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Color-polarization filter array (CPFA) sensors are able to
capture linear polarization and color information in a sin-
gle shot. For a scene that contains a high dynamic range of
irradiance and polarization signatures, some pixel values
approach the saturation and noise levels of the sensor. The
most common CPFA configuration is overdetermined,
and contains four different linear polarization analyzers.
Assuming that not all pixel responses are equally reliable in
CPFA channels, one can therefore apply the high dynamic
range imaging scheme to improve the Stokes estimation
from a single CPFA image. Here I present this alternative
methodology and show qualitative and quantitative results
on real data. © 2020 Optical Society of America under the terms
of theOSAOpen Access Publishing Agreement

https://doi.org/10.1364/OL.398258

Polarization imaging has recently gained interest since the emer-
gence of snapshot devices such as polarization filter array (PFA)
[1] cameras and color PFA (CPFA) cameras [2]. The latter is a
combination of two filter arrays, a PFA and a color filter array
(CFA), one on top of the other. A spatial modulation on the
focal-plane array permits to sample the intensities Iθ,c of the
light field through several polarizing directions θ and spectral
bandpass filters c. The most common CPFA is a 12-channel
sensor, which combines four angles of analysis equally distrib-
uted between 0◦ and 180◦ (θ = 0◦, 45◦, 90◦, 135◦), and three
color filters (c = r, g, b) arranged in a quad-Bayer [3] spatial
configuration (see Fig. 1). The SONY IMX250 MYR [2] is one
of these sensors and is commercially available. A linear polari-
zation imager with four measurements is overdetermined, as
only three different polarization states are needed to estimate
the first three elements of the Stokes vector [4]. In this Letter, a
high dynamic range (HDR)-like scheme is applied to combine
the pre-processed data from multiple redundant Stokes element
estimations. It leads to a dynamic range improvement in the
Stokes images from a single color-polarization filter image.

HDR of irradiances and polarization signatures can occur in
some scenes, e.g., a scene containing highly specular surfaces
[5], diffuse reflection at low zenith angles, and shadow areas [6].
On one hand, low irradiance with a high degree of polarization
[7] induces weak signal and thus a noisy image, inducing the
degradation of the polarization information. On the other
hand, high irradiance makes the camera response approach the
saturation level, where the sensor operates in its nonlinear area.

These particular scenarios can be present simultaneously in one
snapshot CPFA image, which can be classified as follows:

• High polarization signature and high irradiance (Hp-Hi):
the digital values can reach the saturation and noise levels of the
camera [see the surrounded area in Fig. 4(a)].

• High polarization and low irradiance (Hp-Li): can lead to
digital values below the noise level [see Fig. 4(b)].

• Low polarization and high irradiance (Lp-Hi): can lead to
saturation [see Fig. 4(c)].

• Low polarization and low irradiance (Lp-Li) [see
Fig. 4(d)].

These four scenarios are illustrated in Fig. 2, where the cor-
responding theoretical camera responses are shown for each
polarizing angle of analysis. The dots are the four discrete inten-
sity measurements Iθ that the polarimeter would have made
under the specific cases. Plain lines are the simulated signals
from the Malus law. According to it, intensity transmitted by
a polarizer varies sinusoidally in the presence of a polarized
incident beam. Even by employing a good auto-exposure algo-
rithm, a polarization state image can exhibit pixels close to the
saturation and noise levels. Combining such a noisy frame will
result in noise in Stokes elements. If some outputs are still usable
(not completely saturated or below the noise level), then it is still
possible to estimate the Stokes elements. One may take care of
minimizing the influence of noisy values in the calculation of
these elements to prevent it from being further amplified, since
the degree of linear polarization (DOLP) and the angle of linear
polarization (AOLP) are computed from the Stokes elements by
nonlinear processing, and thus are very sensitive to noise [4].

HDR imaging (HDRI) [8,9] is a kind of “hardware augmen-
tation,” where multiple exposure images are fused through a
computational imaging algorithm. Inputs are registered images
of the same scene (i.e., the same irradiance levels) taken under
different exposure times. A weighted average is applied during
image fusion, taking into account the contribution of each
image in the calculation. It is largely assumed that a pixel value
can be judged to be within a “trustable” or a “dubious” zone of
the digital value ranges of the camera. Several weighting func-
tions have been investigated, taking into account either dubious
pixels near the extremes, noise model of the camera, digital
output variance, etc. [10]. Noise can likely be encountered in
the dubious zone where undesired degradation in images may
occur during capture, transmission, and/or processing, i.e.,
photon shot, dark current, or readout noise. I believe that the
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Fig. 1. CPFA sensor case. Each 2× 2 super-pixel is covered by four
linear polarization filters and one spectral filter.

Fig. 2. Simulated theoretical polarization camera responses, with a
varying input signal according to the Malus law.

weighted average in HDRI is applicable on a single CPFA image
where multiple redundant information can be reconstructed.
As three polarization states are sufficient to compute the linear
Stokes vector, one can use multiple ways of Stokes element
calculations, and combine them. I present the proposed pipeline
hereafter.

