
HAL Id: hal-03032566
https://hal.science/hal-03032566

Submitted on 30 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BPP over P4: Exploring Frontiers and Limits in
Programmable Packet Processing

Jérôme François, Alexander Clemm, Vivien Maintenant, Sébastien Tabor

To cite this version:
Jérôme François, Alexander Clemm, Vivien Maintenant, Sébastien Tabor. BPP over P4: Exploring
Frontiers and Limits in Programmable Packet Processing. IEEE Global Communications Conference,
Dec 2020, Taipei, Taiwan. �hal-03032566�

https://hal.science/hal-03032566
https://hal.archives-ouvertes.fr


BPP over P4: Exploring Frontiers and Limits in
Programmable Packet Processing

Jérôme François
Inria, LORIA, University of Lorraine, France

jerome.francois@inria.fr

Alexander Clemm
Futurewei, USA
alex@clemm.org

Vivien Maintenant, Sébastien Tabor
Télécom Nancy, University of Lorraine

firstname.lastname@telecomnancy.eu

Abstract—This paper describes experiences gained during
the development of a Proof-of-Concept implementation of
NewIP/BPP, the protocol at the core of a novel packet-
programmable networking framework, using P4, a popular SDN
technology for the implementation of networking protocols using
protocol-independent packet processors. NewIP/BPP introduces
a number of novel requirements whose implementation encoun-
tered a number of P4 limitations that proved very challenging
to overcome. We hope that the resulting insights will be useful
for future implementations of NewIP/BPP as well as for its and
P4’s evolution.

Index Terms—NewIP/BPP, Big Packet Protocol, BPP, New IP,
P4, High-Precision Networking, Network 2030

I. INTRODUCTION

The transition of networks from vendor-defined to operator-
defined has been one of the key drivers for networking
advances in the past decade. This situation changed with the
emergence of network softwarization and Software-Defined
Networks (SDN). It allows network operators to customize
network behavior and introduce new network and service
features by themselves, being empowered to build controller
software that would program the network’s control plane.

One of the latest technologies to emerge in that context is
P4, a technology for the Programming of Protocol-independent
Packet Processors [1]. P4 allows an outside controller to
program the processing of packets that is performed inside
a networking device.

At the same time, new waves of networking applications
are beginning to emerge as drivers for new network advances
over the next decade. Examples include but are not limited
to Industry 4.0 (e.g. industrial controllers and connected
robotics), haptic applications and the Tactile Internet, smart
infrastructure, and Holographic-Type Communications (HTC).
Many of those new applications have in common the need for
high-precision communications with guarantees for stringent
service-level objectives (such as end-to-end latency).

One technology that has been proposed to meet those
challenges is New IP / Big Packet Protocol (NewIP/BPP,
or simply BPP), a protocol and framework that allows the
behavior of packets and flows to be guided from the edge of the
network using information encoded in the packets themselves
[2]. That guidance can depend on highly dynamic conditions
(such as current queue depth), which allows highly flexible
behavior that can be adapted very rapidly. As behavior of
packets and flows can be guided simply by adding collateral

to a packet, without the need to program controllers or net-
work equipment, BPP goes beyond what traditional network
softwarization technologies provide on their own, including
P4. In that way, BPP provides a next step in agility. A wide
range of applications have been proposed, including Latency-
Based Forwarding (for high-precision networking services)
[3], Operational Flow Profiling (providing improved visibility
and service assurance for operations) [4], and optimized task
routing for Mobile Edge Computing.

Before it can be leveraged, BPP needs to be supported on
networking devices. The fact that it defines a new protocol
makes P4 a possible candidate for its implementation. How-
ever, BPP has a number of unique features that we expected
would be challenging to support and stretch P4 to its limits.
This includes BPP’s ability to support parametrized commands
that lead to more complex parsing rules than would be required
for fixed-length header fields and fields of variable lengths.

