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Counter-rotation of magnetic beads in spinning fields

Jean Farago, Thierry Charitat, Alexandre Bigot, Romain Schotter, and Igor Kulić∗
Université de Strasbourg, CNRS, Institut Charles Sadron UPR-22, Strasbourg, France

(Dated: October 6, 2020)

A magnetic stirrer, an omnipresent device in the laboratory, generates a spinning magnetic dipole-
like field that drives in a contactless manner the rotation of a ferromagnetic bead on top of it.
We investigate here the surprisingly complex dynamics displayed by the spinning magnetic bead
emerging from its dissipatively driven, coupled translation and rotation. A particularly stunning
and counter-intuitive phenomenon is the sudden inversion of the bead’s rotational direction, from co-
to counter-rotation, acting seemingly against the driving field, when the stirrer’s frequency surpasses
a critical value. The bead counter-rotation effect, experimentally described in [J.Magn.Magn.Matter,
476, 376-381, (2019)], is here comprehensively studied, with numerical simulations and a theoretical
approach complementing experimental observations.

I. INTRODUCTION

The broad availability of magnetic neodymium
beads has led to an increased "table top" experimental
interest in their self-assembly and individual dynamics
[1–4]. Merely rolling such a bead on the top of the ta-
ble leads to surprisingly complex behavior, with bead
trajectories that depend on the motion speed and in-
clination to the local earth magnetic field [5]. In the
microscopic realm, the interaction of ferro- and super-
paramagnetic beads with external fields and surface
confinement has been extensively investigated. Spa-
tially inhomogeneous, dynamic magnetic fields that
are linearly propagating [6] or rotationally spinning
[3, 7] along surfaces have been investigated. The con-
finement of magnetic or magnetizable objects to solid
[3, 6] and fluid interfaces [8, 9] under oscillating fields
leads to an intricate phenomenology including self-
assembly and self-propulsion [10].

A permanently magnetized object placed in a non-
uniform field, moves to minimize its magnetic free en-
ergy via two mechanisms: a) By aligning its magnetic
moment with the field direction and b) by moving to-
wards the maximum of field intensity. However, when
coupled to a substrate the two otherwise independent
degrees of freedom become tightly coupled giving rise
to subtle and often counterintuitive effects. Here we
investigate one such easily reproducible, yet stunning
effect : A neodymium bead placed on top of a lab-
oratory magnetic stirrer. When the stirrer’s magnet
rotates at slow rates the bead naturally follows the
field. However, surprisingly, once the field rotates fast
enough the bead inverts its direction and rolls, to the
surprise of the observer, in the opposite direction -
against the driving field direction. This effect was re-
cently described by Chau et al. [11] and in a related
form by Gissinger [7].

∗ Also at Leibniz Institute for Polymer Research (IPF), 01069
Dresden, Germany.

In this paper, we revisit the experiments of Chau
et al. [11] with a comprehensive approach which com-
bines experiments, numerical simulations and theoret-
ical analysis. The benefit of numerical simulations is
to provide a complete description of the rotation of
the beads, which are quite complicated to access ex-
perimentally. We performed experiments, rather sim-
ilar to the “opposite polarity case” described in [11],
but simpler as we used a usual magnetic stirrer (com-
monly found in chemical laboratories) to provide the
rotating magnetic field. We then wrote down the dy-
namical equations of a magnetic bead moving on the
horizontal plane of the stirrer, assuming a viscous fric-
tion between the bead and the stirrer. The features
of the magnetic field of the stirrer have been carefully
modeled, in order to reproduce as faithfully as possible
the experiments. We simulated the dynamical equa-
tions obtained and by fitting two parameters of the
model, we were able to reproduce qualitatively and
quantitatively our experimental results. A theoretical
analysis of the motion allows us (i) to understand the
radial stabilization of the bead in its counter-rotating
motion, (ii) to confirm the asymptotic role of the free
rolling at large driving angular velocities, and (iii)
to show that counter-rotating motion is not possible
when purely paramagnetic beads (without remanent
magnetization) are used.

The paper is organized as follows. In sections II
and III, the system is introduced and our experimen-
tal results are presented. The dynamical equations of
the system and the modeling of the rotating magnetic
field are derived in section IV. Two typical motions
are then discussed in detail in section V. A theoret-
ical discussion follows in section VI. For the sake of
completeness, equations for the rotational dynamics
of the bead in spherical coordinates are reported in
Appendix IXA.
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FIG. 1. Sketch of the system and the main notations used
throughout the paper. θ and φ are used to orient the mag-
netic axis n of the bead : n = cos(θ)er+sin(θ)(sin(φ)eα−
cos(φ)ez).

