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COVID-19 PANDEMIC CONTROL: BALANCING DETECTION

POLICY AND LOCKDOWN INTERVENTION UNDER ICU

SUSTAINABILITY∗

Arthur Charpentier1, Romuald Elie2, Mathieu Laurière3

and Viet Chi Tran2,**

Abstract. An extended SIR model, including several features of the recent COVID-19 outbreak, is
considered: the infected and recovered individuals can either be detected or undetected and we also
integrate an intensive care unit (ICU) capacity. We identify the optimal policy for controlling the
epidemic dynamics using both lockdown and detection intervention levers, and taking into account
the trade-off between the sanitary and the socio-economic cost of the pandemic, together with the
limited capacity level of ICU. With parametric specification based on the COVID-19 literature, we
investigate the sensitivities of various quantities on the optimal strategies. The optimal lockdown policy
is structured into 4 phases: First a quick and strong lockdown intervention to stop the exponential
growth of the contagion; second a short transition to reduce the prevalence of the virus; third a long
period with full ICU capacity and stable virus prevalence; finally a return to normal social interactions
with disappearance of the virus. The optimal scenario avoids the second wave of infection, provided the
lockdown is released sufficiently slowly. Whenever massive resources are introduced to detect infected
individuals, the pressure on social distancing can be released, whereas the impact of detection of
immune individuals reveals to be more moderate.
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1. Introduction

Within a few weeks, the COVID-19 took most of the world by surprise, starting with Asia, then Europe and
finally America (see [53, 58, 82]). More specifically, the COVID-19 turned out to be much more contagious than
expected, and official health authorities understood that letting the virus spread freely would probably saturate
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hospital capacities. In most countries, aggressive quarantine and lockdown measures have been taken, hopefully
to stop the spread of the virus and infection, or at least to slow down its diffusion and delay the cases over
time to avoid saturation of healthcare systems. The effectiveness of these non-pharmaceutical interventions have
been questioned in [41, 52]. It was already suggested in [67], but then emphasized by [32], that these measures
should rather aim at ‘flattening the curve’: mitigation seems more realistic than suppression, since eliminating
the threat necessarily takes time, and a massive arrival of people in need in hospitals would be dramatic.

The first control used by health authorities was based on quarantines, historically a natural technique to lower
social interactions and reduce the spread of the disease, as recalled in [76]. Classically, infected people are isolated,
to avoid further transmission, but COVID-19 has a potentially high rate of asymptomatic infected individuals,
as mentioned in [5, 22, 40, 60] or [84]. This explains why most countries used indiscriminate lockdown. In order
to distinguish between the susceptible, but still unaffected, individuals and the either asymptomatic infected or
undetected recovered ones, testing is necessary. Piloting these interventions is a key problem, in particular for
monitoring exit strategies.

In the recent literature on the COVID-19, many papers have focused on the effect of lockdown on the spread
of the disease (e.g. [12, 69]) or on the evaluation via simulations of exit-strategies (e.g. [26, 31]). In this paper,
we suggest a different approach for evaluating lockdown and exit scenarios based on Optimal Control theory
(e.g. [66]). Although the analysis of public health policies using controls is of clear practical value, there has not
been a so dense literature on the subject (e.g. [1, 2, 4, 11, 36, 39, 75]). For example, [2] considered the case where
it is possible to isolate infectious people (with pure information, in the sense that we can always distinguish
infectious, susceptible and recovered), and studies the optimal share of the population of infected people that
should be isolated to control the spread of the disease. More recently, [11] considered vaccination, quarantine,
screening or health promotion campaigns are possible control in a SIR model, and studied uniqueness and
monotonicity properties of mathematical epidemiological models. As said on [75], optimal control theory has
proven to be a successful tool in understanding ways to curtail the spread of infectious diseases by devising the
optimal diseases intervention strategies. But standard SIR models should be adapted to take into account specific
properties of the current pandemic. We consider a modified SIR model, incorporating all the features related to
the recent COVID-19 outbreak mentioned above, and use optimization algorithms to compute the ‘best’ level
of lockdown and detection effort in testing individuals. The criterion to rank the different possible strategies
takes into account: (1) the death toll of the epidemic, (2) the economic and social costs of the lockdown, (3) the
required effort for detecting infected or immune individuals. Besides, we only consider strategies never exceeding
the capacity level Umax of the ICU sanitary system, chosen to be dedicated to COVID-19 patients.

One of the originality of the model considered here is the particular focus on the outcomes of the intensive care
units (ICU) saturation, which in many countries have been put under great pressure and whose capacities are
determining factors for the death toll of the disease. We assume a capacity constraint on how many individuals
can be treated in ICU at a given time. Once the threshold is reached, the fatality rate for the additional patients
sent to ICU rises sharply. For the COVID-19 outbreak, we are aware of some works by [7, 25, 65], but none of
these works models the ICU capacities. In [3], no ICU capacity is explicitly introduced, but these authors choose
a death rate in hospitals that depends linearly on the number of patients. This constraint is however at the
heart of debates, and in the simulations for evaluating the various possible public health responses (see e.g. [26]
or [31]), the ICU capacity is always represented to check whether the different scenarios will be feasible or not.
Adding a constraint in the optimization program is thus natural. The non-linearity induced by the threshold
that we introduce provides very interesting phenomena and insights for the control of the disease. Furthermore,
we investigate cases where the ICU capacity is increasing and evolving dynamically over time.

A second feature in our work is that we consider two levers for control: the quarantine ratio and the detection
effort for infectious and immune individuals. One of our motivation is to study qualitatively the balance existing
between efficient testing and strong confinement strategies. Actually, two testing procedures can be performed
here. A short range one, that can detect, at time t if someone is infected, or not (Polymerase chain reaction
or PCR tests, that can detect whether an individual is infected and send her/him in quarantine). And a long
range one, that can detect if someone is immune or not (a blood test as in [44]). For this purpose, we introduced
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a so-called SIDUHR+/− propagation model for the epidemic, which explicitly allows to take into account the
detection ratios of immune and infected individuals.

Our main findings consist in identifying four main phases in the optimally controlled epidemic dynamics.
First, a strong and quick lockdown intervention allows to stop the exponential growth of the epidemic spreading
and bring the effective reproduction number Rt under level 1. Then begins a short transition period during
which Rt remains below 1 as the prevalence of the virus within the population diminishes progressively until
reaching a threshold I∗. Since the beginning of the epidemic, the number of individuals requiring ICU is rising
and just reaches Umax when the virus prevalence attains I∗. Then begins a very long period during which the
reproduction number Rt stabilizes at level 1 while the virus prevalence and the ICU occupation remain stable
at levels I∗ and Umax. Finally, when a sufficient proportion of the population has already been infected and the
herd immunity level is close enough, a light final release of lockdown measure allows to retrieve a regular level
of social interactions and end the epidemic phase. Such a control strategy allows to achieve an epidemic size
very close to the herd immunity level, which corresponds to the minimal size of an epidemic, in comparison to a
benchmark case without intervention for example. Besides, given the current level of information and confidence
on the COVID-19 dynamics modelling, the design of robust optimal control strategy should be seen as a minimal
requirement. For our model, the enhanced structure of the optimally controlled epidemic dynamics reveals to
be very robust to variations of the model specifications within a reasonable range.

The effect of the detection effort within the population reveals to be more subtle. As explained above, two
types of detections are considered. Detecting quickly infected individuals and breaking the contamination chains
reveals to be key in reducing the economic and sanitary burden of the epidemic. First, it allows to slow down
the exponential growth of the epidemic and decrease hereby the required epidemic size for reaching the herd
immunity and the induced death toll. It also reduces the lockdown effort on the population, which helps minimize
the socio-economic impact. Optimizing over the detection rate of infected individuals reveals the huge impact on
both sanitary and economic burdens of early effort in detection, as well as a stable threshold level in detection.
Using the detection of infectious individuals as a control lever allows to keep the reproduction number below
1 while limiting the lockdown effort and the induced socio-economic cost. Concerning the detection of immune
individuals, it allows to reduce significantly the socio-economic burden, later in time during the epidemic,
whereas its impact on the sanitary outcome seems rather limited.

The rest of the paper is organized as follows. In Section 2, we derive our SIDUHR+/− model from a standard
SIR model (see Sect. 2.1), and explain all the components of the dynamics. The infectious individuals may
either: (i) be asymptomatic or have mild symptoms that do not require hospitalization, (ii) need hospitalization
with or without intensive care. In Section 2.2 we present the optimal control problem and objective function of
public health authorities. Possible control levers are discussed in Section 2.2.1, with lockdown, detection efforts,
and ICU capacities limitation. In Section 2.2.2 we motivate the choice of the objective function, and discuss
optimal control in Sections 2.2.3 and 2.2.4.

In Section 3, we compute the optimal strategy based on a choice of parameters from the COVID-19 epidemic
in France, but of course the methods and findings can be transposed to any other country or set of parameters.
In Section 3.1, the benchmark scenario is described. Then, in Section 3.2 we consider optimal lockdown, and
discuss the 4 stage dynamics. In Section 3.3, we provide a sensitivity analysis, and discuss the robustness of our
findings in response to changes in the model specifications and parameters. In Sections 3.4 and 3.5, we consider
the impact of two other controls: the ICU sustainability level and detection resources. Given the simplicity of
the compartmental model considered here, our purpose is not to give detailed prediction of the epidemic but
rather to highlight very interesting aspects of the interplay between different levers (lockdown, detection and
ICU capacity), provide qualitative description of the outcomes in each scenarios and give rough estimates of
the duration and size of the epidemics.

Let us finally emphasize that the level on uncertainty upon the characteristics of the epidemic dynamics is
still currently very high. The enhanced conclusions of this paper remain valid within the scope of the chosen
model specifications chosen here, which are in line with the current understanding of the epidemic dynamics.
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2. Methods

2.1. The SIDUHR+/− model and its dynamics

Compartmental models, where the population is divided into classes defined by the status of the individuals
with respect to the disease or how they are taken in charge by the healthcare system are very popular in
mathematical epidemiology (see e.g. [8, 9, 24] for an introduction). One of the simplest and most fundamental
of all epidemiological models is the popular SIR model, developed in [47]. The population, of fixed size, is
divided into three categories: susceptible (S), infected (I) and recovered (R) individuals. We denote by St, It
and Rt the respective proportions in the populations at time t (measured in days). In order to adapt the SIR
model to the COVID-19 epidemic and incorporate lockdown and testing strategies with their economic and
social impacts, we modify some rates and add compartments to the SIR model.