This paper describes our experiences with implementing
BPP using P4. The challenges that we experienced are leading
us to conclude that P4 is in fact ill-suited as an implementation
choice for our purposes, as the gap between the capabilities
BPP aims to provide and the realities of what P4 can support is
proving to be too large to bridge. In addition, our open-source
implementation and tests of BPP demonstrate its practical
benefits in selected scenarios: real-time applications and in-
network telemetry. Our Proof-of-Concept (PoC) is released as
open-source software at: https://gitlab.inria.fr/francoij/p4bpp.

The remainder of this paper is structured as follows. Section
II provides background about BPP and P4. Section III high-
lights unique requirements that a NewIP/BPP implementation
must address and associated challenges. Section IV discusses
our design choices. In section V, some scenarios are intro-
duced that showcase our PoC. Related work is presented in
section VI. Section VII concludes the paper.

II. BACKGROUND

A. NewIP/BPP

BPP is a new protocol and programmable packet framework
[2]. The basic idea is to introduce a piece of BPP Collateral
into packets between the traditional packet header and user
payload. This Collateral contains commands and metadata
that provide guidance to network devices for how to process
the packet. A command might instruct a network device to
increase a counter carried in the metadata when a certain



condition is met, for example when a queue of a certain length
is encountered to allow a network operator to better assess flow
performance. Contrary to Active Networking proposals in the
past [5], commands are directives whose scope and lifecycle
are isolated to handling the packet and containing flow; they
cannot be used to construct programs from a generalized
instruction set and do not allow interactions with the payload.

The structure of a BPP packet is depicted in figure 1. BPP
can be used in conjunction with a variety of transports, e.g. at
layer 2.5 with MPLS or, for our implementation, at layer 3.5
in conjunction with IP. The Collateral consists of a Collateral
header, a command block, and a metadata block. Because the
Collateral needs to be distinguished from the payload of the
packet and the IP header cannot be extended (IPv6’s extension
headers are insufficient because not allowed to be processed
by intermediate nodes), we are defining BPP as a network
protocol with a new protocol type, prefixing the Collateral
with the traditional IPv4 (or IPv6) header.

Fig. 1: BPP Packet Structure

Figure 2 depicts the Collateral header, which contains:
• NewIP/BPP version
• Collateral length (16, 32, 128 or multiple of 32)
• Flags for error handling, in case errors are encountered in

the processing of commands or metadata along the path
• A reserved flag for future applications

Fig. 2: Collateral Header

A command block (optional) contains a sequence of one or
more commands, each structured as follows (figure 3) :

• A command header contains the length of the command
and flags indicating whether the command is conditional
and whether there is a subsequent command and if it
needs to be serialized or can be processed in parallel.

• An (optional) condition set, containing its length and
one or two conditions. Each condition has a type (for
example, a comparison) and can contain two parameters.
Flags indicate whether the condition should be negated,
and whether the subsequent condition (if applicable)
should be and’ed or or’ed.

• An action set, performed if the condition set evaluates to
true, contains the length of the action set and one or more
actions. In analogy to conditions, each action contains a
type (defining what action to perform) and a set of several

parameters. These actions can be used e.g. to modify the
metadata of the packet or to reroute the packet.

Parameter values need to be interpreted in different ways
depending on the category of the parameter, indicated within
the parameter field itself: an actual value to use, a reference
to a metadata item by providing an offset in the metadata
block, an identifier of a predefined data item such as the egress
queue depth, or (in case of support for stateful extensions) a
reference to a metadata item retained in a statelet, essentially
a programmable flow cache on the device itself.

Fig. 3: BPP Command Structure

Finally, the metadata block can contain different data items
that are carried with the packet, for instance security data,
service level objectives, error details, or variables referred to
by parameters in the command block. Data carried in the
metadata block can be accessed and modified by intermediate
nodes per the command block.

B. P4

We considered the latest version (P4_16) of this language
[6]. P4 promotes high flexibility by allowing users to express
complex network processing and to offer a switch abstrac-
tion that is independent of the actual hardware. Indeed, P4
programs are compiled to a target-independent representation
(front-end) to be then transparently compiled again to different
specific platform such as NetFPGA [7].