II. DESCRIPTION OF THE SYSTEM

The system, depicted in fig. 1, is a ferromagnetic
(neodymium) sphere of mass m = 0.5 g, radius
R = 2.5 mm and magnetic moment along a diam-
eter µ(t) = µn(t) (with n(t) a unit vector going
from the south pole of the magnet to the north pole),
placed on the stirrer surface (substrate). The lat-
ter is immobile in the laboratory frame (O, ex, ey, ez)
and located at the height z = 0. The position of
the sphere is described by a two-dimensional vector
r0 = x0ex + y0ey = r0er, its vertical coordinate stay-
ing at z0 = R. In the following, the local polar vec-
tor basis is denoted by (er, eα) and the corresponding
cylindrical coordinates by (r0, α0, z0).

Below the substrate, at the coordinate z0 = −hm =
−16.2 mm, a permanent magnet, of approximately
rectangular shape (with a length 2`m = 56 mm, a
width wm = 40 mm, and thickness 9 mm), rotates
counterclockwise around the axis Oz with a constant
angular speed ω0. Its time-dependent magnetic field
B influences the spherical bead via the interaction po-
tential V (n, r0, t) = −µn ·B(x0, y0, R, t). Notice that
this interaction potential is an approximation which
assumes that the magnetic field can be considered con-
stant over the volume of the sphere.

III. EXPERIMENTAL RESULTS

We recorded the bead trajectories using a high-
speed camera (Phantom Miro LC320S) at 200 fps,
and extracted them using the tracking features of the
open-source software Blender, see fig. 2 [12]. We used
the reflection of a laser beam on a mirror glued on the

FIG. 2. Example of a counter-rotating trajectory tracked
by Blender (coordinates in pixels). The frequency of the
rotating magnet is ω0/2π = 10.7 Hz.

rotating magnet (cf. fig. 1) to measure precisely the
rotating frequency ω0.

At very low rotation frequencies, the bead is
trapped above one of the two poles of the rotating
magnet (where the accessible magnetic field is maxi-
mum), and the bead’s motion is trivially a corotation
at the same angular speed as the rotating magnet.
The proper rotation of the sphere is largely dictated
by the requirement that the bead axis stays parallel
to the local magnetic field. This proper motion yields
a substantial friction between the bead and the hor-
izontal slab of the stirrer. Beyond a certain angular
velocity ωc, the friction force is too high and the bead
is no longer trapped in the magnetic potential. The
typical value of vc is obtained by balancing the fric-
tion force mγRωc with the magnetic force at stake
µB/`. We get ωc ' µB/[mγR`]. Fed with typical
numerical values of our experiment (see values given
above and in section IVA), we obtain ωc/(2π) ' 7 Hz,
which is in accordance with what we observed in our
experiment. For frequencies slightly above this limit-
ing value, the behaviour is complex, mainly chaotic.
This window is however rather narrow, and as can be
seen in fig. 2 for ωc/(2π) ' 10 Hz, a regular regime
(with some precession) sets in, where the global mo-
tion of the bead is counter-rotating, with a pattern
, whose amplitude is large at small frequencies and
shrinks at higher frequencies (see fig. 9, which corre-
sponds to ω0/(2π) = 19.9 Hz. We term these patterns
“festoons” in the following because of their similarity
with the garland-like adornment of some architectural
friezes [13].

We measured as a function of the magnet rota-
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tion angular frequency ω0 (i) the mean radius r0
of the trajectories (ii) its standard deviation δr0 =√
〈r20〉 − 〈r0〉2 and (iii) the mean angular velocity α̇0

of the bead.

FIG. 3. Blue circles : Mean radius 〈r0〉 of the tra-
jectory (left plot). Red squares : Standard deviation√
〈r20〉 − 〈r0〉2 (right plot). Both curves are plotted as

a function of the magnet frequency ω0/2π. Only the
counter-rotative regime is shown. The dashed lines are
a guide for the eye.

FIG. 4. Mean bead frequency 〈α̇0〉/2π as a function of
the magnet frequency ω0/2π. Notice that 〈α̇0〉 is negative
in the regime of counterrotation. The lines are a guide
for the eye and the inset is a zoom of the counterrotating
region.

The mean radius and standard deviations are shown
in fig. 3. The large standard deviation at small fre-
quencies come from the large festooning of the trajec-
tory, as can be seen in the example of fig. 2. When

the frequencies become too small, the festoons cannot
grow indefinitely and a chaotic behaviour is instead
observed (for still lower frequencies, a co-rotative
locked motion is recovered). At larger frequencies, the
festoons are still present, but with smaller amplitudes.