We want to take into account two important features of the COVID-19 pandemic. The first one is the
important proportion of asymptomatic patients, and the small use of testing in several countries. We will split
the I group in two: I− the non-detected, mostly asymptomatic individuals, but contagious, and I+ the detected
part of infected individuals. The second feature is the problem highlighted in the ‘flatten the curve’ concept
(discussed in [50, 68] or [37]) which means that a goal in the choice of a public health intervention should be
to avoid a surge of demand on the health care system and in particular in ICUs. From a modelling perspective,
we introduce the proportions Ht and Ut of individuals using the health care system with or without the need
of ICUs. There is an exogenous sustainable limit Umax for the ICU system, above which the death rate is
significantly higher.

2.1.1. Compartments

More specifically, all possible states can be visualized on Figure 1. The parameters for the dynamics are
described in the next section.

– S: susceptible, never tested positive, never infected and not dead (where people are by default). They
can get infected by infectious and not quarantined individuals, i.e. individuals in I−. When susceptible
individuals get infected, they move to I−.

– I−: infected non-detected. Those individuals can be asymptomatic, not sick enough to go the hospital,
and are not detected. They can either get tested (with type-1 tests, and then move to I+), get sicker and
then go to the hospital (H) or simply recover and get immune, but still not detected (R−)

– I+: infected detected (and non-hospitalized). They can either get sicker and then go to the hospital (H)
or recover, in which case they end up in the compartment R+ since they were tested positive. Here, we
assume that the individuals in I+ cannot infect anyone since they are strongly isolated.

– R−: recovered non-detected. Those can be detected using blood-type tests (also named type-2) and move
to R+.

– R+: recovered detected. We assume here that all recovered individuals (both R− and R+) are immune
long enough with respect to the epidemic duration.

– H: hospitalized (and detected). All people entering the hospital get tested. They can either get sicker
and then go to intensive care (U), or get immunity after recovering, and then move to R+. Note that H
is an intermediary state, before getting really sick, or die. Individuals are not allowed here to go from I
(detected or not) to D. Furthermore, we did not distinguish explicitly between mild and severe infected
(as in many other models) in order to emphasize the role of detection resources, but, somehow, H could
correspond to severe cases.

– U : hospitalized in ICU, for people at a more advanced stage (and detected), who need ventilators and
other specialized medical care. They arrive from H, and they can either get immunity after recovering,
and then move to R+, or die (D).

– D: dead, from the disease.
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Figure 1. The SIDUHR+/− model.

Here, recovered are not contagious anymore and we assume that they get immunity (and therefore, can not get
infected again). This is a rather strong assumption, especially on a long term horizon. Reference [16] used a
longitudinal study to show that those infected by MERS in South Korea (with a significant degree of immunity
post-infection) had immunity that lasted for up to a year, as well as, more recently [6], on historical patterns of
three common corona-viruses.

2.1.2. Dynamics

The evolution of the sizes of each compartments is assumed to be modelled by the following system of ordinary
differential equations:



dSt = −(1− δt)βI−Stdt, Susceptible

dI−t = (1− δt)βI−t Stdt− λ1t I−t dt− (γIR + γIH)I−t dt, Infected undetected

dI+t = λ1t I
−
t dt− (γIR + γIH)I+t dt, Infected detected

dR−t = γIRI
−
t dt− λ2tR−t dt, Recovered undetected

dR+
t = γIRI

+
t dt+ λ2tR

−
t dt+ γHRHtdt+ γUR(Ut)Utdt, Recovered detected

dHt = γIH
(
I−t + I+t

)
dt− (γHR + γHU )Htdt, Hospitalized

dUt = γHUHtdt− (γUR(Ut) + γUD(Ut))Utdt, ICU

dDt = γUD(Ut)Utdt, Dead

(2.1)

Let us explain the different parameters. The transmission rate (1− δt)β is the rate at which an undetected
infected individual transmits the disease to a susceptible one. Multiplying this parameter by StI

−
t , which is

proportional to the number of pairs that we can form with an S and an I− individual, provides the total
infection rate at the level of the population and at time t: (1− δt)βStI−t . Heuristically, this quantity can also
be understood as the fraction of the population infected during a unit time interval at time t. The infection
rate β is reduced by a time-dependent factor (1− δ) where δ ∈ [0, 1] comes from social distancing, quarantine,
isolation interventions that reduce infectious contact rates. The strength of the lockdown intervention interprets
as follows: δ = 0 means no intervention while δ = 1 means no social interaction. We consider two ways of
detecting individuals: short range tests allow to discover new infectious individuals in I− and we denote by λ1

the rate at which each of these infectious individuals gets detected, long range test allow to find formerly infected
and hereby immune individuals that are now in R− and we denote by λ2 the corresponding rate. Here we are
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Table 1. Parameter values for the base-scenario, referring to (D) = [26] or (S) = [73] . Indi-
vidual rates are given except for the transition rates from U to R or D where the global rates
at the population level are given, to better explain the nonlinearity. Details are presented in
Appendix A.

Parameters Value Reference

R0 3.3 Based on (S)
β 0.436 Based on (S)
γIR 0.130 Based on (D)
γIH 0.00232 Based on (D,S)
γHR 0.048 Based on (S)
γHU 0.091 Based on (S)

γUR(U)× U 0.078U ∧ 1.564 10−5 Based on (S)
γUD(U)× U 0.02 U ∧ Umax + 2(U − 0.0002)+ Based on (S)

Umax 0.0002 Estimated
I−0 0.005 Estimated

interested in the case where the parameters δ and λ1 are control variables and in the sequel, these parameters
are hereby time dependent.

The recovery rate for an infected individual is γIR. The rate at which an infected individual enters the health
system is γIH . We assume here that both rates γIR and γIH are the same for detected or non-detected infected
individuals. The individual transition rates from H to U or R+, from U to R+ or to D are denoted by γHU ,
γHR, γUR(U) and γUD(U) respectively. Notice that the two later rates γUR(U) and γUD(U) are not constant
but depend on Ut: when the ICU limitation is reached, the extra patients who are not taken in charge by the
system can not recover and are exposed to extra death rates, as explained in the Appendix A.

These parameters are chosen following the tracks of [26, 73]: (see Tab. 1). In these papers, some parameters
are fixed according to clinical studies and other are estimated from French data. The detail on how these
parameters are computed in the present paper is given in Appendix A. However, we emphasize that although
we choose French benchmarks, our input is more on methodology and can be of interest for other countries or
epidemics as well.

The system described here can be derived from individual based stochastic processes (e.g. [9]) and thus, there
is an underlying individual based model where all the rates have a probabilistic and statistical interpretation (see
Appendix A), with connection to continuous time Markov chains. As we will discuss later on, those parameters
can therefore be interpreted as inverse of transition time lengths.

The initial time t = 0 corresponds to the time at which policies that reduce the infection rate are put in
place (δ > 0), or the time at which testing is started (λ1 > 0). For the French COVID-19 epidemic, it would
correspond to March 17th 2020, but again, we emphasize that our methodology remains of interest for other
countries or diseases (see e.g. [63] for country specific informations).

2.1.3. Basic and effective reproduction numbers R0 and Rt

The basic reproduction number R0 corresponds to the expected number of individuals directly contaminated
by a typical infected individual during the early stage of the outbreak (when the proportion of susceptible
individuals is close to 1), see [23]. When R0 < 1, the disease does not spread quickly enough, resulting in a
decay in the number of infected individuals. But when R0 > 1, the infected population grows over time.

As recalled in [77], the value of the R0 is model-dependent. For the model considered here, only the I−

individuals can transmit the disease to infect susceptible individuals. If we see I− as the infected class, and if
we merge the classes I+, R−, R+, H, U and D into a large ‘recovered’ class, in this SIR type of model, the
dynamics of I−t has infection rate (1− δ)β and removal rate λ1 + γIR + γIH , assuming that δ = δ0 and λ1 = λ10
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are constant over time. In our model, the basic reproduction number is

R0 =
(1− δ0)β

λ10 + γIR + γIH
(2.2)

Without intervention (i.e. for (δ, λ1) = (0, 0) over time) and with our chosen parameters provided in Table 1,
this corresponds to R0 = β/(γIR + γIH) = 3.3 which is in line with [73]. Sensitivity of our results with respect
to variations of R0 within the range [3.3, 3.6] is discussed in Appendix B.2.

In the case where λ and δ evolve with time, we end up with a dynamic reproduction number (Rt)t that is
called effective reproduction number, see [8]. More specifically, at time t ≥ 0, let us define

Rt =
(1− δt)βSt

λ1t + (γIR + γIH)
. (2.3)

Its interpretation is very close to the static version R0, when assuming S0 = 1, which is a reasonable first order
assumption since I0 was assumed to be extremely small. When Rt < 1, the average number of secondary cases
started from one primary case with symptom onset on day t, dies out quickly, resulting in a decay in the number
of infected individuals in the population. But when Rt > 1, the infected population grows over time. So we
should expect to have controls on the quarantine level δt and on the testing rate λt that will constrain Rt to
be reduced beyond 1, at least after some starting time.

Another information brought by the Rt < 1 is that, when S is smaller than the so-called ‘herd immunity’
threshold, the epidemic enters into a sub-critical phase where it goes to extinction. In our case, the herd
immunity threshold S∗ without intervention is around 30% and durable lockdown and detection efforts can
allow to increase it significantly until the arrival of a vaccination solution.

2.2. The optimal control problem

In the previous section, we described our epidemiological model in order to characterize the dynamics of the
virus spreading processes. We now consider a government acting as a global planer, who wants to control the
epidemic dynamics in order to balance the induced sanitary and economic outcomes. In order to mitigate the
effects of an epidemic, several parameters in the model are now interpreted as ‘control levers’, and we now focus
on the derivation of their optimal dynamic choice. Optimizing intervention strategies is an important policy
issue for the management of infectious diseases, such as COVID-19. Optimal control in the context of pandemic
models has been used since [1, 2], [14] or [74], in the 70’s.

2.2.1. Possible control levers

Quarantines and lockdown Lockdown measures proved to be effective in controlling the COVID-19 out-
break in China, as recalled in [53] or [56]. Quarantine is a rather old technique used to prevent the spread of
diseases. It refers to the restriction of movement of anyone (not necessarily sick people), and it usually takes
place at home, and may be applied at the individual level. It should be distinguished from isolation, which
refers to the restriction of movement of infectious individuals who have a contagious disease. It can be done
in hospitals, in dedicated facilities, or at home. Those two are seen as active controls, and are different from
contact surveillance, which is passive. Modern quarantine’s goal is to reduce transmission by increasing social
distance between people, by reducing the number of people with whom everyone can be in contact with. This
includes canceling public gatherings, closing public transportation, etc. A lockdown is intended to stop people
from moving between places, and it could involve cancelling flights, closing borders, and shutting down restau-
rants. The idea is to reduce the flow of people to curb transmission, and we might consider here that lockdown
and quarantine measures are almost equivalent.

