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Abstract Spin liquids are exotic phases of matter that often support emer-
gent gauge fields and quasi-particle excitations. While spin liquids are com-
monly known for remaining disordered, their definition has been extended to
include phases with broken symmetry corresponding to (partial) long-range
order, such as chiral and nematic spin liquids for example. For Coulomb spin
liquids, this ordering can be quantitatively understood via a Helmholtz decom-
position between divergence-free and divergence-full terms. This phenomenon
has been coined fragmentation, where spin degrees of freedom fragment into
two components; the fluctuating disordered part and the ordered one. In this
review, we will cover the theoretical and experimental aspects of this growing
field, in particular its relation to magnetic monopoles in spin ice, its phase
diagram and the possibility to observe it in solid-state crystal and artificial
networks.
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1 Introduction

Spin liquids are unconventional phases of matter where frustration prevents
magnetic order down to the lowest temperatures [1, 2], opening a window for
new collective phenomena. But while the absence of order has the merit of sum-
marising their most noticeable property, and to be reasonably straightforward
to identify experimentally, it is not really satisfactory to define something by
what it is not. The caveat of a definition by negation is that it tends to group
together concepts which can be fairly different, linked here by the thread of
magnetic disorder. To improve the description, one needs to characterise disor-
der, which is a counter-intuitive task in a field – condensed matter – dominated
by Landau theory, since disorder bears no broken symmetries. This is where
the emergence of quasi-particles and gauge field theory becomes useful.

Emergence here means renormalisation from discrete to higher symmetry,
and leads to an elegant simplification of the initial problem [3,4], providing a
theoretical framework for the understanding of complex many body physics [5].
For example magnetic excitations of spin liquids often take the form of quasi-
particles, such as Majorana fermions in Kitaev materials [6] and magnetic
monopoles in spin ice [7, 8]. In particular, the latter description has offered
an unlikely cadre for the study of Coulomb physics and emergent electromag-
netism [9–13].

Spin ice is a canonical frustrated model made of Ising spins on the three-
dimensional (3D) pyrochlore lattice [Fig. 1] [14,15]. The low temperature state
of spin ice, with associated extensive Pauling entropy [14, 16], constitutes an
effective vacuum of divergence free fluctuations from which quasi-particles car-
rying magnetic charge are thermally excited. This can be seen as a Helmholtz
decomposition of the emergent magnetostatic field, such that the moments ap-
pear to fragment into two magnetic fluids [17], the first providing deconfined
Coulomb particles, the second giving a perpetually fluctuating background
with topological properties. This picture shares many features with the electro-
static description of Kosterlitz-Thouless spin systems [18,19] in which vortices
and spin waves provide an equivalent set of electrostatic fluids [20].

The goal of this review is to show how magnetic fragmentation provides a
new platform going beyond the traditional picture of spin liquids. Indeed, while
the fluctuating background is essentially a Coulomb spin liquid, the magnetic
charges can be manipulated independently and even crystallise. Fragmentation
thus allows for the stabilisation of a new phase in which magnetic order coexists
with a fluctuating spin liquid with ferromagnetic correlations [17, 21], which
has recently been observed in several experimental contexts: Nd2Zr2O7 [22],
Ho2Ir2O7 [23], Dy3Mg2Sb3O14 [24], artificial lattices [25]...
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Fig. 1 (a) Pyrochlore lattice: cubic unit cell of a pyrochlore lattice. The centre of the
tetrahedra form a diamond lattice whose bipartite nature particularises up and down tetra-
hedra, with a red and blue sphere respectively. The diamond lattice forms the backbone for
magnetic monopoles. (b) Dumbbell model: The magnetic dipoles are replaced by a needle
carrying a dumbbell of charge - small red and blue spheres. 2 in - 2 out tetrahedra (top) are
charge neutral, 3 in - 1 out and 3 out - 1 in carry a single-charge monopole (centre), 4in and
4out carry a double monopole (bottom). Note that a monopole is a composition of several
dumbbell charges allowing monopole fractionalisation. Reproduced from Ref. [26].