In fig. 4 we plot the revolution frequency of the
bead 〈α̇0〉/2π against the magnet frequency ω0/2π.
The corotative low frequency regime is rather obvi-
ous and described by α̇0 = ω0, since it corresponds
to the bead locked in one or another potential energy
minimum, and constrained to follow the rotation of
the magnet with quite a lot of frictional dissipation.
At larger frequencies, after a chaotic transitional zone
(where nothing relevant has to be reported, the bead
being most of the time ejected from the stirrer table),
the counterrotative region (characterized by negative
α̇0), the typical values of |α̇0| are one order of magni-
tude smaller than ω0, which is qualitatively explained
by the mechanism which allows the counter-rotation
: On the one hand, a frequency locking occurs be-
tween the rotation of the sphere around itself at an
angular velocity, say 〈φ̇〉, and ω0 : 〈φ̇〉 ∼ ω0 (For
this qualitative argument, there would be no need to
define precisely φ̇, but a precise definition can be any-
way given by looking at the definition of φ in fig. 1).
On the other hand, at large values of ω0, the effect of
the magnetic field averages rapidly to zero, so the mo-
tion must converge to a free rolling (albeit constrained
into a circular motion) for which the friction on the
table, proportional to the coincidental point velocity
∼ r0α̇0 + Rφ̇, is approximately zero. As a result, we
have α̇0 ∼ −ω0R/〈r0〉 ∼ −ω0(R/`0), for which in our
case we have moreover R/`0 ' 0.1. The other salient
feature of the right branch of fig. 4 is its bell shape
with a maximum around ω0/2π = 16 Hz. This min-
imum signals a crossover between a complex regime
with few large festoons which act as shortcuts during
revolutions (and therefore enhance the absolute value
of the revolution frequencies), and a second regime
(ω0/2π > 16 Hz) where the trajectories are close to
circles, with many small festoons. For this regime, the
previous arguments leading to α̇0 ' −ω0(R/`0) apply
and explain the enhancement of |α̇0|.

IV. MODELLING

To achieve a comprehensive description of the bead
motion in the counter-rotative regime, we develop a
detailed theoretical model that we solve numerically.

Let us term Ω0 the rotation vector of the bead in
the laboratory frame. We have for the time derivative
in this frame dn/dt = Ω0 × n which implies that
Ω0 = n × (dn/dt) + ψ̇0n where ψ̇0 is the rotation
velocity of the bead around its magnetic axis n.

The location of the center of the sphere is given
by the cylindrical coordinates (r0, α0, z0 = R), such
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that the velocity of its center of mass is vG = ṙ0ur + r0α̇0uα. From the Koenig’s theorem, we get a uncon-
strained Lagrangian

Luncstr.(n, r0, α0, ṅ, ṙ0, α̇0, ψ̇0, t) =
m

2
[ṙ20 + r20α̇

2
0] +

1

5
mR2

(
[
dn

dt
]2 + ψ̇2

0

)
+ µn ·B(r0, α0, t) (1)

where we used the expression 2mR2/5 for the iner-
tia moment of the sphere with respect to one di-
ameter. Notice that the constraint n2 = 1 affects
the vector n for all times, so that the actual La-
grangian which describes the frictionless dynamics is
L = Luncstr − 1

2Λ(t)n2, the function Λ(t) being the
Lagrange multiplier associated to this constraint.

The dynamics of the sphere is affected by a possi-
ble friction of the sphere on the table (it is not con-
strained to roll only). This friction is modelled by a
force Ffr proportional to the velocity V0 of the coinci-
dental point I (the point of the sphere in contact with
the table at any instant) :

Ffr = −mγV0 = −mγ (vG −RΩ0 × ez) (2)

This friction can be incorporated in a Lagrangian de-
scription by means of the so-called Rayleigh function

F =
m

2
γV2

0 (3)

which modifies the Lagrange equations to

d

dt

∂L
∂q̇

=
∂L
∂q
− ∂F
∂q̇

(4)

for all variables q describing the dynamics.

The lengths are made dimensionless by defining
r = r0/` where ` is a characteristic length of the
rotating magnet (we will choose ` slightly different
from the actual length of the magnet `m, as explained
below). The magnetic field is also normalized ac-
cording to B = B/B0 (B0 a characteristic magnetic
field intensity of the rotating magnet). One defines
ε = R/` and κ = B0µ/[mR

2γ2]. This last con-
stant can be interpreted as the square of the charac-
teristic time of friction times the magnetic pulsation√
µB0/mR2. A small value of κ means that friction

will likely overdamp the oscillations caused by B and
its time evolution. Finally the time is normalized by
renaming γt by t. The outcome of these generalized
dissipative and dimensionless Lagrange equations for

q ∈ {n, ψ̇ = γ−1ψ̇0, r, α = α0} is

Ω = γ−1Ω0 = n× dn

dt
+ ψ̇n, (5)

V = (`γ)−1V0 = ṙer + rα̇eα − εΩ× ez, (6)

n̈ = −(ṅ)2n− 5

2ε
(V × ez)× n+

5κ

2
[B − n(n ·B)],

(7)

ψ̈ = − 5

2ε
V · (ez × n), (8)

r̈ = rα̇2 + κε2n · ∂B
∂r
− V · er, (9)

d(r2α̇)

dt
= κε2n · ∂B

∂α
− rV · eα. (10)

Notice that the derivative of B with respect to α in-
cludes the derivative of the unit vectors (er, eα) as
well as that of the coordinates (Br, Bα, Bz) in case of
a representation with cylindrical coordinates.