Reference [74] suggested an optimal quarantine problem, in an SIR model, where a proportion of infected
people could be quarantined. He proved that the optimal strategy was either to quarantine all infected individuals
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(if so, at early stages) or none. In the context of the 2003 SARS pandemic in Singapore, [62] recalls that a Home
Quarantine Order was signed, but it was more an isolation of sick people than a lockdown as the ones used to
lower possible consequences of COVID-19. But options considered are different, from one country to another.
Reference [81] mentions that several countries closesd their borders, in most European countries, schools and
restaurants were closed for weeks.

Reference [55] tried to quantify the effectiveness of a quarantine strategy, where healthy people are advised to
avoid contacts with individuals that might carry the disease, using network based models. Here, the parameter
has a direct interpretation, since it is related to the average rate of contact between individuals. In [83] or [51],
quarantine and isolation are used as control. In our model, those controls correspond to the δt component. As
in [15], such control can also be related to travel bans, for a weaker form than strict quarantine. Note finally
that [7] suggested that a complete lockdown was impossible to reach, and that an upper bound of 70% (of the
population) should be considered. In this paper, we do not incorporate any constraint (except that we cannot
lockdown more than the entire population), but interestingly, in the numerical simulation, the upper bound we
obtained as optimal is very close to this value.

Testing, tracing and isolating The second most important lever that can be used is detection. As claimed
by several governments (see [35]) in the context of the COVID-19 pandemic, testing is key to exit lockdown,
and mitigate the health and economic harms of the virus. Here, we assume that health authorities can perform
two kinds of active detection actions.

Type-1 test, that could be an antigen test (Reverse Transcription Quantitative Polymerase Chain Reaction
(RT-qPCR) - also called molecular or PCR – Polymerase Chain Reaction – test). This test allows to detect
whether an individual is currently infected or not. It should be used to determine who self-isolates and for contact
tracing. For that test, a sample is collected –- usually with a deep nasal swab (and analysed in a laboratory).
This is a short-term test: when performed at time t on an individual, we know whether an individual is infected
or not. Together with proper detection means, the use of this test corresponds to the λ1t control in our dynamics.
This test allows to detect and isolate infectious individuals. In our model, they transfer from compartment I−

to compartment I+. It is performed as mandatory when someone arrives at the hospital. Hereby, any individual
being at some point in compartment I+, H or ICU ends up in the identified immune compartment R+ if he
survived the epidemic. We assume for simplicity that those tests do not have false positive or false negative
and leave for further research the impact of the test sensitivity on the epidemic dynamics and optimal control.
Thus, the tests are all positive on individuals in I− and negative on individuals in S and R−. Other individuals
will not be tested.

Type-2 test is an antibody test (using serological immunoassays that detects viral-specific antibodies –
Immunoglobin M (IgM) and G (IgG) – also called serology or immunity test). It allows to test whether an
individual can now be considered immune to the virus. It could potentially be used to issue immunity cer-
tificates in order to help restarting the economy quicker. It also reduces the overall uncertainty and potential
fear of individuals to be infected, and has a positive impact on the economic consumption. It is also useful
for contact tracing purpose as it helps identifying individuals that can not become infectious again. For such a
test, a blood or saliva sample is applied to a strip that identifies presence of antibodies. We assume here that
immunity lasts long enough with respect to the epidemic duration, and R+ regroups the collection of immune
detected individuals. It is a long-term one: when performed at time t on an individual, we know if that person
had the disease before. The detection using those tests identifies in our model to the control variable λ2. It
allows to transfer individuals from compartment R− to compartment R+, but again, people in S will be tested
also, as well as people in I−. As for Type-1 tests, we will suppose here that these tests do not make any wrong
identification.

For type-2 tests, a small sample of a patient’s blood – for instance via a pin prick – and the test looks for two
specific types of antibody: IgM and IgG. IgM are the first antibodies to be produced by the immune system.
They have a half-life of around five days, and they usually appear within five to seven days of infection and
peak at around 21 days. Detection of these antibodies suggests the person has existent or a recent infection.
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IgG antibodies are more numerous and can be detected around 10 to 14 days after infection. The presence of
these antibodies indicates a person has recovered from the virus and is now immune.

‘Raising the line’ and ICU capacities So far, we have assumed that the sustainable capacity of ICUs was
not a control, and should be considered as an exogeneous fixed boundary (denoted Umax). As discussed in [34],
preventing a health care system from being overwhelmed requires a society to do two things: ‘flatten the curve’
– that is, slow the rate of infection so there aren’t too many cases that need hospitalization at one time – and
‘raise the line’ – that is, boost the hospital system’s capacity to treat large numbers of patients” (see also [10]).
Therefore, a natural control variable is the level of the line, or Umax as we named it.

Nevertheless, we will not consider Umax as a control variable that can be optimized (such as the strength
of the lockdown, or the effort in detection), since it is difficult to assess the cost of raising it. Nevertheless, in
Section 3.4, we consider the case where health authorities choose to increase that capacity, by making ventilators
and other medical material necessary in the context of the pandemic. But it cannot be increased indefinitely
since ICU also require trained personal and even if adjustments can be considered, we assume that it is not
realistic to assume that Umax can be increased by more than 50%.

2.2.2. Objective function

We now turn to the design of the objective function, trying to take into consideration the sanitary and socio-
economic outcomes of the lockdown and detection policy. In the context of planning vaccination campaigns,
[21, 79] suggest a convex quadratic cost function by minimizing both the number of infected individuals in
a time horizon and the cost to implement the control policy. In [48], a model for 2009 A/H1N1 influenza in
Korea is considered: the goal is to minimize the number of infected individuals and the cost of implementing
the control measures, and the cost is taken to be a nonlinear quadratic function. Quarantine and vaccination
are considered as control variables in [45], and the optimal control is obtained by minimizing a quadratic cost
function. Inspired by those approaches, we will also consider quadratic cost functions. Before going further, let
first introduce some relevant quantities characterizing the epidemic phase that will reveal useful in the upcoming
analysis.

Quarantined individuals Let denote by Q the quantity of people concerned by the lockdown policy and
defined by:

Qt := R−t + I−t + St , t ≥ 0. (2.4)

All the individuals in Qt are having the level of contact rate δt with the population at time t. This proportion
of individuals identifies to the people for which we can not say if they already contracted the virus or not.
Therefore, they are all concerned with non targeted lockdown strategies as well as possibly randomized testing
trials. Recall that, on the opposite, we suppose that infected detected individuals in I+ are isolated and have
no social interactions with the population, whereas detected immune individuals suffer no mobility constraints
and can reach a level of local interactions similar to the one they had before the beginning of the pandemic.

Global level of social interactions On the other hand, the global level of social interactions among the
population is denoted Wt and given by:

Wt := (1− δt)Qt +R+
t , t ≥ 0. (2.5)

The quantity Wt represents the proportion of social interactions in the population and can be interpreted as a
macroscopic labour force level for the economy at time t.
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Testing resources Finally, in order to measure the detection efforts of infected and immune individuals,
we introduce the following metrics; which identifies to the number of virologic and anti-body tests done in a
(somehow quite unrealistic) fully randomized detection trial:

N1
t := λ1tQt + γIHI

−
t and N2

t := λ2tQt , t ≥ 0. (2.6)

Observe that the different formulation between both metrics is due to the fact that individual are automatically
tested using virologic detection methods, when admitted at the hospital.

Vaccination arrival date All health authorities hope for the development of a vaccine for COVID-19 in
a close future. In order to encompass uncertainty concerns upon the arrival date of the vaccine, we consider
the arrival date of the vaccination solution to be a random time with exponential distribution of parameter α,
denoted τ . According to recent studies, [19, 46] the creation of such vaccine for a sufficient quantity of individuals
can presumably be assumed to require around 500 days. We shall consider a parameter α equal either to 0,
1/250 or 1/500 for our numerical experiments. For convenience, we assume here that both a vaccine and a cure
simultaneously appear at time τ . Reference [7] also uses such a discount approach, on top of some economic
discount rate (assuming that the vaccine will arrive at an expected date of 18 months).

Sanitary cost For the sanitary cost, it seems rather natural to simply consider a death count metric given
by DT . Nevertheless, [61] legitimates the use of an appropriate discounting of health outcomes. About the
kind of discount we should use, [78] discusses the use of hyperbolic discount (opposed to classical exponential
discount), in the case of social choice regarding health outcome. The hyperbolic discount allows for asymmetry
in discounting, and non-stationarity, in the sense that postponing in two years now can be substantially different
from postponing in three years (from now) next year. On the other hand, [78] claims that is not necessarily
a realistic assumption, so that using a standard time-consistant exponential discount makes sense in terms of
health outcomes. Besides, the longer we can postpone deaths, the more likely a vaccine will be found before.
Adding up a exponential discounting factor reveals to be also perfectly consistent with the consideration of
random development time of a vaccine solution at large scale, with exponential distribution. Hence, we will
consider a sanitary cost of the form:

Csanitary := E[Dτ ] =

∫ ∞
0

e−αtdDt , (2.7)

recalling that the random arrival time of the vaccine follows an exponential distribution with parameter α.

Economic and social cost The quantification of the socio-economic induced by lockdown restrictions is not
easy to quantify properly. More involved modelling may wish to take into account a feedback effect between
labor and consumption levels together with the epidemic propagation characterized by the global rate of social
interactions within the population. Such approach goes beyond the scope of this paper and we solely intend
to quantify the impact of the epidemic prevalence in terms of reduction of social interactions. Here, we would
like to capture the loss of productivity and well-being among the population due to lockdown situation. In
a very general setting, the production function is a function of capital input (K, that usually corresponds to
machinery, equipment, buildings, etc.) and labor (W , that represents the total number of people working): the
output produced in a given period of time is classically given by a Cobb-Douglas production function function
(as introduced in [18]) K1−aW a, with a ∈ (0, 1). Power coefficients identify to the output elasticities. Here, the
function display constant returns to scale, in the sense that doubling the use of capital K and labor W will also
double produced output. Assuming that, on the short term (say less than a year) capital remains constant, it
means that if at time t, only a proportion Wt of individuals can be economically active, the productivity loss is
proportional to 1−W a

t . Thus, the inter-temporal economic cost at time t is proportional to (1−W a
t ), or (up
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to an additive constant) −W a
t . Nevertheless, several other metrics have been used on the literature in order to

account for the economic cost induced by the lockdown situation: [38] or [28] considered a linear function, while
[13, 65] or [25] considered a convex function. As for the other cost structures, we choose for simplicity to keep
a quadratic structure quantifying the distance between the current global rate of social interactions W given in
(2.5) (and identified as a metric for welfare, well-being or working-force) and its optimal value 1. Hereby, the
social and economic cost will be given by:

Cecon := E

[∫ τ

0

(1−Wt)
2dt

]
=

∫ ∞
0

e−αt(1−Wt)
2dt , (2.8)

where we recall that the discounting rate α encompass the distribution of arrival time of a vaccination solution
solution.