2 Theory of magnetic fragmentation

2.1 Introduction to spin ice

The localized magnetic moments of spin ice systems [14] form a corner sharing
network of tetrahedra on a pyrochlore lattice, as shown in Fig. 1.(a). The
physics of spin ice is commonly described by the dipolar spin ice Hamiltonian
(DSI) [27,28] made up of both exchange and dipolar terms

H = −J
∑
〈i,j〉

Si · Sj + D r3
nn

∑
i<j

[
Si · Sj

|rij |3
− 3 (Si · rij) (Sj · rij)

|rij |5

]
(1)

where rnn is the distance between nearest neighbour spins and rij is the vector
between two pyrochlore sites i, j. The first sum runs over nearest-neighbour
pairs labeled 〈...〉 while the second sum runs over all pairs of spins. Si = σiei

is an Ising like spin of unit length, σi = ±1, constrained to point along the
easy axis ei joining the centres of the two adjacent tetrahedra. There are four
sites in a unit cell, which we take here to be an “up” tetrahedron as shown in
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Fig. 1.(b) and thus four different easy axes

ei ∈

 1√
3

+1
+1
+1

 ,
1√
3

−1
−1
+1

 ,
1√
3

−1
+1
−1

 ,
1√
3

+1
−1
−1

 (2)

Typically for spin ice materials Dy2Ti2O7 and Ho2Ti2O7 the magnetic moment
is m ≈ 10µB and the coupling constants are on the 1 K energy scale; for

Dy2Ti2O7 J ≈ 3.72 K and D =
µ0m

2

4πr3
nn

≈ 1.41 K [27].

The properties of spin ice can be described to a first approximation by
cutting off the dipole interaction at nearest neighbour, leading to the nearest
neighbour spin ice model (NNSI)

HNN = −3Jeff

∑
〈i,j〉

Si · Sj = Jeff

∑
〈i,j〉

σiσj , (3)

with Jeff = 5D
J + J

3 . The spin ice regime Jeff > 0 gives a frustrated ferromagnet
in which the lowest energy state of a single tetrahedron is six fold degenerate,
with two spins pointing inwards and two outwards, as shown in Fig. 1.(b).
Tiling these configurations together in the pyrochlore lattice gives an exten-
sive band of degenerate ground states - the Pauling states [29]- sharing the
same phase space as the protons in the cubic phase of ice, giving spin ice its
name [14]. As a consequence, there is no phase transition in this model. As
temperature goes to zero, the system progressively enters a collective param-
agnetic state which violates the third law of thermodynamics in retaining the
Pauling entropy of the ice rules states.

The local constraints can be written as a divergence free condition of
the coarse-grained magnetisation, or magnetic moment density, M satisfying
Maxwell-Gauss law ∇ ·M = 0 [10,11]. In other words, M behaves as the curl
of an emergent gauge field A, M ≡ ∇ ∧ A. At this level of approximation,
with an effective Hamiltonian, which is pure exchange, M can be considered
as a field built from the dimensionless spins. These develop emergent dipolar
correlations because of the constraints [10] in what is referred to as a Coulomb
phase [12]. A consequence of these correlations are characteristic pinch points
in simulated neutron scattering patterns [30,31].

When going beyond the nearest-neighbour cutoff, the pyrochlore lattice
possesses a remarkable symmetry property which ensures that the long range
part of the dipolar interaction is almost perfectly screened within the en-
semble of ice-rule states [27, 32]. This screening means that the DSI inherits
these states in the form of a quasi-degenerate manifold of lowest energy states
respecting the divergence-free condition. The degeneracy is ultimately lifted
through terms of quadrupolar and higher order giving an ordered ground state
at a temperature in the 0.1 K range [28]. However, above this temperature,
the extensively degenerate manifold is essentially recovered so that the physics
of real spin ice materials is largely dictated by the emergent gauge field of the
NNSI. In particular, the pinch point scattering patterns characteristic of the
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dipolar correlations of the lattice gauge field are spectacularly reproduced in
experiments [15,30,31].