To model the magnetic field created by the rect-
angular rotating magnet, we assume it can be de-
scribed by five parallel and equidistant lines of mag-
netic dipoles characterized by a constant dipolar line-
density dM/dx′ and a length 2`. Their length ` is
close to `m, but is adjusted so that the two maxima
of the magnetic field on the plate are separated by
the same distance (41 mm) in the experiment and the
modelling. We found ` = 0.82`m = 23 mm. On the
other side, the distance between the two extremal lines
are fixed to be exactly at wm - the width of the actual
magnet. The actual portrait of the magnetic field ex-
perienced by the bead in shown in fig. 5. The field
created at the location r0 = (x0, y0, R) by a single
magnetic line of length 2`0, directed along the hori-
zontal unit vector e′x, and symmetrical with respect
to the point (0, 0,−hw) is:

B(r0, t) = B0

[
r0/`+ (h0/`)ez − sex′(t)

|r0/`+ (h0/`)ez − sex′(t)|3

]s=+1

s=−1
(11)

where B0 = µ0

4π`2
dM
dx′ and h0 = hw + R. The nor-

malized version B of this field is straightforwardly
obtained by dividing by B0 and writing the right
hand side in terms of r = r0/` and h = h0/`.
The time dependence of the magnetic field is entirely
borne by the vector e′x which rotates counterclock-
wise in the laboratory frame (O, ex, ey) : e′x(t) =
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cos(ωt)ex+sin(ωt)ey. Similarly the (r, α) dependence
is given by the term r = rer = r[cos Φe′x + sin Φe′y]
with Φ = α− ωt, see fig. 1.

FIG. 5. Magnetic field generated by five magnetic lines
parallel to

−→
e′x, of normalized length 1, regularly placed at

y = nλ, n ∈ {−2 : 2}, with λ = wm/(4`) = 0.435.

A. Numerical simulations results

We simulated the dynamics of the bead embodied
by equations (7-10) using local spherical coordinates
to represent n, namely n = cos θer + sin θ(sinφeα −
cosφez). The dynamical equations in these coordi-
nates are given in appendix IXA. To compare quan-
titatively experiments and simulations, we have to
fix the values of the parameters ε, κ and γ, the lat-
ter being involved in dimensionless angular velocities
ω = ω0/γ and α̇ = α̇0/γ for instance . ε is an im-
posed geometric parameter : ε = R/` = 0.11. The
other two are rather difficult to determine from ex-
periments, all the more so the actual friction within
the experiment is a solid friction, in contrast with
our modeling of a linear viscous one. As a result,
we chose to adjust κ and γ so as to fit the experi-
mental result at best. We found κ = 1.5 and γ =
312.5 s−1. It gives a value µB0 ∼ 4.10−4 J. For a typ-
ical neodymium bead, we have µ ∼ R3×BHmax/Brem,
where BHmax ∼ 105J·m−3 is the maximum energy
product and Brem ∼ 1 T the remanence. We get here
µ ∼ 10−2 A·m−1 and B0 ∼ 10−2 T.

With these values the agreement between experi-
ment and simulations is quite quantitative, as can be
seen in fig. 6.

FIG. 6. Comparison between experiments (symbols) and
simulation (solid lines). Left ordinate and blue circles
: Mean normalized radius 〈r〉. Right ordinate and red
squares : Mean normalized bead angular velocity 〈α̇〉. In-
set : Standard deviation δr = [〈r2〉 − 〈r〉2]1/2 vs. ω.

V. ANALYSIS OF MOTION

FIG. 7. Simulation for the frequency ω = 0.215 corre-
sponding to the experiment of fig. 2. The color codes for
the intensity of nz and the arrows show the direction and
the relative length of the horizontal component of n.