P4 includes a standard architecture v1model model to build
a L3 switch named BMv2 (Behavioral Model v2). It is
composed of the following parts:

• parser: P4 packet parser (as a state machine)
• verify checksum: Packet checksum verification
• ingress control: Actions on incoming (ingress) packets
• egress control: Actions on outgoing (egress) packets
• compute checksum: Checksum computation
• deparser: Deparsing and forwarding
A fundamental item concerns the need to specify the format

of packets that the P4 switch must handle. This involves
defining the different packet header fields along with their size.
This definition is leveraged by the parser and deparser.

P4 is optimized for fixed-length fields. However, it is
possible to define one field to be of variable-length of type



varbit. Varbit fields come with notable limitations: it is not
possible to modify data in the varbit field. No further support
is provided to support substructures within the field, let alone
substructures that are in turn of variable length themselves.

Ingress and egress control specify the processing to be per-
formed on packets and are defined using match-action tables
(for example, rewriting the MAC address). For this, certain
switch metadata (not to be confused with BPP metadata) can
be accessed:

• intrinsic metadata: provided by the device platform,
• queueing metadata: related to the switch queue,
• user-defined metadata: provided by the user.

III. CHALLENGES AND SOLUTION APPROACH

There are a number of BPP properties with important
ramifications for implementation. There are two challenges
in particular, variable substructures and variable number of
processing steps required to deal with Collateral.

A. Multiple levels of variable-length substructures

BPP Collateral can contain multiple levels of substructures,
some optional, each with variable length and number of
components. For example, the command block can contain one
or more commands. Each of those can have a varying number
of conditions (typically one or two) and actions (typically only
one, but more are possible). In turn, each of those may have a
varying number of parameters - typically two, but zero, one,
or three or more parameters are also possible. Likewise, the
metadata block, if present at all, can be of variable length as
it can carry a variable number of metadata items.

Unfortunately, P4 simply does not support multiple fields
with varying lengths. Mapping the entire Collateral into a
single large varbit field might be conceivable in theory, but
defeat P4’s purpose as the parsing of substructures and packet
handling would need to be manually implemented. In addition,
deparsing that allows to reconstruct packets that have their
Collateral modified would in effect not be possible due to P4
design as highlighted in section II-B.

In order to deal with this limitation, we made the diffi-
cult decision to limit the generality of our implementation.
Specifically, we decided to mandate a certain fixed Collateral
structure that supports a fixed number of commands, each with
a fixed number of conditions, actions, and parameters. Given
any particular use case, the structure of the Collateral could
be determined in advance which the implementation would
be able to support. In addition, it is possible to use a "null"
condition, action, or parameter for any unneeded fields.

Of course, what gets lost is the generality that allows to
reuse the same BPP implementation for any type of Collateral.
We felt that was acceptable for our purposes, which was to
get a workable implementation of BPP to experiment with.
Applying the 80/20 rule, we wanted to be able support what
would still be an interesting set of of applications with our
limited structure.

At the same time, in case "null" conditions (or actions, or
parameters) are applied, the header tax per packet becomes

considerably larger than it would have to be otherwise, as the
encoding of the Collateral for those cases is less compact. So,
our P4-based implementation is also less efficient than would
be the case with a more native implementation.

Even with those adaptations, we faced still some additional
challenges in parsing the substructures. We will go into the
details of that in section IV.

B. Variable number of processing steps

Processing of BPP Collateral can involve a varying number
of required processing steps. Some of this is rooted in the vari-
able Collateral structure, as different numbers of commands,
actions, and conditions may need to be processed. This aspect
is mitigated by limiting our implementation to support only
a certain fixed Collateral structure with a given number of
commands, actions, conditions, and parameters. This implies
an upper bound for processing. Without this limitation, the
packet processing pipeline would need to be dimensioned to
allow for the maximum number of processing cycles at each
step at the pipeline. As BPP does not support iteration or
recursion, the number of maximum cycles to process any BPP
packet can thus be predetermined.

BPP commands do include an indication whether they need
to be serialized or whether they can be executed concurrently.
However, we did not make use of this feature.