However, there is a subtle difference between the two models. With the
inclusion of real dipolar interactions comes the inclusion of real magnetic flux
and a dimension full magnetisation M which, thanks to the above symmetry
properties lies almost perfectly on top of the emergent field. As a consequence,
the topological defects which appear in the emergent field of the NNSI [8] are
dressed, in the DSI with real magnetic flux and carry real magnetic charge.
These excitations are magnetic monopoles [7] and the quasi-degenerate band
of Pauling states plays the role of a vacuum from which they are excited (see
Fig. 1.(b)). Hence, as shown in detail below, while the topological defects of the
NNSI have entropic interactions, they behave like magnetic monopoles with
real Coulomb interactions in the DSI.

Magnetic monopoles emerge naturally as an approximation to the DSI
Hamiltonian via the so-called the dumbbell model [7]: extending the point
dipoles to infinitesimally thin magnetic needles lying along the easy axes link-
ing the centres of adjoining tetrahedra (see Fig. 1) which constitute a diamond
lattice. The needles carry dumbbells of charges at each end which touch at the
diamond lattice sites. For each dumbbell, there is a positive and a negative
charge, reproducing the magnetic moment of the original point dipole. By con-
struction, the ground-state ensemble of ice-rule states with two spins pointing
in and two spins pointing out is thus charge neutral for all tetrahedra, recov-
ering the screening of the long-range dipolar interactions mentioned above.
The quadrupolar and higher order perturbations of the screening correspond
to the approximation made when mapping point dipoles to extended dumb-
bells. Reversing the orientation of a needle (or spin) breaks the ice rules on
a pair of neighbouring diamond sites, creating two local magnetic charges: a
positive and a negative one. The dumbbell model is the lattice gauge theory
of the DSI. Describing the physics of spin ice as a gas of magnetic charges
offers an elegant intuition of its thermodynamics (heat capacity, field-induced
phase transitions ...) and dynamics. In this review, this picture will come es-
pecially handy since the long-range magnetic order can often be described as
a monopole crystallisation.

The magnetic moment m Sj on the site j of the pyrochlore lattice forms
an element of a lattice field MIJ on the bonds of the diamond diamond lattice
of tetrahedron centres, connecting the two adjacent diamond sites, I and J .
The lattice field MIJ is the magnetisation flux channelled through the needle.
Formally MIJ = M ·dS̃, where M (in the dumbbell model) is defined uniquely
within the needle and dS̃ is the infinitesimal needle cross section pointing out
of the tetrahedron. The MIJ thus have units of magnetic charge and take the
form

MIJ = (Sj · ej)
m

a
ηI = σj

m

a
ηI , (4)

where a is the nearest neighbour distance on the diamond lattice (see Fig. 1.(a))
and where ηI = 1(−1) for an up(down) tetrahedron, ensuring that MIJ =
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−MJI . An artistic view of the magnetisation flux MIJ is given in Fig. 2. The
integral form of Gauss’ law then takes the discrete form,

4∑
J=1

MIJ = −QI , (5)

where the sum runs over the four nearest neighbours J on the diamond lattice.
QI ∈ {0,±Q,±2Q} is the magnetic charge, with Q = 2m/a, the monopole
charge. Note that with this sign convention (complicated as it may be!) in
which an inward pointing field element carries a minus sign, the MIJ satisfy
the requirements of both the emergent magnetostatics of the gauge field and
the conventional magnetostatics of the real magnetic problem, as shown in
detail below.

