
S = Ni so the k neighbors of i are precisely given by set
S. In other words, the reordering does not play a role and
the consensus is the only possible equilibrium. For example,
if k = m = 1, then the dynamics becomes the classical Voter
Model, in which the chosen agent i selects a second agents j
and copies her opinion; the process continues until only one
of the original opinions survives.

If m = n, then S = V and hence the sets Ni are constructed
purely on topological terms: the sampling step that involves
S does not play any role. The sets Ni contain the k agents
whose opinions are closest to xi (possibly, equal to xi) with
ties sorted as discussed before. If k = 1, then agents keep
their own opinion and every configuration is an equilibrium.
If k = 2, then each agent averages her opinion with the closest
agent apart himself. For general k, this dynamics was studied
in [24]. In this case, there exist non-clustered configurations
that are equilibria, see [24] for two examples (one using the
tie break rule and one not). Instead, for m < n, the following
result shows that all equilibria are clustered configurations.

Proposition 3 (Equilibria are clustered): Let m < n. If
configuration x is an equilibrium, then it is clustered.

Proof: We prove the contrapositive, i.e. if configuration
x is not clustered, then it is not an equilibrium. If x is not
clustered, then there exist i and S such that xj 6= xi for some
j ∈ NS

i : we fix such i and S. To prove the claim, we use
m < n to choose an alternative S′ such that 1

k

∑
`∈NS′i

x` 6=
1
k

∑
`∈NSi

x`. There are three cases.
Case 1: xj 6= xi for all j ∈ NS

i . It is sufficient to choose
S′ by replacing any j ∈ NS

i by i itself. Agent i is not in NS
i

but is certainly in NS′

i : since xi 6= xj the above follows.



Case 2a: x` = xi for some ` ∈ NS
i , and there exists e 6∈ S

such that xe 6= xi. Choose S′ by replacing any ` ∈ NS
i such

that x` = xi by e. Hence, set NS′

i contains a new element s
(not necessarily e) such that xs 6= x`, and the above follows.

Case 2b: x` = xi for some ` ∈ NS
i , and there exists e 6∈ S

such that xe = xi. In this case, choose S′ by replacing any
j ∈ NS

i such that xj 6= xi by agent e. Then, set NS′

i contains
e with xe = xi, but xe 6= xj and the above follows.

By exhausting the cases, we have shown that the non
clustered configuration x does not satisfy the equilibrium
condition for some S′.

III. CONVERGENCE TO CONSENSUS & METASTABILITY

The dynamical process based on (1) converges to a consen-
sus from any initial configuration provided that n > 2(m−k)
and that the sequence of agents i and subsets S used in the
updates are i.i.d. uniform random variables over V .

Theorem 4 (Convergence to consensus): Let n,m, k with
1 ≤ k ≤ m ≤ n be given. Let t ∈ Z≥0 and let
{I(t), t ≥ 0} be a sequence of independent and uniformly
distributed random variables over V . Let {S(t), t ≥ 0} be
a sequence of independent and uniformly distributed random
elements of Pm(V ), where Pm(V ) is the set of subsets of V
with cardinality m. Consider the discrete time dynamics

x(t+ 1) = f(x(t), I(t), S(t)) for every t ≥ 0 ,

with initial state x(0) = x0 ∈ Rn. If n > 2(m− k), then

lim
t→∞

x(t) = 1c almost surely

for any x0, with c ∈ [mini(x
0
i ),maxi(x

0
i )].

The result continues to hold for choices of I(t) and S(t) not
uniformly distributed over V and Pm(V ), respectively, as long
as the probability to sample each agent and subset is constant
and positive.

The proof of Theorem 4, available in Sect. IV, is based
on exhibiting a suitable finite “shrinking sequence”, which
appears infinitely often with probability one, thus guaranteeing
almost sure convergence. However, the convergence time
can be very large. For this reason, even if the assumptions
of Theorem 4 are satisfied and therefore the dynamics is
guaranteed to converge to consensus, one can fail to actually
observe consensus in simulations. Instead, simulations often
show the formation of two (or more) distinct groups of agents,
with the agents in the same group that have same opinion
while the opinions of the two groups are clearly apart. Such
configurations, although bound to be transient by Theorem 4,
can remain qualitatively unchanged for many iterations: agents
seldom leave their group and, even then, the same agent often
returns to her original group the following time she updates
opinion. Fig. 1 shows two significant examples. We refer to
this kind of configurations, which are not equilibria but around
which the dynamics remains for a long time, as to metastable
configurations.