6

A. 4-fold counter-rotation

The advantage of numerical simulations is to pro-
vide easily the rotation of the bead. We first anal-
yse the case represented in fig. 2 corresponding to
ω = 0.215. In fig. 7, the simulated trajectory is repre-
sented with a color code corresponding to the values of
nz ∈ [−1, 1] (A movie of the simulation can be found
in Supplemental Material [film_0215.avi], where the
motion of both the bead and the rotating magnet are
shown). Small gray arrows are also added to see the
direction and relative length of n− nzez. It is worth
noting that the mean value of nz is not zero, which
indicates that a different, conjugate solution at this
frequency exists where polarities of n and B are si-
multaneously reversed. In this case the corners of the
square-like shape of the trajectories would correspond
to minima nz ' −1. It is worth mentioning that in

FIG. 8. Same as fig. 7 (upper right corner only), the
color codes showing in the top plot the angle between the
magnetic axis of the bead and the local magnetic field (in
degrees), and in the bottom plot the magnitude of the co-
incidental point velocity, proportional to the friction force
experienced by the bead.

this motion, the bead’s moment stays remarkably par-
allel to the magnet field, as can be seen in the fig. 8
(top) : Their relative angle does not exceed 4 degrees.
The bottom plot shows the magnitude of the coinci-
dental velocity. It can be seen that the high friction
zones are tightly correlated to those (rare) moments
where the bead axis cannot follow the rate of varia-
tion of the magnet’s field. It is also interesting to note
that the magnitude of the magnetic field experienced
by the bead during its revolution does not vary more
than 13% with respect to its mean value (not shown).

Figure 8 is interesting also because it allows a dis-
cussion on the linear viscous friction hypothesis. Why

indeed does the model with a viscous friction describe
so well the experiments ? We see from the figure 8
(bottom) that the friction force acts on quite localized
moments of the trajectory, close to the turning points.
So one can expect that some dynamical details of the
trajectories in the vicinity of the turning points may
be only approximately accounted for (for instance, the
turning points in the real ω = 0.215 case (see for in-
stance fig. 2 where the turning points look sharper
than those of fig. 7). On the other hand, the rest
of the trajectories should be correctly described, pro-
vided the characteristic times associated to the energy
dissipation of both friction mechanisms be compara-
ble. For a dry friction with parameter µdyn, the char-
acteristic time of dissipation is τ ∼ Iφ̇0/(µdynRmg)

where φ̇0 ∼ ω0. For a viscous dissipation, one has in-
stead τ ∼ I/[mR2γ]. On equating both expressions,
one finds γ ' µdyng/[Rω0]. So, in principle γ de-
pends on ω0, but in the range ω0 ' 10 Hz where the
festoons are well developed and therefore the friction
is not negligible, it gives γ ' 102 Hz, i.e. the or-
der of magnitude we got for γ by direct fit (we found
γ = 312.5 s−1).

B. Many-fold counter-rotation

FIG. 9. Trajectory of the magnetic bead for ω = 0.4.
The color modulates according to the magnitude of the
friction force. The inset (solid blue line) shows the closed
trajectory of the vector n in the local coordinate frame
(er, eα, ez).

For increasing values of ω, the counter-rotation
tends to adopt a more circular shape, as can be seen
from fig. 9 where the trajectory of the bead for
ω = 0.4 is shown (a movie of the simulation can be
found in Supplemental Material [film_04.avi]). The
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festoons are numerous (15 for ω = 0.4) and have a
small amplitude. As before, the magnetic bead stays
remarkably parallel to the local magnetic field (the
angle is never larger than 3◦), and in the local frame
(er, eα, ez), the trajectory is closed and almost cir-
cular, with the magnetic moment vector displaying a
mild tilt (' 25◦) with respect to the vertical.

C. Order of the patterns and period halving

As can be seen in figs 7 and 9, (i) the patterns
have different orders corresponding to the number of
festoons they are made of and (ii) in general, the
patterns are slowly shifting and do not superpose
when the bead has completed a revolution. The cri-
terion to have a truly periodic motion in the labo-
ratory frame, with N festoons reads 2π/(N |α̇0|) =
(2π/ω0)(1−1/N)⇔ N = a(1+ω0/|α̇0|) with a = 1 if
the bead has a periodic motion in the rotating mag-
net frame requiring a full turn, i.e. r(Φ + 2π) = r(Φ)
(symmetry S1). The possibility of a period halv-
ing exists if the trajectory has the finer symmetry
r(Φ + π) = −r(Φ) (symmetry S2, with the rota-
tional reversal n(Φ + π) = −n(Φ)). In this case
the number of festoons is related to the frequency by
N = a(1 + ω0/|α̇0|) with a = 2. By trial and er-
rors we were able to find in the numerical simulations
the frequencies ω for which the pattern is approxi-
mately periodic in the laboratory frame. The results
are shown in the table VC. One sees that on enhanc-

frequency ω # of festoons a a(ω/|α̇|+ 1)

0.21 4 1 3.98
0.25 5 1 5.03

0.2845 6 1 5.99
0.352 14 2 13.98
0.405 15 2 14.96

TABLE I. Laboratory frame periodic trajectory parame-
ters

ing ω, a period halving transition occurs in the range
ω ∈ [0.2845, 0.352], going from S1-invariant trajecto-
ries to S2-invariant ones. The precise location of the
transition has been found for ω ' 0.2904 as can be
seen in figure 10, where the order parameter p has
been chosen as p = ∆+/∆− − 1, namely the larger-
than-one ratio of the amplitudes of two successive os-
cillations of the parameter r (minus 1). One sees that
the transition is supercritical, which is confirmed by
the diverging relaxation time associated with the con-
vergence of p near the transition.