Within the dumbbell approximation, the Hamiltonian (1) becomes (up to
a constant)

H =
1

2

∑
I 6=J

µ0QIQJ

4π rIJ
− µN − µ2N2, (6)

where the sum runs over all pairs of diamond sites I, J . µ < 0 and µ2 = 4µ are
chemical potentials for the creation/annihilation of single and double charged
monopoles (see Fig. 1.(b)). Whithin this mapping, the problem is reformulated
as a lattice Coulomb fluid in the grand ensemble and µ and µ2 can be calculated
for each material from the parameters D and J of the corresponding DSI
model [7]

|µ| = 2J

3
+

8

3

[
1 +

√
2

3

]
D =

|µ2|
4

(7)

2.2 Helmholtz decomposition

In a magnetostatic problem, the coarse grained magnetisation satisfies Gauss’
law in the form ∇ ·M = −ρm where ρm is the concentration of induced
magnetic charge. Given the emergent properties of spin ice, in the absence
of boundaries and disorder, finite ρm is due to the presence of magnetic
monopoles and the study of the real magnetostatics gives access to this emer-
gence. Is it then possible to quantify by how much the divergence-free condi-
tion is broken by the magnetic monopoles ? The answer comes via a Helmholtz
decomposition:

M = Mm + Md =∇ψ(r) +∇ ∧A. (8)

The magnetisation M is fragmented [17] into two contributions. The first, Mm,
falls on the gradient of a scalar potential and provides the magnetic charge.
The second, Md, a dipolar field, can be represented as the curl of a vector
potential; it is divergence-free and is at the origin of the Coulomb phase for
states obeying the ice rules, for which Mm = 0. In this language, breaking the
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Fig. 2 Helmholtz decomposition: Spin configuration for a 3 in - 1 out tetrahedron
(left) with its dumbbell representation made of ±Q/2 = ±m

a
magnetic charges (middle)

and their Helmholtz decomposition into divergence-full and divergence-free elements (right).
The divergence-full term contains a positive magnetic charge. Adapted from [17]

ice rules leads to the conversion of M from the divergence-free field Md to the
divergence-full field Mm. This conversion is complete at the microscopic level,
for the double monopoles (see Fig. 1.(b)), but is only partial in single charged
monopoles, so that one has the coexistence of two complementary fields or
fluids, (Md, Mm) [see Fig. 2 for a schematic representation of the Helmholtz
decomposition of an isolated positive magnetic charge].

It is important to stress at this point that, in spin ice the emergence
and subsequent decomposition of M into two orthogonal fluids is not just a
coarse grained phenomenon. It occurs on the microscopic scale and the dumb-
bell model provides a mathematical framework for this. Each element, MIJ ,
fragments into a monopolar and dipolar part, MIJ = Mm

IJ + Md
IJ such that∑

J M
m
IJ = −QI . As the magnetic moments are of fixed size, there is a micro-

scopic constraint on each element

(Mm
IJ +Md

IJ)
a

m
= ±1, (9)

in addition to the global orthogonality condition∑
I>J

(Mm
IJ)(Md

IJ) = 0. (10)

Transformed into vectors, MIJ = (eiηI)MIJ and then into reciprocal space,
with wave vector q restricted to the first Brillouin zone, Mm(q) and Md(q) are
respectively parallel and perpendicular to q giving “longitudinal” and “trans-
verse” components to M(q).

The equations of constitutive magnetostatics follow: treating the needles as
lossless conduits of magnetic flux one can define lattice elements of magnetic
intensity

HIJ = −Mm
IJ , (11)

and magnetic induction

BIJ = µ0(MIJ +HIJ) = µ0M
d
IJ , (12)

giving Maxwell’s equation
∑

J BIJ = 0 and, following (9) a local field along
each element, BIJ − µ0M

m
JI of constant amplitude. The elusive Dirac strings
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Fig. 3 Fragmented spin liquid on the pyrochlore lattice: (left) Spin configuration
with alternatively 3 in - 1 out and 3 out - 1 in tetrahedra. The red spins are the minority
spins. Following Eq. (14), this spin configuration can be (Helmholtz) decomposed into a
monopole crystal (centre) and a hard-core dimer model (right) on the diamond lattice [17].
The divergence-free field emerging from the dimer model, despite being a Coulomb phase,
is different from the traditional one in the ground state of spin ice with only 2 in- 2 out
tetrahedra. The red arrows on the right panel carry three times more flux than the black
ones in the middle and right panels.

that maintain Maxwell’s equation [7] are thus incorporated into the network
of field elements.