After a snapshot CPFA image acquisition, some pre-
processing steps are performed on raw data such as linearization,
polarimetric calibration [11], and spatial interpolation [12].
Here I assume that the input data Iθ,c have been previously
calibrated [11] and spatially interpolated. Only a sub-sampling
is employed in this Letter to not introduce additional spatial
noise. According to the above paragraphs, the noise consider-
ations made are: (a) dubious pixels near the extremes should
be excluded as much as possible from the Stokes calculation
[13], and (b) the image noise structure is signal dependent:
signal-to-noise ratio (SNR) increases with signal intensity [9].

These considerations are taken into account by means of a
weighting function ω(Iθ,c ), applied to the 12 camera chan-
nels individually. The confidence given to the observed data is
materialized by its individual weight. A well-known weighting
function from HDRI [14,15] is used. The function is a com-
bination of a broad hat function that eliminates dubious pixel
values near the extreme levels, with the inverse of the camera
response function (CRF−1

θ,c ) and its derivative:

ω(Iθ,c )=CRF−1
θ,c ×CRF′θ,c × [1− (Iθ,c × 2− 1)12

]. (1)

The weighting function (for the channel θ= 0◦, c = r ) used
for the IMX250 MYR sensor is shown in Fig. 3. The CRF was
estimated using the Mitsunaga and Nayar method [9]. Note
that only one CRF and one weighting function among the 12

Fig. 3. Weighting functionω(Iθ ) used in this Letter.

Fig. 4. (a)–(d) Sub-sampled polarization RGB images (with-
out color correction) captured by an IMX250 MYR sensor.
(e)–(p) Applying the weighting function over the 12 channels.

channels are shown for convenience, since the different curves
are very similar for this sensor. Figure 4 is a visualization of
the well-exposedness where all channels are represented in false
color. The scene is a plastic roll tape with a uniform and flat black
background (Hp Li zone), and a directional illuminant coming
from the right, which generates highlights. It can be noted that
the polarization and color channels have very different results of
well-exposedness, in particular in the light and dark areas.

After applying Eq. (1), I then estimate the Stokes elements
S0, S1, and S2. The key is to exploit the redundancy of intensity
information that is inherent to PFA sensors, to take into account
the potential non-equal contributions of noise during Stokes
reconstruction. This redundancy has already been exploited in
the literature to remove dead pixels [16], or for spatial resolution
enhancement [17]. From the electromagnetic basis theory, S0,
S1, and S2 can be recovered from all of these equations:

S0,1,c = I0,c + I90,c ,
S0,2,c = I45,c + I135,c ,
S1,1,c = I0,c − I90,c ,
S1,2,c = 2I0,c − I45,c − I135,c ,
S1,3,c = I45,c − 2I90,c + I135,c ,
S2,1,c = I45,c − I135,c ,
S2,2,c = −I0,c + 2I45,c − I90,c ,
S2,3,c = I0,c + I90,c − 2I135,c ,

(2)
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where S0,M,c are computed with M = 2 ways for each of the
three color channels, whereas S1,N,c and S2,N,c are computed
with N = 3 ways. Taking only the best calculation methods
giving the best scores can lead to a sub-optimal selection of the
polarization angles. If only three polarization states among the
four are used to estimate the Stokes elements, the angle distribu-
tion will not be equally spaced between 0◦ and 180◦. It is known
that the configuration can affect the system condition, and thus
the error performance in terms of SNR [4]. Instead, as in HDRI,
one prefers a weighted average fusion technique, to include
all the calculation ways, thus involving all of the four available
polarization states. As in Ref. [18], it is important to emphasize
all measurements at once, using a product

Ŝ1,c =


Ŝ ′1,c for max

c∈r ,g ,b
(DOLPc )− min

c∈r ,g ,b
(DOLPc )≤ T

∑c=b
c=r

∑N
n=1

[
WS1,n,c

S1,n,c
Ŝ0,c

]
∑c=b

c=r
∑N

n=1 WS1,n,c
for max

c∈r ,g ,b
(DOLPc )− min

c∈r ,g ,b
(DOLPc ) > T

, (6)

Ŝ2,c =


Ŝ ′2,c for max

c∈r ,g ,b
(DOLPc )− min

c∈r ,g ,b
(DOLPc )≤ T

∑c=b
c=r

∑N
n=1

[
WS2,n,c

S2,n,c
Ŝ0,c

]
∑c=b

c=r
∑N

n=1 WS2,n,c
for max

c∈r ,g ,b
(DOLPc )− min

c∈r ,g ,b
(DOLPc ) > T

. (7)

over the weighting scores for each computation way as follows:

WS0,1,c = ω(I0,c )×ω(I90,c ),

WS0,2,c = ω(I45,c )×ω(I135,c ),

WS1,1,c = ω(I0,c )×ω(I90,c ),

WS1,2,c = ω(I0,c )×ω(I45,c )×ω(I135,c ),

WS1,3,c = ω(I45,c )×ω(I90,c )×ω(I135,c ),

WS2,1,c = ω(I45,c )×ω(I135,c ),

WS2,2,c = ω(I0,c )×ω(I45,c )×ω(I90,c ),

WS2,3,c = ω(I0,c )×ω(I90,c )×ω(I135,c ).