Detection cost The quantification of efforts put into the detection of infectious individuals is a difficult task,
as outlined in [57] in the case of children, but several detection means are possible. As mentioned in [42, 72],
testing is only part of a strategy. The World Health Organization recommends a combination of measures:
rapid diagnosis and immediate isolation of cases, rigorous tracking and precautionary self-isolation of close
contacts. Reference [20] compares various techniques used to detect infected people. Recall that we assume
that a virologic testing is performed for all individuals entering into the hospital. Besides, proper tracing of
contamination chains together with potential random screening of the population should be conducted on the
non detected individuals, i.e. on the sub-population Qt. This group contains the susceptible St, the undetected
infected I−t as well as the undetected immune R−t . As antibodies detection should also be performed on the same
group Qt, it seems important to take into account the impact of the size of this group within the population.
Besides, as testing resources are sparse, the metric quantifying the effort of detection must take into account
the increasing difficulty for scaling massively testing resources. For all these reasons, we pick a cost for detecting
infected or immune individuals of quadratic form as follows:

Cprevalence := E

[∫ τ

0

|N1
t |2dt

]
=

∫ ∞
0

e−αt|N1
t |2dt (2.9)

and Cimmunity := E

[∫ τ

0

|N2
t |2dt

]
=

∫ ∞
0

e−αt|N2
t |2dt , (2.10)

where we recall that N1
t and N2

t are given in (2.6). Again, we consider here a detection cost, not a testing cost.

2.2.3. Optimal control under ICU capacity constraint

We are now in position to turn to the design of the global objective function. We are looking towards the
societal optimum chosen by an omniscient government acting as a global planer and is facing a multi-objective
control problem. As in [54], we shall consider a weighted sum of different costs:

– the sanitary cost described in (2.9) directly related to the mortality rate of the virus;
– An economic and social cost given in (2.8) due to the reduction of social interactions within the population;
– A detection cost for identifying infectious and immune individuals; which will be mainly discussed in

Section 3.5 below.

Combining these effects, the global objective function is given by:

J(δ, λ1, λ2) := wsanitaryCsanitary + weconCecon + wprevalenceCprevalence + wimmunityCimmunity

= wsanitary

∫ ∞
0

e−αtdDt + wecon

∫ ∞
0

e−αt(1−Wt)
2dt (2.11)

+wprevalence

∫ ∞
0

e−αt|N1
t |2dt+ wimmunity

∫ ∞
0

e−αt|N2
t |2dt ,
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where the wi terms are positive weights associated to each marginal cost. The choice of proper weights wi
is a hard ethical task, that we choose to avoid as out main purpose is to highlight the main patterns of the
optimally controlled epidemic dynamics. We pick some weight levels for our numerical experiments and study
in Appendix B.3 the sensitivity of our findings to strong variations of these weights.

In our approach, the global planer tries to minimize the global cost function given in (2.11) using the
lockdown control lever δ together with the detection lever λ = (λ1;λ2). Nevertheless, we did not yet take into
account the risks and outcomes induced by the saturation of ICU hospital care facilities. The dynamics of the
SIDUHR+/− model already takes into account the strong impact of ICU saturation on the mortality rate
on individuals with severe symptoms. Whenever the proportion of individual in U exceeds the upper bound
level Umax, patients can not be treated correctly so that patients are more likely to transfer to D instead of
R+, in comparison to calmer times where U < Umax. With such feature, the optimal lockdown and detection
strategies should undoubtedly try to limit the duration of periods where the maximal ICU capacity is exceeded.
Nevertheless, as we believe that exceeding capacities of ICUs would have a strong negative impact on the hospital
staff and even the entire population, we rather choose to impose the non-saturation of ICU as a required state
constraint on the system. Hence, we try are looking for a robust solution to the following control problem:

inf
(δ,λ1,λ2)∈A s.t. U≤Umax

{
J(δ, λ1, λ2)

}
, (2.12)

where A denotes the set of admissible strategies driving the dynamics of the SIDUHR+/− model and is given
by

A :=
{

(δ, λ1, λ2) : [0, T ]→ [0, 1]3 , (δ, λ1, λ2) measurable
}
. (2.13)

2.2.4. Numerical approximation of the solution

From a mathematical point of view, the optimal control problem of interest falls into the class of control for
deterministic dynamical system over infinite horizon in the presence of additional state constraint. The detailed
presentation of the numerical resolution of this problem is presented in Appendix C.2. We briefly recall here
the main underlying approximations used in the numerical approach.

In order to optimize the impact on the dynamical structure of the underlying SIDUHR+/− of the chosen
control, we make use of Pontryagin maximum principle. For numerical purposes, we restrict our analysis to
the consideration of a control problem with finite horizon. We thus pick a maturity T large enough in order
to have a very small remaining level of infected individuals at time T . Besides, whenever the level of infected
is small enough, SIR type dynamics are not fully reliable anymore, limiting the impact of such approximation
on the derived optimal strategy. In practice, the numerical experiments are indeed not sensitive to the choice
of maturity T , as soon as it is picked large enough. For the graphs shown here, we used T = 700 days (almost
two years), corresponding to a scenario where a vaccination solution is available within 2 years. We did run
computations up to T = 900 looking for a potential impact on the interpretation of the optimal strategy. But
since we did not observe relevant ones, we restricted our attention to T = 700 in order to simplify the overall
presentation of the results. Besides, in order to encompass the state constraint into the maximum principle
based algorithm, we simply represent it under the form of a penalization cost, whenever the ICU constraint is
not satisfied. The penalization is strong enough to discourage crossing this threshold for most scenarios. See
Appendix C for more details on the implementation.

The algorithm then relies on an iterative procedure. Time is discretized so that the search for an optimal
control reduces to the search for one vector per control variable (δ, λ1, λ2), with one value per time step.
Starting from an initial guess, at each iteration the approximation for the optimal control is updated based on
the expression of the gradient in terms of the solution to a forward-backward system of ordinary differential
equations. In order to ensure that the controls remain between 0 and 1, a projection of the new controls on the
interval [0, 1] is performed at each iteration.
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3. Discussion

3.1. Benchmark scenario without intervention

Let us first investigate the outcomes of the epidemic dynamics when no lockdown, detection nor quarantine
policies are available. As commonly done in the current literature, we do not take into account the reaction of
individuals in response to the virus prevalence dynamics, as discussed e.g. in [30]. Anticipating realistic individu-
als behaviors in such context is still difficult, as no available data allows to tackle this phenomenon properly. We
suppose that the virus dynamics has no impact on the level of social interactions of individuals,which remains
constant equal to β0. Such analysis provides a very useful no-intervention benchmark scenario for the rest of our
study. The dynamics of each compartment is provided in Figure 2 while Table 2 provides important epidemic
characteristics computed at terminal date T = 700 days.1

As no intervention interferes with the epidemic dynamics, the overall duration of the epidemic is very short
as the number of susceptible vanishes exponentially fast. The initial reproduction number R0 = 3.3 induces
an epidemic lasting around 80 days. The virus prevalence is quite important over that period, leading to the
contamination of almost 96% of the population, way above the herd immunity threshold, S∗ ∼ 71% in our
example. The epidemic peak happens after a one month period, and as much as one third of the population is
infected at that date. Around 7% of the population is hospitalized due to the virus, leading to a highly severe
overwhelming of the healthcare capacity system for around 60 days. The epidemic induces in total a mortality
of almost 1% of the population, while half of deaths occur while the ICU capacity is saturated.

It is worth noticing that our model, with the parameter values of Table 1 that were calibrated on the French
epidemic of COVID-19 ([26, 73]), gives predictions that are in accordance with the ones made by [70] in absence
of interventions and neglecting the ICU capacity constraint (see Appendix A for details).

3.2. Optimal lockdown policy without detection effort

In order to emphasize the marginal role of each component in the optimal control problem of interest, we first
focus on the optimal lockdown strategy and corresponding epidemic trajectory induced without any detection
effort. This does not mean that we do not test anyone, we simply assume that only the people entering in
the hospital are tested with type-1 tests. No testing is done on infected individuals without severe symptoms
(λ1 = 0) and there no testing is done to detect recovered people after being asymptomatically sick (type-2 test,
λ2 = 0).

Hereby, we are starting with a weaker form of the optimal control problem, where we control only the
lockdown intervention policy:

inf
δ∈Aδ s.t. U≤Umax

{
J(δ, 0, 0)

}
, (3.1)

with the following choice of parameters and wsanitary = 100000, weco = 1 and α = 0. The sensitivity of the
enhanced results to this ad-hoc parametric choice is discussed in Appendices B.3 and B.4. Besides, once we will
have a better understanding about the derived lockdown strategy and its robustness, we will focus on the impact
of detection strategies in Section 3.5. The optimal lockdown strategy together with the main characteristics of
the pandemic dynamics are presented in Figure 3 and Table 2. The optimal control problem has been solved
using the numerical algorithm described in Appendix C.2 and numerical approximation errors undoubtedly
remain in the results presented here.

When we follow the lockdown intervention (δt) proposed by the optimal response policy, four distinct
consecutive phases can be observed:

– Quick activation of a strong lockdown: The optimal strategy consists in activating as soon as possible
a strong lockdown measure on the entire population as no targeting or detection is considered or possible

1In all other figures of this article, but that one, we consider a 700 day horizon. Here, the epidemic phase is over within two
months so we shorten the time frame on Figure 2 for ease of readability.
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Figure 2. Evolution of states without control, over 200 days.

Table 2. Epidemic characteristics.

ST IT RT DT maxt(It)

Without control 4.2% 0% 94.8% 9.8%0 33.7%
With optimal δ 27% ∼ 0% 72.9% 1.7%0 2%

at that stage. This strategy has been widely used in March and April 2020 as half of the world population
was under lockdown. With our parameters, the contact rate over the population is reduced by 80% over a
couple of days, in order to stop immediately the exponential growth of infected and infectious individuals.
Hereby, the size of the epidemic peak is highly reduced and, after less than one month, only 2% of the
population is contaminated at the peak of the epidemic (instead of 34% in the no-intervention benchmark
case). Of course, at the exact same date, the effective reproduction number Rt goes below 1. During this
initial short period, the effort in economic activity reduction has been very important: the welfare level
W went down by 80%, while at the same time the occupation rate in ICU hospital care system has been
constantly rising.