Concretely, the magnetisation flux of Eq. (4) can be written in vector form
around a given diamond site I; for example for an isolated monopole of positive
charge (a north pole) with three inward and one outward spin

[MI ] = (−1,−1,−1, 1)
Q

2
. (13)

Its fragmentation gives [17] [Figs. 2 and 3]

[MI ] =

(
−1

2
,−1

2
,−1

2
,−1

2

)
Q

2
+

(
−1

2
,−1

2
,−1

2
,

3

2

)
Q

2
. (14)

The first term satisfies Gauss’ law for the magnetic charge; the second term
satisfies the discrete version of a divergence-free field. Notice that the magni-
tudes of Mm

IJ and Md
IJ can exceed m/a as long as the constraint (9) is satisfied;

for example here one field element has Mm
IJ = −m/2a and Md

IJ = 3m/2a.
As the Coulomb interaction is long ranged, moving away from the monopole

one can find non-zero Mm
IJ in a volume containing no charge. These elements

can be calculated by solving Poisson’s equation from which Md
IJ can be calcu-

lated from the constraint (9). Such a decomposition into [Mm
IJ ], [Md

IJ ] is possi-
ble for any spin ice configuration, regardless of the concentration of monopoles
and double monopoles. Nevertheless, for periodic boundaries it is actually
multi-valued through topological sector fluctuations [33], which are allowed
even in the presence of charges, if divergence free pathways span the system.
This procedure has been verified in the analogous Kosterlitz-Thouless environ-
ment [20] and an approximate algorithm for the decomposition has recently
been developed for spin ice [34].

The notion of a fragmented crystal can be extended to two dimensions, in
particular on the kagome lattice, when spins are constrained to point in or out
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Fig. 4 Fragmented spin liquid on kagome ice: (left) Spin configuration with alterna-
tively 2 in - 1 out and 2 out - 1 in triangles. The red spins are the minority spins. Following
Eq. (15), this spin configuration can be (Helmholtz) decomposed into a monopole crystal
(centre) and a hard-core dimer model (right) on the honeycomb lattice [17]. The red arrows
on the right panel carry two times more flux than the black ones in the middle and right
panels.

of the triangles [Fig. 4]. In the presence of an effective ferromagnetic nearest
neighbour interaction, the ground state is extensively degenerate with six pos-
sible states per triangle; two spins pointing in and one out, or the inverse1.
Adding dipolar interactions stabilises a novel phase at lower temperatures with
broken Z2 symmetry [25,35,36]. The broken symmetry corresponds to the fact
that only three states are now allowed per triangle; 2 in - 1 out for down trian-
gles and 2 out - 1 in for up ones, or vice-versa [Fig. 4]. It is the so-called kagome
ice phase (KI). This phase is also sometimes labeled “KI 2” as opposed to “KI
1” for the above mentioned ground state without the broken symmetry. The
triangle incorporates a magnetic charge equal to half the monopole charge on
pyrochlore (+Q/2) and the ice rule can be fragmented to give

[MI ] = (−1,−1, 1)
Q

2
=

(
−1

3
,−1

3
,−1

3

)
Q

2
+

(
−2

3
,−2

3
,+

4

3

)
Q

2
. (15)

The ground state forms a charge crystal discussed in more detail below. In-
terestingly, taking the unit of charge to be that of the monopole, the crystal
provides an example of geometrically driven charge fractionalisation [37]. Any-
where in the phase diagram, the monopole configuration can be extracted by
subtracting the charge crystal from the total magnetic charge configuration.
The contribution of an isolated monopole to [Mm

I ] is then
(
− 2

3 ,−
2
3 ,−

2
3

)
Q
2

and the full decomposition can be built up in a similar way but with the added
complication of charge fractionalisation.