Metastable configurations can last very long because the
probability that, at any time step, a node leaves her group is
small. In order to clarify this observation, we can estimate this
“exit probability” in a special but instructive case.

A. Exponential exit time

Consider n > 2(m−k) agents split into two disjoint subsets
A and B of cardinalities a and b, respectively. Assume that
all agents in the same subset share the same opinion, α and
β, respectively, with α 6= β. Moreover, let a ≥ n − m + k,
implying that A is a cluster (its agents cannot leave), while B
is not since b ≤ m− k < n−m+ k.

The probability to exit the above configuration, i.e. that an
agent leaves her group, is

P(exit) = P(exit|i ∈ B)
b

n
,

since only the agents in B can change opinion. The conditional
exit event occurs if NS

i includes at least one element of A,
i.e. if S includes at least m− k + 1 elements of A. Let X ∼
Hypergeometric(n, a,m) be the number of elements of A in
S, drawn in m draws without replacement from a population
of size n that contains exactly a elements of A. Theorems 1
and 4 in [26] imply

P(X −ma/n ≥ mε) ≤ exp
(
−2mε2

)
where 0 < ε < b/n. We have

P(exit|i ∈ B) = P(X ≥ m− k + 1)

= P(X −ma/n ≥ m− k + 1−m(1− b/n))

= P
(
X −ma/n ≥ m

(
b
n −

k−1
m

))
≤ exp

(
−2m

(
b
n −

k−1
m

)2)
by taking ε = b

n −
k−1
m (under the assumptions b > (k−1)n

m
and k > 1). The expected exit time (which we denote by τ )
is geometrically distributed with parameter P(exit). Hence,

τ =
1

P(exit)
≥ n

b
exp

(
2m
(
b
n −

k−1
m

)2)
.

As long as b (and therefore m) is proportional to n, this bound
implies that τ is (at least) exponential in n.

IV. CONVERGENCE PROOF

We begin by introducing some useful notation. Given a
subset S of V, we denote its complement by Sc. The power
set of V is denoted by P(V ) and the set of subsets of V with
cardinality m by Pm(V ). We now introduce some convenient
functions of the configuration x, as illustrated in Fig. 2. The
function µ : Rn → V returns the index of the smallest
component of vector x, with ties sorted

µ(x) := min(arg min
i
xi),

where the outer min sorts possible ties. The function Ω :
Rn → Pm(V ) returns the indices of the m largest com-
ponents of the vector x, with ties sorted, that is Ω(x) :=
{Ω1(x),Ω2(x), . . . ,Ωm(x)}, where

Ω1(x) := min
(

arg max
i∈V

xi

)



Fig. 1. Simulations of model (1) under the assumptions of Corollary 2 and Theorem 4. The initial configuration x0 is such that x0
i ∼ U(0, 1) for all i. The

simulation in the left plot shows a metastable configuration that satisfies the assumptions of Subsection III-A between (roughly) time step 1000 and 8000:
from time 1000, one can identify a cluster of 34 agents with approximately the same opinion and a smaller group with larger opinions.

Ω2(x) := min
(

arg max
i6∈{Ω1(x)}

xi

)
...

Ωm(x) := min
(

arg max
i6∈{Ω1(x),...,Ωm−1(x)}

xi

)
The function Y : Rn → Pn−m+k(V ) returns the n −m + k
smallest elements of the vector x (with ties not sorted):

Y (x) := (Ω(x))c ∪NΩ(x)
µ(x) .

The function y : Rn → R returns the opinion of the largest
element among those in Y (x),

y(x) := max
i∈Y (x)

xi = max
i∈NΩ(x)

µ(x)

xi .