C. Indirection and variable sources of parameters

Another challenge concerns the possibility that parameters
may need to be retrieved from different sources depending on
the parameter category:

• Value: The parameter field indeed contains the actual
value of the parameter itself.

• Meta: The parameter field contains a reference to meta-
data in the packet, defining an offset in the metadata block
where the value of the parameter can be found.

• Statelet: The parameter field contains a reference to
metadata in a statelet where the value to be used can
be found. A statelet is a piece of cached memory on the
device that is associated with the packet’s flow.

• Data item: The parameter field contains a reference to
data item that contains the value to be used. Examples of
data items include the packet’s egress queue depth, the
packet length, or the current memory utilization.

Therefore, the programmed logic to retrieve the parameter
value differs depending on the source, and may require a
varying number of processor cycles. Whereas a parameter of
type "value" is obtained within one cycle, the other sources
each require a level of indirection to be applied.

D. Using P4 externs

P4 allows to invoke additional functionality outside the core
of the P4 framework itself, using so-called "extern" functions
and data structures which are provided by the underlying host.
This provides flexibility by allowing to extend P4 data plane
and control plane as needed. While the use of externs would be
attractive to support a library of actions to be invoked as part



of BPP commands, we chose to not rely on externs, as use of
the P4 framework would have offered us no particular support
in their implementation and resulting P4 programs would be
no longer platform-independent.

E. Unsupported features

There are a number of other features in BPP that we decided
not to support for the initial stage of our implementation
in order to showcase an initial set of functionalities. Most
noteworthy among these are stateful extensions that revolve
around the concept of statelets. Another feature not supported
concerns features that allow to place time bounds on the
execution of commands after which they are automatically
aborted, important in cases where commands map to externs
that may not have a predetermined execution time.

IV. MAPPING OF COMMANDS TO P4 PROCESSING PIPELINE

A. BPP data structures

Fig. 4: P4 parsers for BPP packets

Regarding P4’s pipeline, the two major operations to support
are the parsing and deparsing of packets. As discussed in
section III-A, a major problem is the complexity of BPP
headers and blocks with many nested and variable-length
structures. To circumvent the problem of varbit fields, we
slightly adapted the initial specification of BPP by considering
different Collateral building blocks (such as Commands and
Metadata) as separate "headers" and introducing a next field
for each to allow a full horizontal chaining of the different
fields rather than a nested data structure. This led to the P4
parser shown in figure 4(a). For instance a BPP packet could
be: BPP Header > BPP Command > BPP Condition Set >
BPP Condition > BPP Parameter > BPP Parameter > BPP
Condition > BPP Parameter > BPP Parameter > BPP Action
Set > BPP Action > BPP Parameter > BPP Metadata. Such
structure might be a bit heavy to craft a BPP packet but has
the advantage to preserve the flexibility of BPP.

Therefore, despite the fact that loops are not supported by
P4, the parsing of BPP packets is now possible and performed
using a header stack for each header type previously defined.
Indeed, because P4 packet parsing is done using states, an
equivalence of a loop is mapped to transitions between parser
states. Each state could parse a header type, and push the
parsed header into the dedicated stack, then use the next field
of the header to jump to the next parser state.

However, deparsing is impossible with such a structure. It
is not possible to declare the counter variables needed to pull

the headers out of their header stack in the correct order,
nor to emit packet headers using conditional statements for
deparsing. Hence, as explained earlier, we supported only a
number of commands fixed in advance, each with a fixed
number of conditions and actions, in turn with predefined
fixed number and lengths of parameters. This implies a more
wasteful encoding of BPP packets as the supported structure
in effect provides a template for commands that is padded as
needed. It also limits flexibility for BPP applications to an
extent. However, when aiming for a very set of specific use
cases, those penalties may be entirely acceptable. With this
constraint, the parsing does not need to chain different headers
anymore to reconstruct initially-proposed BPP variable length
fields. The parser is so very condensed in figure 4(b). However
a stack is used to store the BPP command headers, allowing to
have a variable amount of BPP commands (even if the header
stack maximum size is fixed a priori). The issue with the P4
deparser does not exist anymore since deparsing a header stack
in P4 leads to the deparsing of every valid header inside it in
the same order in which they were pushed in the stack.