Of course the magnetic moments in spin ice are not needles. In real materi-
als the magnetic fields spread out over all space [38] giving corrections to this
model that include ordered phases [27, 39, 40], corrections to diffuse neutron
scattering predictions [41,42] and to measurements from local probes [43–45].
However, as we show below it has proved extremely successful in predicting

1 This phase is analogue to the standard kagome Ising antiferromagnet with collinear Ising
spins.
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spin correlations in the partially ordered monopole and magnetic charge crys-
tal phases discussed below.

2.3 Coexistence of order and disorder

The decomposition can be dealt with easily in the lower symmetry situation of
a system driven into a monopole crystal phase by varying the chemical poten-
tial [17, 21]. Since magnetic monopoles interact via a Coulomb potential (see
Eq. (6)), they can form a stable structure of alternating positive and negative
charges on the diamond lattice (see Fig. 3); this is the well known zinc blende
structure of ZnS. This structure appears naturally by tuning the chemical po-
tential and forbidding double charges [17,21] or in a staggered potential [23,26].
In other words the moments break up alternatively into the distribution ex-
posed in Eq. (14) and its opposite. Hence while the divergence-full field Mm is
long-range ordered, the divergence-free gauge field persists and forms a fluc-
tuating magnetic background with characteristics of the Coulomb phase. The
local degree of freedom of this fluctuating phase is the position of the minority
spin in each tetrahedron, corresponding to the maximum flux ±3/2 exempli-
fied in the right term of Eq. (14). As such, this particular Coulomb phase
is exactly mapped onto a hard-core dimer model on the diamond lattice (see
Fig. 3) whose number of configurations is ∼ 1.3N/2 [46] where N is the number
of pyrochlore sites.

As mentioned previously, there are also several mechanisms to stabilise
such a phase made of alternating positive and negative charges (±Q/2) in two
dimensions. On one hand, this can be done by dimensional reduction using a
[111] magnetic field in three-dimensional spin-ice systems (see section 3.2.3).
It is the so-called kagome-ice plateau [47–49] where the Z2 time-reversal sym-
metry of the long-range order component is intrinsically broken by the field.
On the other hand, this Z2 symmetry can also be spontaneously broken in
either dipolar kagome ice, or the kagome dumbbell model in which the long
range part of the dipolar interaction appears as Coulomb interactions be-
tween emergent monopoles, forming the kagome-ice phase (see section 3.1.1).
In both cases, using Eq. (15), any spin configuration can be fragmented into
a monopole crystal with charges sitting on the honeycomb sites (formed by
the centres of the triangles on kagome) and a hard-core dimer model on the
honeycomb bonds with residual entropy S = 0.108 kB [35] (see Fig. 4). Explic-
itly, this means that the KI 2 phase has unsaturated antiferromagnetic order
(the charge crystal) coexisting with the fluctuating Coulomb phase. Note that
in both 2D and 3D, corrections beyond the dumbbell model, i.e. including
the full dipolar interactions, ultimately order the system at very low temper-
atures [21,35,36,50].

This is a spectacular situation if one is looking for novel magnetic phases
beyond the traditional picture of spin liquids, as the fragmentation results
in the coexistence of long range order with a fluctuating gauge field [Figs. 3
and 4]. In the canonical examples presented so far, the magnetic order is a
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crystal of monopoles while the gauge field corresponds to a Coulomb spin
liquid with pinch point scattering pattern. However, fragmentation could also
apply to a broader diversity of ordered phases and emergent gauge fields,
such as tensor gauge fields for example [51–53]. Simulated neutron scattering
patterns are shown in Fig. 5 for the above-mentioned monopole crystal in 3D
and for the so called KI 2 phase of the analogous two-dimensional kagome ice
(see section 3.1.1). The figures show clear evidence of both Bragg peaks and
diffuse scattering in a pinch point pattern. For convenience, we shall refer to
this phase as a fragmented spin liquid (FSL).