FIG. 10. Supercritical transition of period halving near
ω = 0.2904. The inset shows r(t) in the p 6= 0 region in
order to highlight the definition of p as the ordered ratio
of two successive amplitudes in r(t).

VI. TIME AVERAGINGS

The full dynamical behaviour of the bead is com-
plicated and certainly non integrable.

One can nevertheless try to make some predic-
tions concerning the mean radius of counter-rotation
and the associated rotation frequency, at least in the
regime where r stays reasonably constant.

The map of the field shows that close to the maxi-
mum, it has essentially an (slightly tilted) orthoradial
structure. It is thus reasonable to assume that in the
dynamical regimes where r ' 1, one can neglect the
radial dependence of n, assume θ ' π/2 and write
n ' sinφeα − cosφez. Likewise, we neglect also the
fluctuations in r and α̇. Writing again r and α̇ for the
temporal averages 〈r〉 and 〈α̇〉, we have

0 = rα̇2 + κε2∂r 〈Bα sinφ−Bz cosφ〉 − 〈Vr〉, (12)

0 = κε2 〈[∂αBα +Br] sinφ− ∂αBz cosφ〉 − r〈Vα〉,
(13)

0 = κε〈Bα cosφ+Bz sinφ〉 − 〈Vα〉. (14)

In the approximation considered, one has, from the
formula (20) of the Appendix IXA, Vα ' rα̇ + εφ̇.
The equation (12) shows that the centrifugal force is
counterbalanced by a magnetic force only if φ oscil-
lates with the same frequency as Φ = α − ωt. This
leads us to assume φ = −Φ + χ where χ is a constant
phase. One can show (but the calculation is cumber-
some) that the averages implying the magnetic field
in eqs (13) and (14) are all ∝ sin(χ) for symmetry
reasons, whereas that of (12) is ∝ cos(χ). The solu-
tion of these equations is therefore somewhat simpli-
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FIG. 11. Test of the formulas (15) : The solid lines show
〈φ̇〉 (blue, left ordinate) and 〈α̇〉 (red, right ordinate) and
the dashed show the result of (15).

fied, since they reduce to (i) χ ≡ 0 modulo π and (ii)
〈Vα〉 = 0 and (iii) eq. (12). Actually, one can guess
in advance that the phase locks to χ = π, because
it corresponds to the most stable situation where the
bead visits the region of maximum magnetic field in
the orientation which minimizes the magnetic energy
interaction. Combining φ̇ = ω − α̇ and rα̇ + εφ̇ = 0,
we obtain

α̇ = − εω

r − ε
and φ̇ =

ωr

r − ε
. (15)

The comparison of these formulas with the actual av-
erages of φ̇ and α̇ are shown in fig. 11 and the result is
convincing for ω > 0.5, that is for frequencies higher
than those obtained in the experiments of fig. 6. This
means that the hypothesis of free rolling correspond-
ing to the relation rα̇+εφ̇ = 0 is quantitatively correct
only at quite large frequencies. Regarding the predic-
tion for the mean value of r, one would use eq. (12),
but this equation would be tractable only if 〈Vr〉 is
negligible with respect to the other terms, since the
expression (19) for Vr contains a term −εψ̇ sin θ sinφ
addressing directly the rotation of the bead around its
magnetic axis, a motion that is coupled to all degrees
of freedom. As can be seen from the inspection of
fig. 12, the friction term −〈Vr〉 is not at all negligible
in the regime ω < 0.5 and becomes negligible with re-
spect to the other two only at quite higher frequencies.
As a result, one concludes that the quantitative fea-
tures of the counter-rotating regime cannot be simply
obtained in the moderate driving frequencies where
the festooning of the trajectories is marked.

A final comment can be made about an implicit
choice made in assuming φ = −Φ + χ, a relation dic-
tated by the requirement that φ and Φ must leads to

FIG. 12. Evolution with ω of the three terms of eq. (12).
“centrifugal” refers to rα̇2, “magnetic” to κε2∂r〈Bα sinφ−
Bz cosφ〉 and “friction” to −〈Vr〉. The dotted yellow curve
shows ε〈ψ̇ sin θ sinφ〉, the term of −〈Vr〉 depending on the
rotation of the bead around its magnetic axis. All curves
are divided by ε2.

resonant terms in the magnetic force. There is here
an implicit because φ = Φ + χ would have been also
a valid choice. In Appendix IXB it is shown why this
Ansatz, which would give a co-rotative regime, is ac-
tually never observed.