BPP metadata could have been implemented with a single
varbit containing multiple data items. However, we decided to
add more structure to metadata for sake of usability. In our
PoC, ten named fields of 64 bits are available to store data.

B. BPP command handling

BPP commands are supported in P4 using a header stack.
Since P4 (like BPP) does not allow loops, loop unrolling is
applied. In each command, conditions, parameters and actions
can be present and are interpreted during the egress processing
of the packet. Due to our adaption of BPP to P4 constraints
described before, a length fields indicates the number of
parameters of an action bounded to a maximum value to
be defined at the compilation time (two in our case). Our
PoC implements a limited set of BPP commands sufficient
to demonstrate its viability:

• SUM (0x01) : increment a metadata field (2nd parameter)
with a value (1st parameter)

• PUT (0x02) : puts a value (1st parameter) into a metadata
field (2nd parameter).

• DROP (0xff) : drops the packet.

Because different types exist for parameters (packet meta-
data, statelet, built-in), each parameter value is prefixed with
its type to address the challenge described in section III-C.
In particular, we defined four built-in data items: Time spent
by the packet in the switch (from intrinsic P4 metadata);
Time spent by the packet in the queue of the switch (from
intrinsic P4 metadata); Number of packets in the queue when
packet is enqueued (from queuing P4 metadata); Number of
packets in the queue when packet is dequeued (from queuing
P4 metadata).

Regarding conditions, we also implemented a limited set of
operators that can be mixed (less than, greater than, equal to,
AND, OR). Parameters are expressed the same way as action
parameters. Besides, we include a negation field (NOT).



Fig. 5: Experimental
topology instantiated
with mininet

(a) Obsolete packet dropping (b) In-band telemetry of switch usage

Fig. 6: BPP application to different use cases

V. EVALUATION

Our BPP implementation has been integrated within a L3
switch and tested using p4app [8] that relies on mininet
[9] and the bmv2 software switch. A topology composed of
three switches and three hosts is instantiated as shown in
Figure 5. This topology is simple but enough to verify the
proper capabilities of our BPP implementation because our
aim is not evaluate performance. All switches have the same
configuration with a queue capacity of 1024 packets and a
processing capacity of 10 packets per second. This limitation
was arbitrarily set to be able to easily create congestion in
order to showcase BPP in the proposed scenarios. In all cases,
we generate ICMP traffic (echo request) within BPP packets
to have a full packet structure.

A. Scenario 1: real-time application

Considering the envisioned application of BPP in high-
precision networks, real-time applications are a good candidate
to demonstrate the viability of our proposed implementation.

Regarding the topology in figure 5, host h2 is constantly
receiving data sent by h1 but data is quickly obsoleted, for
example in the case of a streamed real-time video or geo-
location of a moving object. The concern with the regular
forwarding of IP packet is that obsolescence of data can only
be observed by the final receiver, h2. Using BPP, we can define
into the packets themselves a condition when the packet can
be dropped, for example if they have more than a certain
amount of time in a queue. It would also be possible make
the condition dependent on the sum of time spent in along the
different switches of the forwarding path.

h1 sends a packet on a fixed frequency and h2 receives on-
time in normal condition. To illustrate the scenario, artificial
congestion is created using hping3 tool between h3 and h2
around time 10s and 100s. Figure 6(a) represents the time
when h2 receives each packet sent and in all cases the
observation is clearly observed (lack of packets received). In
case of legacy routing, a burst of obsoleted packets arrived

at destination after the congestion whereas our prototype was
able to drop delayed packets at switch level.

B. Scenario 2: in-band network telemetry

Performing in-band network telemetry allows to transmit
monitoring information within application data-packets and so
serves two goals. First, resources are saved because no any
other connection and so traffic is needed to convey telemetry
information. Second, the receiver of packets has direct access
to telemetry information. Network telemetry empowers net-
work condition-awareness of applications, usually limited to
access to end-to-end metrics. Our PoC provides the ability
to know what are the most time-consuming switch before a
packet reaches its final destination.