Finally, we define the analogous functions for the largest
index M(x) := µ(−x), the subset of the m smallest indices
ω(x) := Ω(−x), the subset of the n − m + k largest
components Z(x) := Y (−x), and the lowest opinion in Z(x),
i.e. z(x) := y(−x). The next equivalence will prove crucial.

Lemma 5: Given n,m, k with 1 ≤ k ≤ m ≤ n, consider
x ∈ Rn and the quantities y(x) and z(x). Then, z(x) ≤ y(x)
for every x ∈ Rn if and only if n > 2(m− k).

Proof: We prove the equivalent claim that there exists
x ∈ Rn with z(x) > y(x) if and only if n ≤ 2(m − k).
Assume n ≤ 2(m− k) and consider x ∈ Rn such that

x1 < . . . < xn−m+k < . . . < xm−k+1 < . . . < xn

where m−k+1 > n−m+k. The above vector has µ(x) = 1,
Ω(x) = {n−m+ 1, . . . , n}, Y (x) = {1, . . . , n−m+ k} and
hence, y(x) = xn−m+k. Symmetrically, z(x) = xm−k+1 but
that means z(x) > y(x).

For the converse, assume that x ∈ Rn with z(x) > y(x)
exists, meaning maxi∈Y (x) xi < mini∈Z(x) xi. Both sets
Y (x) and Z(x) contain n − m + k elements, so sets {j :
xj ≤ maxi∈Nµ(x)

xi} and {j : xj ≥ mini∈NM(x)
xi} contain

at least n − m + k elements each. Since these two sets are
disjoint, vector x has at least n ≥ 2(n−m+ k) components,
which means n ≤ 2(m− k).

R

Ω(x)

(Ω(x))c

N
Ω(x)
µ(x)

Y (x)

3

6
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7 5
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14

15

1 2

4

9

10

13

12

µ(x)

y(x)

Fig. 2. Illustration of the notation defined in Sect. IV when n = 15, m = 9,
k = 4. The horizontal axis reports the values of xi for i ∈ {1, . . . , 15}.

A. Intermediate lemmas regarding the dynamics

For t ∈ Z≥0, let x(t) ∈ Rn be the sequence of opinion
vectors, i(t) ∈ V a sequence of agents and S(t) ⊂ V a
sequence of subsets of agents. Given an initial configuration
x(0) = x0, we consider the general dynamics

x(t+ 1) = f(x(t), i(t), S(t)) for every t ≥ 0 , (3)

where i(t) is the agent that updates her opinion at time t.
As a stepping stone to our convergence result, the next

two lemmas study the following special case: the agent with
smallest opinion is the one that updates her opinion, while the
subset S is always chosen to contain the agents with largest
opinion. The first result regards monotonicity properties of the
trajectories.

Lemma 6: Given n,m, k with 1 ≤ k ≤ m ≤ n, consider

x(t+ 1) = f(x(t), µ(x(t)),Ω(x(t))) for every t ≥ 0 ,

with x(0) = x0 ∈ Rn. Then:
• the sequences Y (x(t)) and y(x(t)) are constant;



• for every i ∈ Y (x(0)), the sequence xi(t) is non-
decreasing and satisfies xi(t) ≤ y(x(0));

• for every i /∈ Y (x(0)), the sequence xi(t) is constant.
Proof: The proof goes by induction. First, consider the

trivial case xµ(x(t))(t) = y(t), which implies xi(t) = y(t) for
every i ∈ Y (x(t)) and hence, for every i ∈ NΩ(x(t))

µ(x(t)) . Then,
xµ(x(t))(t+ 1) = y(t) so nothing changes. Next, consider the
case xµ(x(t))(t) < y(t). We have

xµ(x(t))(t+ 1) =
1

k

∑
j∈NΩ(x(t))

µ(x(t))

xj(t) ∈
(
xµ(x(t))(t), y(t)

)
.