A. Physical origin of the festoons

FIG. 13. Fluctuations of r (solid blue) and |B| (dashed
red) during half a revolution of the magnet. The abscissa
is the angle between the bead and the rotating magnet.
Notice that when the magnet and the bead are on top of
each other, the value of r is minimal and is 0.89, i.e. the
location of the maximum of the field.

On the qualitative level, the origin of the festoons
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can be understood if one realizes that the magnetic
axis of the bead stays always nearly colinear to the lo-
cal magnetic field. As a result, the effective magnetic
force for the bead’s center of mass is high near the
ends of the magnet where the field varies substantially
over a short distance. As shown in fig. 13, one sees
that the radius is minimal, around 0.89 (the location
of the absolute maximum of field), when the magnet
crosses the bead angular position. When the magnet
axis goes away from the bead angular position, the
field variations weaken, the centrifugal force “wins”
and drives the bead away from r = 0.89, whence the
maximum of r at precisely α − ωt = π/2. However,
the detailed shape of the festoons cannot be accounted
for by such a simple force balance argument, because
in the vicinity of the maxima of r, the friction force is
no longer negligible in the budget, as can be seen in
fig. 8 (bottom).

B. Paramagnetic bead

As correctly noticed in [11], the mechanism for the
counter-rotation proposed by [7] relies on the pres-
ence of a remanent magnetization in the beads, and
the counter-rotation observed with steel beads would
be entirely due to it. With the theory presented in
this work and summarized by equations (5-10), it is
possible to test an ideal case where the magnetic inter-
action would be solely paramagnetic. It amounts to
replacing the interaction potential in the Lagrangian
by V = −αmB

2. The most important consequence
of this new interaction is that the rotational dynam-
ics of the bead is now decoupled from the magnetic
field by direct interaction, that is the term ∝ κ in (7)
disappears. All the arguments put forth previously to
account for the counter-rotation are no longer valid,
and we indeed never observed counter-rotation in sim-
ulations of the purely paramagnetic bead.

To have a theoretical indication (not a proof) of
why the counter-rotating stationary is generally sup-
pressed, we consider the time evolution of the energy
function [14] h = q̇∂L/∂q̇−L is dh/dt = −2F−∂L/∂t
which yields after time averaging and noticing that
∂tB

2 = −ω∂αB2

〈V2
r + V2

α〉 = αmω

〈
∂B2

∂α

〉
(16)

On the other hand, the time averaging of eq. (10)
(with the first term of the right hand side replaced by
αm∂αB

2) yields αm〈∂B2/∂α〉 = 〈rVα〉. So that we
have from (16)

ω〈rVα〉 > 0 (17)

Physically, it means that the friction force removes
angular momentum from the particle with respect to

the rotating magnet. Writing that 〈d( 1
2mv

2
G)/dt〉 = 0,

we have also

ωαm〈∂B2/∂α〉 = 〈ṙVr + rα̇Vα〉 > 0 (18)

which shows that the work of the friction force on the
sphere center of mass is resistive. in average. So, if
one assumes, for high enough frequencies, a motion
which is very close to a free rolling at a fixed distance
from the magnet’s center, it means that r and α̇ are
almost constant and that ṙ ' 0, whence the right
hand side of the preceding equation is asymptotically
∼ 〈α̇〉〈rVα〉. If this is correct, we have both (17) and
〈α̇〉〈rVα〉 > 0 yielding 〈α̇〉ω > 0, i.e. the counter-
rotation is impossible. Although not a mathematical
proof, the argument is qualitatively correct, provided
that the radial fluctuations are negligible in the high
frequency regime, as well as those of α̇. It is worth
noting however that the argument relies on the pos-
itivity of (16), which is of thermodynamical origin,
since its corresponds to the dissipative work of the
friction force. As a result, the argument should there-
fore apply to a pure paramagnetic bead experiencing
a dry friction as well.

VII. CONCLUSION

In this paper, we have presented a coherent study
of the counter-rotation of a ferromagnetic bead, con-
strained to move on a magnetic stirrer’s surface, and
excited by the rotation at constant angular velocity
of the magnet installed beneath the slab of the stir-
rer. By fitting two parameters, we were able to re-
produce quantitatively by numerical simulations the
experimental observations, first observed by [11] in a
very similar experiment, in spite of the different type
of friction of the bead on the slab utilized (viscous vs.
dry friction). The expression of the dynamical equa-
tions of the ten degrees of freedom of the problem (two
for the bead’s center of mass, three for the orienta-
tion of the bead, plus the same number for their time
derivatives), allowed us to make also some theoretical
analysis in the regime of high frequencies. We show in
particular that the corotative regime is never stable at
high frequencies (whereas it would be observable for a
system of a magnetic disk holonomically constrained
to roll at a fixed distance from the center) and further-
more that a purely paramagnetic and isotropic bead
can never display counter-rotation. Therefore the slow
counter-rotation observed by [11] with steel spheres
are entirely attributable to the slight remanent mag-
netization or magnetic anisotropy of the spheres. We
further analyzed the dynamical behavior of the bead
when festoons are present and showed that the asso-
ciated modulation of the radial distance of the bead
is tightly correlated to —and therefore mainly due
to— the modulation of the radial component of the
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magnetic force : When this component weakens, the
centrifugal force moves the bead away from the ro-
tation center, and conversely. This simple argument
is asymptotically true only for ω → ∞. At lower fre-
quencies, the friction force is not negligible, cf. fig. 12.
We noted that the proper asymptotic regime would be
experimentally difficult to obtain since it corresponds
to frequencies ∼ 102 Hz.