In this scenario, host h1 sends BPP packets to host h2
including a BPP command to be executed by every switch
along the path that adds up the time the switches took to
process the packet and the times the packet spent in each
switch queues. Two metadata fields are used to store this data.

Figure 6(b) reports telemetry received by h2. A congestion
is created similarly to the previous scenario. When congestion
occurs, the time spent in a queue clearly increases. Due to
P4 restrictions highlighted in section IV, the metadata field
only contains a maximal number of information to be defined
when compiling the p4 switches. In our case, it is limited to
10 fields of 64 bits. Without any compression mechanism, we
thus assume a capacity of monitoring 10 switch queue sizes.
The queue size of switch2, extracted by h2, are plotted again
in Figure 6(b) (dashed line, right Y-axis scale) in the same
experimental setup. Increase of the queue size of switch is
observed during the congestion and is consistent with a longer
time spent in queue observed in the previous experiment.

VI. RELATED WORK

The flexibility brought by P4 allowed the definition of
programs of various kinds. Some authors have proposed in-
network DDoS protection [10] or load-balancing [11]. Some
hypervisors like HyPer4 [12] have been introduced to manage



multiple running P4 programs. DPPx provides a lifecycle man-
agement framework to ease the deployment of P4 programs
[13]. Although this includes some examples of applications
for P4, none of these works aim at enabling the support of a
new protocol with similar scope and power as BPP.

Also, there have been many propositions for implement-
ing efficient monitoring support in P4. In addition to usual
counters, sketches have been considered [14], even with P4
[15]. Again, none of these works is focused on the mapping
and implementation of a new protocol with P4 and so faced
different problems. Closer to our work, the authors in [16],
[17] aimed at implementing a NDN (Named Data Networking)
stack with P4. The authors encountered an equivalent problem
as us since names are composed of an arbitrary number of
TLVs but they did not face the issue of nested fields.

Research on Network Coding (NC) shares some similarities
with our proposition as the packets are decoded and re-coded
along their routing. In [18], NC is investigated in the context of
critical infrastructure networks and supported by P4. Segment
Routing (SR) is a routing scheme where a packet can embed
a sequence of segments where it has to go through. A proof-
of-concept with P4 exists [19] but it is limited by nature
to rewrite the next hop IPv6 address unlike more complex
commands promoted by BPP. Potential applications of BPP
illustrated in this paper are telemetry operations. In the same
space, in-Situ OAM [20] provides a way to collect telemetry
data but increases packet size with each node traversed.
Another example is In-Network Telemetry (INT), a showcase
application for P4 [21] in which the encapsulation of telemetry
information is of fixed size and determined in advance.

VII. CONCLUSION

Our implementation of a BPP PoC with P4 illustrates the
gap between protocols that require sophisticated in-network
processing capabilities and the ability of advanced data-plane
programming frameworks such as P4 to support them.

The highly flexible format of BPP packets combines the
ability to express compress packet processing semantics with
compact encoding. However, it cannot be readily supported
by P4 (P4_16) and we would have faced similar issues
with other dataplane abstractions that are inspired by the
RMT (Reconfigurable Match Tables) model [22]. With a few
compromises, a limited implementation of BPP can still enable
powerful and novel use cases. The most severe limitations of
P4 revolve around the lack of support for variable length fields
and dynamic substructures. In fairness to P4, it was never
designed with powerful capabilities such as those envisioned
by BPP. However, we hope that our lessons learned will be
useful and of interest also beyond the immediate context of
BPP, perhaps even to the future evolution of P4 itself.

Future work will focus on optimizations for performance
and stateful extensions.

Acknowledgments This work has been partially supported
by the NATO Science for Peace and Security Programme
under grant G5319 Threat Predict.

REFERENCES

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rex-
ford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and et al.,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, Jul. 2014.