(3)

These weight maps will be used to guide the fusion process by
the color channel. The estimation of the intensity Ŝ0 is then
done by

Ŝ0,c =

∑M
m=1 WS0,m,c S0,m,c∑M

m=1 WS0,m,c
, (4)

where m indexes the number of ways for the S0 computation.
Ŝ1 and Ŝ2 are computed with Eq. (5), using a weighted aver-

age similar to that of the intensity. A normalization with respect
to S0 is applied to keep each term proportional to radiometric
energy [19]:

Ŝ ′1,c =

∑N
n=1 WS1,n,c

[
S1,n,c

Ŝ0,c

]
∑N

n=1 WS1,n,c

,

Ŝ ′2,c =

∑N
n=1 WS2,n,c

[
S2,n,c

Ŝ0,c

]
∑N

n=1 WS2,n,c

, (5)

where n indexes the number of ways for S1 and S2 calculations.
Excess noise or nonlinearity in the data can still cause a large

variation in the different estimates in Eq. (2). A reasonable
assumption made in the literature is that polarization changes
slightly with wavelength in the visible spectrum. Thus, S1 and

S2 should change slightly over the three spectral bands. This
assumption is experimentally highlighted in Refs. [20,21],
where the differences in degrees of polarization among all spec-
tral channels do not exceed 10%. To verify it on a large dataset, I
did a statistical analysis on an existing dataset of noise-corrected
RGB-polarization images from Ref. [22]. By computing the
DOLP differences by pixel and over all of the observations,
it appears that ≈ 99% of the total amount of pixels exhibit
less than 20% of DOLP differences (see histogram in Fig. S1
in Supplement 1). Therefore, to further reduce the effect of
noise in the case of a high variability of Stokes elements, I use a
weighted average over the color channels. A threshold T is used,
which permits to finally estimate S1 and S2 as this:

The threshold T is initially set to 0.20, but can be adjusted if
prior knowledge about wavelength dependence of polarization
data is given for a specific application. It should be noted that
this weighting leads to equal Stokes elements among all the color
channels for the pixel having been detected as highly noisy.

Visual results of applying the proposed method versus the
standard one are shown in Fig. 5. The total intensity image S0,
along with S0, S1, S2, AOLP, and DOLP for channel c = r
are visualized. The standard Stokes elements are computed
from Eq. (2), where M = N = 1, which is the most employed
way to compute Stokes components from four measurements.
Figure 5(g) demonstrates the effect of the proposed method-
ology over a HpHi zone, where highlights are present. The
dynamic range in highlight zones have been visually enhanced,
especially on the white right side of the tape roll in S0 and S1.
In DOLP images, the standard version shows more variance in
the dark side of the tape roll and its shadow (LpLi). The same
remarks can be made for the AOLP results. For the bottom right
side of the tape roll (LpHi), the zone exhibits more smoothness
in the AOLP image. A complete visualization for all spectral
bands is available in Figs. S3, S4, and S5 in Supplement 1. The
noise reduction is even better distinguished for the blue band
whose pixel values are close to the noise level of the sensor.

A quantitative evaluation is done using reference HDR data.
HDR data are calculated from five exposure times: 1t = 10,
20, 40, 80, and 160 ms. The middle exposure 1t = 40 ms is
used as a test image. Details about the HDR generation is given
in Supplement 1. Then, the reference HDR Stokes images is
computed from HDR data, using Eq. (2) with M = N = 1. It
is important to note that the Stokes HDR images are generated
from the same equations as for the standard one (i.e., with-
out any averaging). peak signal to noise ratio (PSNR) results
are shown in Table 1. We can see that the proposed method
enhances significantly the Stokes components S1 and S2,
especially where low irradiance is present (i.e., for c = b). The

https://doi.org/10.6084/m9.figshare.12909383
https://doi.org/10.6084/m9.figshare.12909383
https://doi.org/10.6084/m9.figshare.12909383
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Fig. 5. Top row: standard (std) Stokes computations. Bottom row: proposed Stokes computation [Eq. (7) with T = 20%].

Table 1. PSNR Results for Both Computation
Methods

a

Standard Proposed

r g b r g b

S0 12.26 17.81 22.18 11.90 16.99 22.30
S1 29.85 27.77 21.31 30.10 28.41 24.27
S2 23.91 21.77 14.59 30.64 28.84 24.22
DOLP 24.31 22.31 14.72 24.77 23.38 19.79
AOLP 14.14 14.65 12.08 14.38 14.72 11.85

aThe HDR reference images are computed from five exposures.

method does not enhance the S0 component for all the spectral
bands.

To conclude, future works on this HDR scheme applied
to a single PFA image can be envisaged through an extended
quantitative evaluation, along with studying the effect of chang-
ing T. Thus, a validation over a large amount of CPFA HDR
data could benefit further improvement of the methodology.
Moreover, to highlight the potential effects of the proposed
weighted average, investigations can be done on computer
vision applications that involve ground-truth data, such as for
shape from polarization, illumination direction estimation, or
diffuse/specular separation.
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