Therefore,

{i : xi(t) < y(t)} = {i : xi(t+ 1) < y(t)} 6= ∅ ,

{i : xi(t) = y(t)} = {i : xi(t+ 1) = y(t)} 6= ∅

and {i : xi(t) > y(t)} = {i : xi(t + 1) > y(t)} . Moreover,
the cardinality of the set {i : xi(t) < y(t)} is strictly smaller
than n−m+k. This implies that, while Ω(x(t+1)) might be
different than Ω(x(t)), Y (x(t+1)) = Y (x(t)) and y(t+1) =
y(t). The claims follow by induction and by observing that
only the agents i ∈ Y (x(0)) can update their opinions at some
time t ≥ 0 and xi(t+ 1) ∈ [xi(t), y(t)].

The second result ensures the desired “shrinking” effect.
Lemma 7: Given n,m, k with 1 ≤ k ≤ m ≤ n, consider

x(t+ 1) = f(x(t), µ(x(t)),Ω(x(t))) for every t ≥ 0 ,

with x(0) = x0 ∈ Rn. If T := n−m+ k − 1, then

y(x(T ))−min
i
xi(T ) ≤

(
1− 1

k

) (
y(x(0))−min

i
xi(0)

)
.

Proof: For a generic t ≥ 0, consider the quantity

xµ(x(t))(t+ 1) = 1
k

∑
j∈NΩ(x(t))

µ(x(t))

xj(t) .

Recall that there exists j∗ ∈ NΩ(x(t))
µ(x(t)) such that

xj∗(t) = max
j∈NΩ(x(t))

µ(x(t))

xj(t) = y(x(t)) ,

while in general xj(t) ≥ xµ(x(t))(t). Therefore,

xµ(x(t))(t+ 1) ≥ k−1
k xµ(x(t))(t) + 1

ky(x(t)) .

Using Lemma 6, we have y(x(t)) = y(x(0)) and

xµ(x(t))(t) ≥ xµ(x(t))(0) ≥ xµ(x(0))(0) .

Hence,

xµ(x(t))(t+ 1) ≥ k−1
k xµ(x(0))(0) + 1

ky(x(0))

= xµ(x(0))(0) + 1
k (y(x(0))− xµ(x(0))(0))

Next, consider the set

S(t) =
{
i : xi(t) < xµ(x(0))(0) + 1

k

(
y(x(0))− xµ(x(0))(0)

)}
,

and observe that either S(t) = ∅ or |S(t+1)| = |S(t)| − 1
because µ(x(t)) /∈ S(t + 1). Since set S(0) contains at most
T := n−m+ k − 1 elements, set S(T ) is empty. Hence,

xi(T ) ≥ xµ(x(0))(0) + 1
k

(
y(0)− xµ(x(0))(0)

)

for every i, a fact that implies

xµ(x(T ))(T ) ≥ xµ(x(0))(0) + 1
k

(
y(0)− xµ(x(0))(0)

)
.

Using Lemma 6 we know that Y (x(t)) = Y (x(0)) for every
t ≥ 0 and that for every i therein, xi(t) ≤ y(x(t)) = y(x(0)).
Therefore,

y(x(T ))− xµ(x(T ))(T ) ≤ y(x(0))− xµ(x(0))(0)

− 1
k

(
y(x(0))− xµ(x(0))(0)

)
and the thesis follows because xµ(x(t)) = mini xi(t).

The following corollary follows from Lemma 6 and 7 using
the properties M(x) = µ(−x) and Ω(x) = ω(−x).

Corollary 8: Given n,m, k with 1 ≤ k ≤ m ≤ n and an
initial configuration x0 ∈ Rn consider the dynamics

x(t+ 1) = f(x(t),M(x(t)), ω(x(t))) for every t ≥ 0 ,

with x(0) = x0. Then:
• Z(x(t)) and z(x(t)) are constant;
• for every i ∈ Z(x(0)) the sequence xi(t) is non-

increasing and satisfies xi(t) ≥ z(x(0));
• for every i /∈ Z(x(0)) the sequence xi(t) is constant.

Moreover, provided T = n−m+ k − 1,

max
i
x(T )−z(x(T )) ≤

(
1− 1

k

) (
max
i
xi(0)− z(x(0))

)
,

The next lemma describes a vital “shrinking sequence”.
Lemma 9: Given n,m, k with 1 ≤ k ≤ m ≤ n, let T =

n−m+ k − 1 and consider the dynamics (3) with

i(t) =

{
µ(x(t)) for t ∈ {0, . . . , T − 1}
M(x(t)) for t ∈ {T, . . . , 2T − 1}

S(t) =

{
Ω(x(t)) for t ∈ {0, . . . , T − 1}
ω(x(t)) for t ∈ {T, . . . , 2T − 1} .