– Light lockdown release and prevalence decrease: During the short second phase, the intensity of the
lockdown remains intense (above 60%) in order to keep Rt below 1. The prevalence of the virus decreases
slowly, while the level of ICU admissions is still rising. After the previous phase where urgent decisions
had to be taken by the global planner, a short transition period of a couple of days now starts. During this
period, the proportion of infectious individuals decreases strongly in order to reach an optimal prevalence
level I∗ in the population, required for the very long next phase.

– Long period with stable prevalence and ICU sustainable capacity: The third phase lasts around
one year during which the effective reproduction number Rt remains stable at level 1. Hereby, the preva-
lence of the virus remains stable while the ICU capacity remains at the sustainable level Umax. During
this one year period, the level of contact rate within the population is slowly growing at a regular constant
rate, moving gradually from 40% to 80%. The working force is rising back to more normal levels and the
economy is slowly restarting: one year after the beginning of the pandemic, around 70% of regular social
interactions level is already attained within the population. The mortality rate over this period remains
stable, and the death toll grows linearly, almost reaching its terminal value at the end of this period.

– Terminal slow progressive release of the lockdown: The last phase is a couple of months long and
consists in bringing progressively back to normal the level of social interactions, while the occupation
level in ICU is decreasing and the prevalence of the virus is heading towards 0. The effective reproduction
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Figure 3. Evolution of state proportions – St (susceptible), It (infected, detected or not,
I−t + I+t ), Rt (recovered and immune, detected or not, R−t + R+

t ), Ut (hospitalized in ICU),
Dt (dead), Rt (dynamic version of the reproduction number), Wt (labor force available), Qt
(susceptible to be quanrantines, St + I−t + R−t ) and δt (lockdown intensity) – with optimal
control δ (plain line) and without control (dashed line). States vary here from t = 0 (beginning
of the pandemic, or at least of possible measures, with δ ≥ 0) to t = 700, and computations are
based on a dt = 1/5 days.

number Rt is smaller than 1. At some point, the deterministic equation (2.1) are no more valid and the
system becomes stochastic, but the extinction of the disease occurs with probability 1.

The optimal structure in four steps for controlling the pandemic dynamics is quite robust and very natural.
It is worth observing that although the dynamic reproduction number is not part of the criterion of interest,
reaching its optimal trajectory with four successive patterns is key for controlling the dynamic level of admissions
in ICU. Using the optimal control policy, the infections by the virus in the population have been spread out
over 500 days, providing a sustainable level of admissions in ICU for the sanitary system. In comparison to the
no-intervention benchmark case, the death toll has been divided by almost 100, thanks to a strong reduction in
the level of social interactions. The size of the pandemic only represents 70% of the population in comparison
to 96% in the no-intervention scenario.
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Figure 4. Phase diagram St (susceptible) versus It (infected, detected or not, I−t + I+t ),
together with the herd immunity threshold S∗ and the level I∗ of infected corresponding to
U = Umax.

A nice visualisation of the epidemic dynamics is provided by looking at the phase diagram presented in
Figure 4. In the no-intervention scenario, the epidemic dynamics starts from the point (S, I) = (1, 0) and moves
up and left until reaching the herd immunity threshold S∗ corresponding to the time of epidemic peak. Then, I
starts decreasing until the end of the epidemic, point where S is valued around 4% in our example: hence, the
final epidemic size is almost 96% of the population. In the optimally controlled scenario, we can clearly identify
the 4 phases described above: I is still rising during the first phase until reaching a small epidemic peak level,
it starts decreasing during the second transition phase until reaching the optimal level I∗ corresponding to the
level Umax of ICU capacity. It remains stable there during the long third phase and finally decreases in the last
phase until reaching a susceptible proportion close to the herd immunity level S∗.

Of course, both dynamics depend on the value of the parameters, such as the initial virus prevalence I−0 ,
the starting basic reproductive number R0, expectations about possible arrival of vaccine and cure (through
parameter α or weights considered in the objective function). But as we can see in Appendix B, and as we will
discuss more now, the enhanced results are robust to the parameter specifications.

3.3. Sensitivity of the optimally controlled epidemic dynamics to the model
specifications

The calibration of SIR type dynamics to current available data is currently a challenging task, as the quality
of available mortality and hospitalization figures is still questionable and incomplete. It is worth noting that one
of the main advantages of the SIDUHR+/− dynamics is the possibility of calibrating its dynamics to mortality,
infected detected, hospitalized and ICU data points. Still, such inverse calibration problem remains ill-posed
and the precision range over the calibrated parameters is not satisfying.

In order to demonstrate the robustness of our findings in such context, we provide a sensitivity analysis of
our results to modifications in the model specifications. More specifically, we analyse the impact of reasonable
variations with respect to the initial prevalence I−0 in Appendix B.1, the basic reproduction number R0 in
Appendix B.2, the balance between sanitary and socio-economic cost in Appendix B.3, and the arrival date
of a vaccination solution in Appendix B.4. Let now present the main outputs of those numerical experiments,
while keeping in mind that numerical errors due to the optimization approximation scheme can still alter some
numerical results presented in this study.

On Figure B.1, we can visualize the impact of a change in I−0 , with a smaller (five times) and larger (also five
times) value than the one used in benchmark computations (we used I−0 = 5%0). The lower value was suggested
from [71], with 1%0, five times lower than our estimate, and an upper value five times upper, of 2.5%, close to
the situation two weeks after according to [71]. A smaller value means that measures were taken earlier, but
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overall, it looks like the overall impact would have been rather small. Note that we observe here that a smaller
I−0 might cause more deaths (DT ), because of some balance with economic gains (economics losses are smaller
with a lower I−0 ). Observe also that variations in I−0 have almost no impact on the ICU saturation dynamics:
it might start earlier with a large I−0 , but the duration remains more or less the same.

On Figure B.2, we can visualize the impact of a change in R0, with a smaller (−0.3 i.e. −10%) and larger
(+0.3 i.e. +10%) value than the one used in benchmark computations (R0 = 3.3). Such variation in R0 is
compatible with the literature, see [26, 73]. The overall 4-phases global patterns of the optimally controlled
epidemics remain identical. The lockdown effort increases slightly but significantly with R0, together with the
ICU saturation phase duration, the global death toll and global economic cost. Note that a decrease of R0 from
3.6 to 3.0 (attained for example through extra hygiene habits) would decrease ICU saturation time length by
almost 25%.

On Figure B.3, we can visualize the impact of a change of the ratio between the sanitary weight wsanitary

and the socio-economic one weco, with a smaller (half) and larger (twice) value than the one used in benchmark
computations. The global patterns in the epidemic dynamics remain globally similar. A larger sanitary weight
induces a smaller death toll, a smaller epidemic peak together with a shorter ICU saturation period. The
economic gain or loss seems to be mostly sensible during the second half of the epidemic duration.

Figure B.4 provides the shapes of numerically approximated optimal epidemic curves for different beliefs
about the expected arrival time of a vaccine (and a cure). In comparison to the benchmark case where no
vaccine potential creation is taken into account, the arrival date τ of the vaccine is supposed to follow an
exponential distribution with expectation 100, 250 or 500 days, while the optimization is occurring on the time
interval [0, T ∧ τ ] . The epidemic curves are very similar when the anticipated time for vaccine availability is
long enough, confirming the robustness of the approach and main findings. Whenever a vaccination procedure
is supposed to arise rather early, the optimal strategy consists in postponing the mortality while keeping a
stronger and longer lockdown effort, hoping for a quick vaccination solution. The sanitary burden is hereby
smaller during the early stage of the epidemics but rises more strongly at the terminal phase.

Our main overall observation is that the dynamics of the optimally controlled epidemic dynamics always
present the same patterns and enlights the robustness of our findings. It divides into four successive phases in
a similar way to the one described in the previous main scenario analysis. Besides, the effective reproduction
number Rt together with the optimal lockdown intervention policy also have the exact similar patterns. Of
course small variations in the specifications still have an influence on the exact figures characterizing the balance
between sanitary and economic outcomes, the total duration of the epidemic or the pressure on the ICU hospital
system, but the overall characteristics remain identical. These observations confirm the robustness of our findings
when dealing with the optimal control problem at hand, under specification uncertainty. The more specific
dependence on the ICU care system capacity is studied in more details and discussed in the next section.

3.4. On the impact of additional ICU capacities

As discussed earlier, most countries have been urged to take public health measures to ‘flatten the curve’.
An important motivation was to avoid that hospital systems get overwhelmed, and more specifically, social
distancing was introduced to ensure that the occupation of ICUs with ventilators remain within the capacities
of hospitals, dedicated to COVID-19 patients. Previously, we integrated an upper limit to ICU – denoted by
Umax – and in this section, we discuss the impact of a potential increase of that capacity. Of course, increasing
capacity does not simply mean getting more masks, beds, ventilators, or medicines for the serious cases. It
also means diverting resources, training more staff to work in the ICU, and probably introduce telemedicine
solutions for non-COVID-19 patients (who do not require hospitalization) to free up beds.

On Figure 5, we consider a change in Umax, where we assume that health authorities are able to increase ICU
capacities by 50% over a 2 months period and remain at that level. We can imagine an increase in the number
of ventilators or back-ups with staff coming from other regions that are spared by the epidemics, as was done in
China or France for instance. Another possible interpretation is that the medical staff on the front line might
be infected in early periods leading to an initial shortage of personal at the beginning followed by a return to
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Figure 5. Evolution of states with optimal control δ when ‘raising the line’ (increase of Umax

by 50%). The plain line is the benchmark scenario discussed in Section 3.2; the dashed line
corresponds to the scenario with a capacity of Umax which increases linearly from time t = 0
until t = 60 days up to 1.5 times the initial capacity and then stays at this level.

normal within a few weeks. Here, we consider a regular (linear) increase of ICU capacities over two months,
until reaching a new limit, 50% higher than the original one.

This scenario has a major impact on all quantities. First, we observe that the derived optimal lockdown
strategy is able to let the ICU admission level bind the sustainable constraint over time, although it now grows
dynamically with time. This corresponds to a longer second phase duration until the stable in prevalence and
ICU capacity starts. The final number of dead people is overall smaller than in the original scenario, as the
expansion of ICU capacity allows to treat more patients simultaneously. Therefore, the social distancing can be
much weaker during the long ICU saturation phase, which also happens to be way shorter. Furthermore, ICU
saturation duration is much shorter with a major positive impact on the economy from day 100 until day 400, as
the lockdown intervention remains much weaker (after 200 days, the global level of social interactions is around
65% in comparison to less than 50% in our benchmark scenario). This reduces the socio-economic impact of the
epidemic and hereby allows to reach a smaller mortality count at time T . The overall gain at terminal date is
massive (even if here, we do not include a cost for increasing capacities). Nevertheless, the augmentation of ICU
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capacity implies also a higher daily dynamic death toll, so that an early non-anticipated vaccination solution at
an intermediate date would induce a higher sanitary cost in comparison to the scenario without ICU capacity
rising.