[2] R. Li, A. Clemm, U. Chunduri, L. Dong, and K. Makhijani, “A
new framework and protocol for future networking applications,” in
SIGCOMM Workshop on Networking for Emerging Applications and
Technologies (NEAT). ACM, 2018.

[3] A. Clemm and T. Eckert, “High-precision latency forwarding over
packet-programmable networks,” in IEEE/IFIP Network Operations and
Management Symposium (NOMS), Apr. 2020.

[4] A. Clemm and U. Chunduri, “Network-programmable operational flow
profiling,” IEEE Communications Magazine, vol. 57, no. 7, Jul. 2019.

[5] B. Schwartz, A. Jackson, T. Strayer, W. Zhou, D. Rockwell, and
C. Partridge, “Smart packets for active networks,” in Open Architectures
and Network Programming (OPENARCH). IEEE, 1999.

[6] “P4.16 language specification,” https://p4.org/p4-spec/docs/P4-16-v1.0.
0-spec.html, accessed: 2020-01-09.

[7] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The p4-
>netfpga workflow for line-rate packet processing,” in ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’19, 2019.

[8] “p4app,” https://github.com/p4lang/p4app, accessed: 2020-01-09.
[9] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,

“Reproducible network experiments using container-based emulation,”
in Proceedings of the 8th International Conference on Emerging Net-
working Experiments and Technologies, ser. ACM CoNEXT ’12, 2012.

[10] A. C. Lapolli, J. Adilson Marques, and L. P. Gaspary, “Offloading
Real-time DDoS Attack Detection to Programmable Data Planes,” in
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), 2019.

[11] B. Pit-Claudel, Y. Desmouceaux, P. Pfister, M. Townsley, and T. Clausen,
“Stateless load-aware load balancing in p4,” in IEEE 26th International
Conference on Network Protocols (ICNP), 2018.

[12] D. Hancock and J. van der Merwe, “Hyper4: Using p4 to virtualize
the programmable data plane,” in Proceedings of the 12th International
on Conference on Emerging Networking EXperiments and Technologies,
ser. ACM CoNEXT ’16, 2016.

[13] T. Osiński, H. Tarasiuk, L. Rajewski, and E. Kowalczyk, “DPPx: A p4-
based data plane programmability and exposure framework to enhance
nfv services,” in IEEE NetSoft, 2019.

[14] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic Sketch: Adaptive and fast network-wide
measurements,” ser. ACM SIGCOMM ’18, 2018.

[15] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” ser. ACM SIGCOMM ’16.

[16] S. Signorello, R. State, J. Francois, and O. Festor, “NDN.p4: Pro-
gramming Information-Centric Data-Planes,” in Workshop on Open-
Source Software Networking (OSSN), IEEE International Conference
on Network Softwarization (NetSoft), 2016.

[17] R. Miguel, S. Signorello, and F. M. V. Ramos, “Named data networking
with programmable switches,” in 2018 IEEE 26th International Confer-
ence on Network Protocols (ICNP), 2018.

[18] R. Kumar, V. Babu, and D. Nicol, “Network coding for critical infras-
tructure networks,” in IEEE 26th International Conference on Network
Protocols (ICNP), 2018.

[19] “Building a PoC of segment routing at 100g using FPGA smart NIC
and P4 language,” https://tinyurl.com/yb26zakt, accessed: 2020-05-13.

[20] F. Brockners, S. Bhandari, C. Pignataro, H. Gredler, J. Leddy, S. Youell,
T. Mizrahi, D. Mozes, P. Lapukhov, R. Chang, D. Bernier, and J. Lemon,
“Data Fields for In-situ OAM,” Internet Engineering Task Force,
Internet-Draft draft-ietf-ippm-ioam-data-10, Jul. 2020. [Online]. Avail-
able: https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-data-10

[21] J. Liang, J. Bi, Y. Zhou, and C. Zhang, “In-band network function
telemetry,” in ACM SIGCOMM Conference on Posters and Demos, ser.
SIGCOMM ’18, 2018.

[22] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” ACM
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, 2013.