Let γ := 1− 1
k . If n > 2(m− k), then

max
i
xi(2T )−min

i
xi(2T ) ≤ γ

(
max
i
xi(0)−min

i
xi(0)

)
.

Proof: To keep the notation compact we additionally
introduce α(t) := mini xi(t), β(t) := maxi xi(t) and write
y(t) := y(x(t)) and z(t) := z(x(t)). We have

β(2T )− α(2T ) = β(2T )− z(2T ) + z(2T )− α(2T )

≤ γ
(
β(T )−z(T )

)
+ z(T )−α(T )

using Corollary 8 with initial configuration x(T ). Then,

= γ
(
β(T )−y(T )

)
+ γ
(
y(T )−z(T )

)
+ z(T )− α(T )

≤ γ
(
β(T )−y(T )

)
+ y(T )− z(T ) + z(T )− α(T )

since γ < 1 while y(T )−z(T ) ≥ 0 by Lemma 5. Then,

= γ
(
β(T )−y(T )

)
+ y(T )− α(T )

≤ γ
(
β(0)−y(0)

)
+ γ
(
y(0)−α(0)

)
= γ

(
β(0)−α(0)

)
using Lemma 6 and 7 with initial configuration x(0).



B. Proof of Theorem 4

Let δ(t) = maxi xi(t)−mini xi(t) and observe that for any
x0, i(t) and S(t) it holds 0 ≤ δ(t+1) ≤ δ(t) for every t ≥ 0 ,
because in dynamics (3) the agent with highest (lowest) opin-
ion cannot increase (decrease) it. We introduce the sequence of
events {At, t ≥ 2T−1} where the event At is the occurrence
in the time window {t−(2T−1), . . . , t} of the “shrinking se-
quence” introduced in Lemma 9. In the same lemma we proved
that, given event At, we have δ(t+1) ≤ (1− 1

k ) δ(t−2T+1).
Observe that

0 ≤ lim
t→∞

δ(t) ≤ lim
t→∞

(
1− 1

k

)nt
δ(0)

where nt is the number of times event As occurred up to time
t. If P(At infinitely often) = 1 then nt → ∞ for t → ∞
and the rightmost limit above is zero almost surely. Hence,
limt→∞ δ(t) almost surely, which implies the convergence to
consensus. Moreover, c ∈ [mini(x

0
i ),maxi(x

0
i )] because every

update (3) is a convex combination of current opinions.
It remains to prove P(At infinitely often) = 1. The events

of the sequence {At, t ≥ 2T − 1} are not independent but
those in the subsequence {Ath , h ≥ 1} where th = 2Th − 1
are. Each of those events has constant non-zero probability

P(Ath) =
(
n
(
n
m

))−2T
,

thus
∑∞
h=1 P(Ath) = ∞. Hence, {At i.o.} ⊃ {Ath i.o.}.

From the second Borel-Cantelli lemma [27, Ch. 2, Thm 18.2]
P(At infinitely often) ≥ P(Ath infinitely often) = 1 .

V. CONCLUSION

In this paper we have introduced a new model of opinion
dynamics with opinion-dependent connectivity, which captures
the intuitive idea of interactions taking place between the
closest individuals. Even though simulations suggest that
the dynamics converge for any k,m, n, proving a general
convergence result is an open problem. As a contribution
in this direction, we have given a necessary and sufficient
condition for all equilibria to be consensus states and we
have proved that, under the same condition, the dynamics
asymptotically converges to consensus. However, the transient
features metastable non-consensus states, which dominate the
qualitative behavior of the dynamics, because solutions can
stay close to them for times that are exponential in the number
of agents. A detailed analysis of these metastable states might
benefit from suitable mean-field approximations: we leave
this approach to future research. Another valuable research
direction is extending the model to include a social network,
whose graph would encode possible biases or restrictions in
the sampling process.
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