3.5. On the impact of detection resources

We now focus our analysis on the impact and optimization over the detection efforts λ1 and λ2 of infectious or
immune individuals. As stated in [64], mass testing could end the epidemic rapidly, and we now try to emphasize
the impact of light or mass testing upon the lockdown optimal intervention policy. The numerical results are
presented in Appendix B for ease of readability and we present here the main outputs of our experiments.

3.5.1. Effort in virologic detection

We first quantify on Figure B.5 the impact of introducing additional virologic detection resources with fixed
success rate λ1. Namely, we consider a constant daily detection level λ1 of 1%0, 1%, 5% or 10%. Of course,
the more effort we put into detecting infected people, the better the output. For instance we observe a smaller
death toll, a weaker economic impact as well as less ICU saturation. Up to remaining numerical errors, moving
the detection capacity λ1 from 1% to 10% has a strong impact on the overall outcomes of the epidemic: The
epidemic size drops from 70% to 30%, the remaining number of susceptible individuals ST ' 70% corresponds
to the herd immunity obtained with λ1 = 0.1 and δ ' 0.25, the duration of ICU capacity saturation is divided
by a factor larger than 2, and the overall sanitary and economic costs are divided by 2. The huge detection of
infected individuals has a strong impact on the socio-economic cost for two reasons: First, detection of infected
individuals allows to slow down the epidemic propagation. Second, detected infected individuals are later on
identified as immune people, i.e. are in compartment R+, so that they are not impacted by social relations
limitation, which reduces the overall economic cost. Finally, observe that massive testing has a major impact
on most output (and must be massive to really impact, as suggested in [64]). Observe that ST remains rather
large, but hopefully any epidemic restart is avoided by the detection effort λ1 which must not be released (the
patterns of some figures close to terminal date T are due to the numerical approximation of the infinite horizon
problem by a finite one).

Another experiment presented in Figure B.6 considers the case where the detection resources are rising
linearly from 0% to 20% aver 700 days. In comparison to the corresponding case where detection resources
of level λ1 = 10% are constantly available, the sanitary death toll induced by a rising λ1 is way higher. This
confirms the intuition that intense detection resources are required from the beginning of the epidemic. More
specifically, we now focus on the optimal dispatch over time of allocation resources: Figure B.7 provides the
optimal policy for the detection of infected whenever no lockdown measures are in place, while Figure B.8
provides the optimal combination of detection policy and lockdown intervention. For both cases, the weight
wprevalence has been set up equal to 1. As we can observe on both Figure B.7 and Figure B.8, and as stated
clearly in [64], massive testing and detection strategies could have been used to end the epidemic rapidly. The
optimal strategy consists in having extremely massive and early type-1 detection resources, in order to isolate
infected individuals and break the contamination chains. Herd immunity is ensured while we keep the detection
active so that Rt remains below 1, allowing to epidemic size to remain very small, while everyone simply waits
for for a vaccination cure.

With that strategy, the peak on ICU is 25% of the upper limit Umax, DT is almost null, with no real impact
on the economy (there is still an impact since, in order to be safe, we still quarantine a significant proportion of
people, above 10%). Note here that the optimal λ1, once we passed the peak, exceeds 25%, which is higher than
the scenarios considered earlier. Observe also that massive detection tools induce a constant optimal lockdown
level.



20 A. CHARPENTIER ET AL.

3.5.2. Effort in immunity detection

We now turn to the impact of detecting immune individuals, as found by the optimally controlled epidemic
dynamics. First, we consider on Figure B.9 the introduction of fixed type-2 detection strategy (or testing) and
measure the impact on the optimal lockdown policy. Such detection resources allow to transfer individuals from
compartment R− to R+. These additional resources have no significant impact on the optimal lockdown strategy
and death toll dynamics of the epidemic. The only impact concerns the socio-economic cost of the pandemic,
since identified recovered (and immune) individuals will be allowed to have a regular level of social interactions
and won’t be quarantined.

On Figure B.10, we look towards the optimal detection strategy ( with wimmunity = 1) whenever no lockdown
policy is in place, while Figure B.11 focuses on the optimization on both lockdown intervention δ and immunity
detection effort λ2. As expected, additional optimization over λ2 has few impact on the sanitary burden, but can
be used to lower the economic cost. The optimal detection strategy consists in identifying recovered individuals
as soon as possible, and requires a large amount of effort in the first part of the epidemic phase. As a consequence,
in the presence of immunity detection policy, the level of social interactions during the last phase of the epidemic
is significantly higher, thus reducing the induced economic cost.

Finally, on Figure B.12, we optimize over all possible control levers: lockdown measure, virologic detection
effort λ1 as well as the immunity detection one λ2. We observe an optimal policy and induced epidemic dynamics
rather similar to the one obtained in Figure B.8, whenever no immunity detection mean was available. The
optimal λ2 helps in reducing the overall economic costs by detecting immune people.

4. Conclusion

The present work investigates, using an approach from Optimal Control theory, what could be optimal
interventions for limiting the spread of a disease like the COVID-19 epidemic. We consider first the case where
only the lockdown lever is operated, as was done in France when massive testing was still not an option. Then,
in the other scenarios, optimization is done on both lockdown and detection capacity of infected and immune
individuals.

The notion of ‘best scenario’ is of course very much impacted by the choice of objective function that is made.
The optimization takes into account the trade-off between lowering the number of deaths and minimizing the
economic and social costs. To our knowledge, taking into consideration these diverse aspects into the objective
function has not been studied much in the recent literature (see e.g. [3]), although the literature on the topic is
growing rapidly.

Another originality of our approach is the consideration of a strict constraint on the ICU capacity level
dedicated to COVID-19 patients. We observe that in the solutions, the lockdown and detection controls are set
so that the occupation of ICU remains a high as possible under Umax (due to the economic and social costs). It
is really this constraint that shapes the decisions leading to a curve that is ‘flattened ’ sufficiently to ensure the
sustainability of the health system. This is particularly visible in the scenario where Umax is increased of 50%
within 2 months at the beginning of the epidemic: we see a relaxation of the lockdown that is permitted by the
increased capacity of ICUs.

The best scenarios that we obtain are structured into 4 phases: (1) quick and strong measures to recover the
control of the epidemic, (2) relaxation of the epidemic once under control to reach the fluxes imposed by the
sustainability of the health care system, (3) the fluxes obtained after the period 2 are kept as long as possible to
flatten the curve in order to avoid overwhelming the ICUs, (4) once a herd immunity is reached, the lockdown
and testing controls can be lowered.

Without being an explicit target in the control problem, the evolution of the effective reproduction number
Rt is extremely interesting, and consistent with existing epidemiological literature. Again, without monitoring
that indicator, we obtain in all the optimal strategies, Rt becomes controlled below 1 after a few days (after the
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phase 1, and at the price of an important initial lockdown), and remains just below that critical value2. It is
allowed to reach and remain stable at level 1 in order to stabilize the ICU occupancy at their sustainable level
Umax.

Of course, the model considered here is schematic because we wanted: (1) to put the methodology in evidence,
(2) to explore easily the different scenarios. Generalizations can be carried in a quite straightforward manner.
First, the major drawback of our approach is the necessity to fully observe some underlying latent variables and
parameters of the epidemic dynamics, such as the prevalence of the virus. But we observed that the shape of
the optimal control is quite robust to a variation of the initial prevalence I−0 , and more generally to variations
upon lots of parameters in the model. An important issue about that COVID-19 pandemic was the poor quality
of data in the beginning, especially when trying to compare among countries to get robust estimators of various
quantities regarding the disease. In our model, we tuned parameters using values from existing literature, and
most of the results we obtained were actually extremely robust to moderate changes of those values.

Second, most individuals will not experience severe symptoms whenever contaminated by the virus. Such
analysis calls for the use of differential quarantine strategies based on an estimation of the own risk of each indi-
vidual. In our approach we use immunity detection procedure for a similar purpose, but less accurate estimates
of the risk of each individuals are also available depending on their current and past health characteristics. As
discussed in [31], the key ingredient for considering and using a differential lockdown strategy is a proper han-
dling of the risk of bad specification of the group associated to some individuals. A dynamic optimisation over
both the dynamic lockdown intervention together with the risk level associated to each misspecification is left for
further research. Similarly the risk of wrong identification of infected or immune individuals using parameters
λ1 and λ2 should be also taken into account in the design of a proper and efficient detection strategy. Also, in
view of more practical applications for health policy guidance, a vector based version of SIDUHR+/− should
probably be derived, as in [3] for instance. Categories can be splited depending on the age of individuals. Hence,
St will then be (Sc

t , S
a
t , S

s
t ), with children, adults and seniors, for instance. Most of the equations of the dynamics

become multivariate, and parameters will be vectors, except β that becomes a WAIFW (or Who Acquires Infec-
tion From Whom) matrix, as in [80] or [59]. The main interest would be to have target and age-specific controls,
with testing and lockdown that can be per age group. The difficult component in this multivariate extension is
on the objective function, where the economic component should probably be more related to well-being cost
of being quarantined, especially for people who do not belong to labor groups.

Finally let us notice that in this paper, as always in epidemic modelling, an important feature is the −/+
problem, with undetected individuals. The huge impact of infected detection resources λ1 in our numerical
experiments emphasize the critical role of tracing and testing resources upon the dynamic of the epidemic. As
suggested in [17, 27, 43, 49] (among many others), tracing is clearly a natural tool that should be optimized,
to lower the socio-economic cost of the disease without endangering the entire population (and increase the
sanitary cost of the pandemic). This paves the way for further research topics.

Appendix A. Parameters of the epidemic dynamics

First, let us notice, as mentioned in the main text, that there is an underlying individual based model for
the system (2.1), in which the rates have a probabilistic interpretation, and can be interpreted as inverse of
mean times (e.g. [9]), possibly with thinning when the corresponding events only occur for a fraction of the
population. Based on these remarks, we can compute the rates in our model with the parameters provided in
the French COVID-19 literature (see [26, 73]).