This study can be pursued in several interesting
ways : What happens when the bead is constrained
to move in a fluid or on a fluid surface, and is likely to
be sensitive to the waves generated by itself ? Recent
studies have shown the extraordinary behaviors which
happen in such composite systems of a bead or droplet
and an interacting fluid, when the latter has a long
relaxation time [8, 10, 15]. Another interesting ques-
tion would be to probe the behaviour of non spherical
magnets : As the asymptotic (ω →∞) is a free rolling
for the sphere, how does a non spherical magnet ac-
commodate to high excitation frequencies ? Finally, a
third class of follow-ups would be to inquire the col-
lective behaviour of several beads excited together by
the magnetic stirrer. Such systems may display emer-
gent properties, typical of dissipative-active systems,
where a continuous flux of energy drives assemblies of
particles far from equilibrium into a unexpected sta-
tionary and complex dynamical regimes.
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IX. APPENDICES

A. Dynamical equations in spherical coordinates

For sake of completeness, we provide here the dy-
namical equations (Eq. (7)) for the magnet axis n
in the spherical coordinates defined by n = cos θer +
sin θ(sinφeα − cosφez) :

Vr = ṙ − ε
(
θ̇ cosφ+ α̇ sin2 θ sinφ cosφ

−φ̇ sin θ cos θ sinφ+ ψ̇ sin θ sinφ
)
, (19)

Vα = rα̇+ ε(φ̇ sin2 θ + α̇ sin θ cos θ cosφ+ ψ̇ cos θ).
(20)

d

dt

[
θ̇ + α̇ sinφ

]
= φ̇2 sin θ cos θ+α̇2 sin θ cos θ sin2 φ

+ α̇φ̇ cos(2θ) cosφ+
5κ

2

∂n

∂θ
·B +

5

2ε
Vr cosφ, (21)

d

dt

[
φ̇ sin2 θ + α̇ sin θ cos θ cosφ

]
= α̇2 sin2 θ sinφ cosφ

+ α̇θ̇ cosφ− α̇φ̇ sin θ cos θ sinφ

+
5κ

2

∂n

∂φ
·B − 5κ

2ε
[Vr sin θ cos θ sinφ+ Vα sin2 θ].

(22)

ψ̈ =
5

2ε
[Vr sin θ sinφ− Vα cos θ]. (23)

B. Why is rapid corotation never observed ?

In the preceding analysis, we found only a counter-
rotating regime (i.e. ωα̇ < 0) because we have as-
sumed φ = −Φ+χ = ωt−α+χ. Another possibility to
have a nonzero radial magnetic force resisting the cen-
trifugal force would have been to write φ = Φ + χ. In
this case, we would find a corotative regime, with α̇ =
εω/(r + ε) and φ̇ = −ωr/(r + ε), and χ = π because
the stability criterion assumed above is obviously still
valid. To understand why this corotative regime is
observed neither in the experiments nor in the simula-
tions, we assume for sake of simplicity that the driving
frequency is so high that we can disregard the friction
term 〈Vr〉 in (12). We also model the magnetic field
experienced by the bead by the orthoradial structure
B ' B̂(r)[sin(Φ)eα+cos(Φ)ez] where B̂(r) is the typi-
cal field amplitude along the trajectory at mean radius
r. Notice that the trigonometric factors in this for-
mula are dictated by the geometrical structure of the
field, see fig. 5. The mean magnetic force resisting the
centrifugal force is Fmag = κε2∂r〈Bα sinφ−Bz cosφ〉.
With the counter-rotative Ansatz φ = −Φ+π, we have
Fmag = κε2∂rB̂(r), which is negative (as required) for
typical values of r larger than the value where B̂(r)
is maximum. With the corotative Ansatz φ = Φ + π,
we would have Fmag = −κε2∂rB̂(r)〈cos(2Φ +π)〉 = 0.
In fact, this value is not strictly zero, since we made
approximations concerning the structure of the field.
However, it is small and therefore precludes the sta-
bilization of a corotative motion.
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