A.1 Obtaining the transition rates from the sojourn times and transition probabilities

First, we introduce some variables on which the mechanistic construction of our rates will depend:

– pa: conditioned on being infected, the probability of having light symptoms or no symptoms;

2On some graphs, we have a long term value of Rt above 1, but it is obtained whenever close to the terminal date T and due
to the numerical approximation of the infinite horizon control problem by a finite horizon one.
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– pU : conditioned on being mild/severely ill, the probability of needing hospitalization;
– pH : conditioned on needing hospitalization, the probability of needing ICU;
– pd: conditioned on being admitted to ICU, the probability of dying,

and for the durations:

– N
(a)
R : if asymptomatic, number of days until recovery;

– N
(s)
R : if symptomatic, number of days until recovery without hospital;

– NIH : (if severe symptomatic) number of days until hospitalization;
– NHU : if in H, number of days until ICU;
– NHR: if hospitalized but not in ICU, the number of days until recovery;
– NUD = 10: if in ICU, number of days until death;
– NUR = 20: if in ICU, number of days until recovery.

These variables can be measured quite easily on the data. Then, once these parameters are chosen, we can
propose the following transition rates for our model:

– γIR, the daily individual transition rate from I to R, is assumed to be of the form:

γIR = (1− pa) · (1− pH) · 1

N
(s)
R

+ pa ·
1

N
(a)
R

,

where on the right hand side, the first term is associated to mild symptomatic while the second term is
associated to severe ones.

– γIH , the daily rate from I to H, is assumed to be

γIH = (1− pa) · pH ·
1

NIH
.

– γHU , the daily rate from H to U , is given by

γHU = pU ·
1

NHU
.

– γHR, the daily rate from H to R, is given by

γHR = (1− pU ) · 1

NHR
.

– For the transition rates from U to R or D, the nonlinearity induced by the constraint on the ICU capacity
Umax implies that it is easier to give these rates at the population level rather than at the individual level.
For the transition from U to R, the individual rate is denoted by γUR(U) and the population rate is then
γUR(U) · U . We assume here that:

γUR(U)× U =


(1− pd) ·

1

NUR
U, if U < Umax,

(1− pd) ·
1

NUR
Umax, if U ≥ Umax.

This means that when the ICU capacity Umax is reached, new patients can not be taken in charge any
more and since they correspond to individuals with severe forms of the disease, they can not recover until
the ICU occupation is lowered.
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Table A.1. Parameters. (a): parameters obtained from [26]. (b): parameters obtained from
Salje et al. Reference [73]. (c): parameters used in the benchmark scenario in this paper.

Probabilities Durations (days)

pa pH pU pd N
(a)
R N

(s)
R NIH NHU NHR NUD NUR

(a) 0.52 0.17 0.25 0.20 7.5 7.5
(b) 0.182 0.20 11 2 17.15 10 10.23
(c) 0.85 0.17 0.182 0.20 7.5 7.5 11 2 17.15 10 10.23

– As for the transition rate from U to R, the transition rate from U to D is nonlinear. We denote by γUD(U)
the daily death rate of an individual needing ICU, and by γUD(U)× U the transition at the population
level, that we assume is of the form:

γUD(U)× U =


pd ·

1

NUD
U, if U < Umax,

pd ·
1

NUD
Umax +

20

NUD
(U − Umax), if U ≥ Umax.

(A.1)

The hypothesis is that when ICU gets saturated, the patients who are not taken in charge experience an
extra death rate.

A.2 Parameter values

For the infection parameter β, we fix the value of R0 and then compute the corresponding value of β using
(2.2). Reference [73] use R0 = 3.3 (in absence of lockdown intervention and of testing policy), which we also
recover from the early French dynamics ([82]) using the methods described in [77] (not shown).

The other transition rates appearing on Figure 1 can be obtained once the probabilities and durations detailed
above are fixed. For this, we choose our parameters on the basis of the works by [26, 73] for the French COVID-19
epidemics. We emphasize that despite of this choice, the methodology developed here is general and can apply
to any country of disease.

The line (a) in Table A.1 can be obtained as follows: the model of [26] for Ile-de-France is structured into 3
age-classes: children (25%), adults (60%) and seniors (15%). Using the age-specific transition probabilities given
in this reference and averaging over the age classes, we obtain the values announced:

pa =0.2 + 0.8
(
0.25× 1 + 0.75× 0.2

)
= 0.52

pH =
0.60× 0.10 + 0.15× 0.20

0.60× (0.70 + 0.10) + 0.15× (0.6 + 0.20)
= 0.17

pU =0.60× 0.36 + 0.15× 0.2 = 0.246

pd =
0.60× 0.0074 + 0.15× 0.029

060× (0.0074 + 0.05) + 0.15× (0.029 + 0.036)
= 0.20

However, it appears in our simulations that the probability pa = 0.52 to be asymptomatic or only with light
symptoms does not provide realistic orders for the proportion of dead individuals. In [73], they estimate the
proportion of being hospitalized when infected at 2.6%. This proportion corresponds to (1−pa) pH in our model,
yielding a probability pa = 0.85 when we use the estimate pH = 0.17 of [26].

In France, at the beginning of the lockdown on March 15th 2020, there was roughly 12,000 beds in ICUs,
which provides an estimate for the value of Umax. The additional mortality rate for individuals in ICUs when
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Ut > Umax is chosen 20 times more than the usual death rate in (A.1). This factor is calibrated from the
observation by [73] that the mean time to death in hospitals is bi-modal, with a group dying quickly after 0.67
days on average and a second group who die after longer time periods of mean 13.2 days. Extrapolating we
assumed that ‘urgent’ cases die 20 times faster than ‘usual cases’.

For the value of I−0 , [33, Tab. 1] report a total number of infected of 3%, with a 95% credible interval
[1.1%;7.8%], as of 28th March 2020 (which is two week after our t = 0). Because of the exponential increase,
a crude estimate would be below 1% two weeks before. The number of reported cases in France on March 15
was around 5,000. According to [71], when Italy had 5,000 reported cases, an estimation of 60,000 cases was
suggested, which would imply a I−0 close to 1%0. In our benchmark scenario, we kept that 5%0 value for I−0 .

To check the validity of our parameters, we simulated our model in absence of intervention (δ = 0, λ1 ≡ 0
and λ2 ≡ 0) and compare the results with the prediction of [70]. Because in the latter reference they do not
model the ICU saturation, we also removed the threshold Umax and the associated additional mortality (which
amounts to considering Umax = +∞). Doing this we obtain similar results as those of [70].

Appendix B. Sensitivities to the model specifications

In this appendix, we provide sensitivity graphs, where parameters are changed, to assess the robustness of
our conclusions. Do not forget that numerical approximations errors can affect a too precise interpretation of
the following numerical illustrations.

We consider the following benchmark scenario. The parameters for the dynamics are specified in Table 1. In
the control problem, the benchmark situation is the one described in Section 3.2. To be precise, for the numerical
implementation, we use the cost function is the one defined in (C.2) with the following choice of parameters:
α = 0, wsanitary = 105, wecon = 1, wprevalence = 1, wimmunity = 1, wICU = 5.104 and T = 700. Hence the optimal
control problem for which we compute an approximate solution numerically is:

inf
δ∈Ã

{
J̃T (δ, 0, 0)

}
, (B.1)

with Ã the set of measurable functions from [0, T ] to [0, 1].

B.1 Impact of the initial virus prevalence I−0

(see Fig. B.1)

B.2 Impact of the basic reproductive number R0

(see Fig. B.2)

B.3 Impact of balancing sanitary and socio-economic costs

(see Fig. B.3)

B.4 Impact of the vaccination arrival date anticipation α

(see Fig. B.4)



COVID-19 PANDEMIC CONTROL 25

Figure B.1. Evolution of states with optimal controls (δ, 0, 0) – without any testing – for three
different values of I−0 . The plain line is the benchmark scenario discussed in Section 3.2; the
dashed line corresponds to a smaller weight for I−0 while the dotted line corresponds to a larger
I−0 .
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Figure B.2. Evolution of states with optimal controls (δ, 0, 0) – without any testing – for three
different values of R0. The plain line is the benchmark scenario discussed in Section 3.2; the
dashed line corresponds to a smaller value of R0 (−0.3) while the dotted line corresponds to a
larger value of R0 (+0.3).
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Figure B.3. Evolution of states with optimal controls (δ, 0, 0) – without any testing – for
three different values of wsanitary. The plain line is the benchmark scenario discussed in Section
3.2; the dashed line corresponds to a smaller weight for wsanitary (half) while the dotted line
corresponds to a larger weight (twice).
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Figure B.4. Evolution of states with optimal controls (δ, 0, 0) – without any testing – for
three different values of α, the discount rate that reflects the expected arrival time of a vaccine
(and a cure). The plain line is the benchmark scenario discussed in Section 3.2; the dotted line
corresponds to α = 1/500, dashed line corresponds to α = 1/250 and the mixed line corresponds
to α = 1/100.
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B.5 Impact of additional constant effort in virologic detection λ1

Here, we add virologic effort for a constant value of λ1 and we compare the result of the optimization over δ
for several values of λ1. The optimal control problem for which we compute an approximate solution numerically
is:

inf
δ∈Ã

{
J̃T (δ, λ1, 0)

}
, (B.2)

with Ã the set of measurable functions from [0, T ] to [0, 1].

Figure B.5. Evolution of states with optimal control δ for three different values of λ1, or
(δ∗, λ1, 0). The plain line is the benchmark scenario discussed in Section 3.2, with λ1 = 0; and
then three scenarios, with λ1 = 1% (dashed line), λ1 = 5% (dotted line) and λ1 = 10% (mixed
line).
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B.6 Impact of additional rising effort in virologic detection λ1

Here, we add virologic effort for a value of λ1 which increases linearly in time, λ̃1 : t 7→ 0.2t/T . The optimal
control problem for which we compute an approximate solution numerically is:

inf
δ∈Ã

{
J̃T (δ, λ̃1, 0)

}
, (B.3)

with Ã the set of measurable functions from [0, T ] to [0, 1].

Figure B.6. Evolution of states with optimal control δ for two different patterns for λ1. The
dotted line corresponds to the case λ1 = 1% and the mixed line is the increasing scenarios for
λ1t (from 0% and 20% over two years).
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B.7 Optimizing over effort in virologic detection without lockdown intervention

Here, we compare the situation without intervention at all and the situation with intervention through λ1.
The optimal control problem for which we compute an approximate solution numerically is:

inf
λ1∈Ã

{
J̃T (0, λ1, 0)

}
, (B.4)

with Ã the set of measurable functions from [0, T ] to [0, 1].

Figure B.7. Evolution of states with optimal control (0, λ1, 0), where the plain line corresponds
to the benchmark scenario discussed in Section 3.1 (with no intervention δ = λ1 = λ2 = 0); and
evolution with optimal control λ1 (when δ = λ2 = 0).
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B.8 Optimizing over both lockdown intervention δ and effort in virologic detection λ1

Here, we compare the situation with optimal lockdown policy versus the situation in which we optimize over
both lockdown and virologic effort. The latter corresponds to the following optimal control problem, for which
we compute an approximate solution numerically:

inf
(δ,λ1)∈Ã×Ã

{
J̃T (δ, λ1, 0)

}
, (B.5)

with Ã the set of measurable functions from [0, T ] to [0, 1].

Figure B.8. Evolution of states with optimal controls (δ, λ1, 0), where the plain line corre-
sponds to the benchmark scenario (δ, 0, 0) discussed in Section 3.2 (plain line); and evolution
with joint optimal controls (δ, λ1, 0) (dashed line).
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B.9 Impact of additional effort in immunity detection λ2

Here, we add virologic effort for a constant value of λ2 and we compare the result of the optimization over δ
for several values of λ2. The optimal control problem for which we compute an approximate solution numerically
is:

inf
δ∈Ã

{
J̃T (δ, 0, λ2)

}
, (B.6)

with Ã the set of measurable functions from [0, T ] to [0, 1].

Figure B.9. Evolution of states with optimal control δ for three different values of λ2 given
a fixed level of λ1 (here 1%), with λ2 = 0 (dotted line), λ2 = 1%0 (dashed line) and λ2 = 1%
(mixed line), i.e. (δ∗, λ1, λ2).
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B.10 Optimizing over effort in immunity detection λ2 without lockdown intervention

Here, we compare the situation without intervention at all and the situation with intervention through λ2.
The optimal control problem for which we compute an approximate solution numerically is:

inf
λ2∈Ã

{
J̃T (0, 0, λ2)

}
, (B.7)

with Ã the set of measurable functions from [0, T ] to [0, 1].

Figure B.10. Evolution of states with optimal controls (0, 0, λ2), where the plain line corre-
sponds to the benchmark scenario discussed in Section 3.1 (with no intervention δ = λ1 = λ2 =
0); and evolution with optimal control λ2 (when δ = λ1 = 0).
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B.11 Optimizing over both lockdown intervention δ and effort in immunity detection λ2

Here, we compare the situation with optimal lockdown policy versus the situation in which we optimize over
both lockdown and immunity detection. The latter corresponds to the following optimal control problem, for
which we compute an approximate solution numerically:

inf
(δ,λ2)∈Ã×Ã

{
J̃T (δ, 0, λ2)

}
, (B.8)

with Ã the set of measurable functions from [0, T ] to [0, 1].

Figure B.11. Evolution of states with optimal controls (δ, 0, λ2), where the plain line corre-
sponds to the benchmark scenario (δ, 0, 0) discussed in Section 3.2 (plain line); and evolution
with joint optimal controls (δ, 0, λ2) (dashed line).
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B.12 Optimizing over lockdown intervention δ, and efforts in virologic detection λ1 and
immunity detection λ2

Here, we compare the optimization on δ only versus the optimization (C.1) over (δ, λ1, λ2).

Figure B.12. Evolution of states with optimal controls (δ, λ1, λ2), where the plain line corre-
sponds to the benchmark scenario (δ, 0, 0) discussed in Section 3.2 (plain line); and evolution
with joint optimal controls (δ, λ1, λ2) (dashed line).
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Appendix C. Numerical resolution of the optimal control
problem

We discuss in this section the numerical resolution of the optimal control problem (2.12) of interest.
The original problem has infinite horizon, but for numerical purpose, we focus on the equivalent version over

a sufficiently large time horizon T . The proximity between both optimal control problems is well established
in the literature, see e.g. Section 4.1 in [29], while we observe empirically very few impact by the choice of
maturity T , as soon as T is chosen large enough in order for the epidemic phase to be over (i.e. such that the
proportion of infected people is small enough at time T ). With respect to the random time of vaccination τ ,
such approximation corresponds to optimizing over the time interval [0, τ ∧ T ] instead of [0, τ ].

Similarly, the problem (2.12) is an optimal control problem with state constraint on the ICU capacity, and we
choose to replace for ease of numerical tractability the state constraint by a penalization cost with a sufficiently
large weight wICU > 0. Hence, we focus numerically on an approximate version of the original optimal control,
which is given by:

inf
(δ,λ1,λ2)∈A

{
J̃T (δ, λ1, λ2)

}
, (C.1)

where the approximate objective function J̃T is given by

J̃T (δ, λ1, λ2) := wsanitary

∫ T

0

e−αtdDt + wecon

∫ T

0

e−αt(1−Wt)
2dt (C.2)

+wprevalence

∫ T

0

e−αt|N1
t |2dt+ wimmunity

∫ T

0

e−αt|N2
t |2dt,

+wICU

∫ T

0

e−αt[Ut − Umax]+dt.

C.1 Optimality condition by Pontryagin’s maximum principle

To alleviate the notation and use more standard notations from the literature, the problem can be recast in
the following form, where a denotes the control and X the state: Minimize

J(a) =

∫ T

0

f(t,Xt, at)dt+ g(XT )

subject to

Ẋt = b(Xt, at), X0 = x0 given.

We interpret Xt = (St, I
−
t , I

+
t , R

−
t , R

+
t , Ht, Ut, Dt) ∈ [0, 1]8 ⊂ R8, at = (δ, λ1t , λ

2
t ) ∈ [0, 1]3 and we take

f(t,X, a) = wsanitarye
−αtγUD(U)U + wecone

−αt(1−W )2

+ wprevalencee
−αt|N1|2 + wimmunitye

−αt|N2|2 + wICUe
−αt[U − Umax]+ ,

where

Q := R− + I− + S, W := (1− δ)Q+R+, N1 := λ1Q+ γIHI
−, N2

t := λ2Q.
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Moreover, we take

b(X, a) =



−(1− δ)βI−S
(1− δ)βI−S − λ1I− − (γIR + γIH)I−

λ1I− − (γIR + γIH)I+

γIRI
− − λ2tR−

γIRI
+ + λ2R− + γHRH + γUR(U)U

γIH
(
I− + I+

)
− (γHR + γHU )H

γHUH − (γUR(U) + γUD(U))U
γUD(U)U


=



−(1− δ)βI−S
(1− δ)βI−S − λ1I− − (γIR + γIH)I−

λ1I− − (γIR + γIH)I+

γIRI
− − λ2tR−

γIRI
+ + λ2R− + γHRH + ρUR(U)

γIH
(
I− + I+

)
− (γHR + γHU )H

γHUH − (ρUR(U) + ρUD(U))
ρUD(U)


,

where we denoted ρUR(u) = γUR(u)u and ρUD(u) = γUD(u)u in order to alleviate the notation.
Let H be the Hamiltonian defined by

H(t, x, y, a) = b(x, a) · y + f(t, x, a).

Pontryagin’s maximum principle leads, at least informally, to the following optimality condition: if â = (ât)t
is optimal, then for every t ∈ [0, T ],



0 = ∂δH(X̂t, Ŷt, ât)

= 2wecone
−αt|Q̂t|2δ̂t + 2wecone

−αtQ̂t(1− Q̂t − R̂+
t ) + βÎ−t Ŝt(Ŷ

S − Ŷ I
−

) ,

0 = ∂λ1H(X̂t, Ŷt, ât)

= 2wprevalencee
−αtQ̂t(Q̂tλ̂

1
t + γIH Î

−
t )− Î−t (Ŷ I

−

t − Ŷ I
+

t ) ,

0 = ∂λ2H(X̂t, Ŷt, ât)

= 2wimmunitye
−αt|Q̂t|2λ̂2t − Î−t (Ŷ I

−

t − Ŷ I
+

t ) ,

where (X̂, Ŷ ) = (S, I−, I+, R−, R+, H, U,D, Y S , Y I
−
, Y I

+

, Y R
−
, Y R

+

, Y H , Y U , Y D) solve the forward-
backward ODE system:

{
˙̂
Xt = b(X̂t, ât), X̂0 = x0
˙̂
Yt = −∂xH(t, X̂t, Ŷt, ât), ŶT = 0.

(C.3)
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The backward equation can be written as follows (dropping the hats to alleviate the notation):

˙̂
Y St = −

[
(1− δ)βI−(Y St − Y I

−

t )

−2wecone
−αt(1− δ)

(
1−Wt

)
+ 2wprevalencee

−αtλ1N1
t + 2wimmunitye

−αtλ2N2
t

]
˙̂
Y I

−

t = −
[
(1− δ)βS(Y St − Y I

−

t ) + λ1(Y I
+

t − Y I−t ) + γIR(Y R
−

t − Y I−t ) + γIH(Y Ht − Y I
−

t )

−2wecone
−αt(1− δ)

(
1−Wt

)
+ 2wprevalencee

−αt(λ1 + γIH)N1
t + 2wimmunitye

−αtλ2N2
t

]
˙̂
Y I

+

t = −
[
γIR(Y R

+

t − Y I+t ) + γIH(Y Ht − Y I
+

t )
]

˙̂
Y R

−

t = −
[
λ2(Y R

+

t − Y R−

t )

−2wecone
−αt(1− δ)

(
1−Wt

)
+ 2wprevalencee

−αtλ1N1
t + 2wimmunitye

−αtλ2N2
t

]
˙̂
Y R

+

t = −
[
− 2wecone

−αt(1−Wt

)]
˙̂
Y Ht = −

[
γHR(Y R

+

t − Y Ht ) + γHU (Y Ut − Y Ht )
]

˙̂
Y Ut = −

[
ρ′UR(U)(Y R

+

t − Y Ut ) + ρ′UD(U)(Y Dt − Y Ut )

+wsanitarye
−αtρ′UD(Ut) + wICUe

−αt1Ut>Umax

]
˙̂
Y Dt = 0 .

C.2 Numerical algorithm

The numerical method is an iterative procedure to compute the optimal control â = (δ̂, λ̂1, λ̂2) =

(δ̂t, λ̂
1
t , λ̂

2
t )t∈[0,T ]. Starting from an initial guess a(0), at iteration k ≥ 0, in order to compute a(k+1), we first

compute the solution (X(k), Y (k)) to the forward-backward ODE system corresponding to (C.3) but with control
a(k) instead of â, i.e., {

Ẋ
(k)
t = b(X

(k)
t , a

(k)
t ), X

(k)
0 = x0

Ẏ
(k)
t = −∂xH(X

(k)
t , Y

(k)
t , a

(k)
t ), Y

(k)
T = 0.

We then set

ã
(k+1)
t = a

(k)
t − θ(k)∂aH(Xt, Yt, a

(k)
t ) ,

where θ(k) > 0 is a step size (which may depend on the iteration in order to adjust the convergence rate).
Finally, we define, for each component i of the control,

a
i,(k+1)
t = π[0,1](ã

i,(k+1)
t )

where π[0,1] denotes the projection on the interval [0, 1].
If the optimization is to be performed over only one component of the control (e.g. over δ only), then the

updates are done only for this component instead of the whole vector of controls.
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