Fig. 5 Structure factor of a fragmented spin liquid: Simulated magnetic scattering
function, S(Q) for the pyrochlore monopole crystal (left) and for in-plane scattering from
kagome ice (right). To reveal the diffuse scattering the Bragg peaks in the pyrochlore data
are plotted as contours in grayscale superimposed on the contribution to S(Q). Adapted
from Ref. [17].

Fragmentation should be distinguished from other concepts where order
and disorder co-exist. In particular, the long-range order and fluctuating spin
liquid do not phase separate in different domains of the system, but co-exist
everywhere via the fragmentation of the microscopic degrees of freedom (see
Eq. (14)). Coexistence of short-range and long-range orders, often associated
to different components of the magnetic moments have been reported in nu-
merous low dimensional and/or frustrated systems (see e.g. [54] or [55, 56] in
the Gd pyrochlore systems). Another scenario is the reduction of the ordered
magnetic moment, together with the persistence of quantum spin fluctuations
down to the lowest temperatures. This is often related to the proximity to a
competing phase, or a quantum critical point. In pyrochlores, it is for example
the case of Yb2Ti2O7 [57–59] or Er2Sn2O7 [60, 61]. However, fragmentation
differs from traditional quantum melting since its key point is that the disor-
dered contribution supports an emergent gauge field.

While the concepts presented so far are classical, the notion of fragmen-
tation can be extended to quantum systems [22, 62–64], for example in rela-
tion with quantum kagome ice where a field-induced finite magnetisation may
co-exist with a Z2 spin liquid [65–68]. Fragmentation can also occur via the
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decoupling of the equations of spin motions. This has been proposed as an
elegant mechanism for Nd2Zr2O7 (see section 3.2.2) whose inelastic magnetic
structure factor fragments into flat bands with divergenceless fluctuations and
divergence-full fluctuations forming Bragg peaks and dispersive bands [64].
For a variety of frustrated systems [69, 70], the divergence-full fluctuations
also form pinch-point patterns but on the dispersive band of the energy spec-
trum. Measurements at iso-energy thus provide a cut of these dispersive pinch
points in the characteristic form of half-moons [69,70].

The fragmented fluid presented in this section is actually the classical ver-
sion of the quantum dimer model on the diamond lattice [71–73] (modulo the
time-reversal broken symmetry), which has been discussed in the context of
the magnetisation plateau observed in HgCr2O4 and CdCr2O4 [74–76]. It is
also related to the quantum Coulomb ferromagnet of the extended quantum
spin ice Hamiltonian [62, 63, 77]. In the broad picture, fragmentation is kin-
dred to a family of exotic spin liquids with broken symmetry, such as chiral
spin liquids à la Kalmeyer-Laughlin [78, 79], nematic spin liquids [80] or even
spin-lattice liquid with loop-length symmetry breaking [81]...

2.4 Phase diagram of the fragmented spin liquid

The Coulomb energy of the monopole crystal is

UC = − N0

2
α
µ0Q

2

4πa
(16)

where N0 is the number of diamond sites and α is the Madelung constant.
In three dimensions for the diamond lattice, it is α = 1.638. In the absence
of double monopoles the monopole crystal would become the ground state
for [17]

µ > µ∗ = − α

2

µ0Q
2

4πa
. (17)

However, in the derivation from spin ice, µ2 = 4µ, while the Coulomb en-
ergy also scales by a factor of four, so that a double monopole crystal, the
“all-in-all-out” (AIAO) antiferromagnetic phase occurs at the same threshold.
This masks the FSL phase unless we impose the limit (µ2 → −∞), excluding
double monopoles from the system. Similarly, the monopole crystal can also
be stabilised over a finite fraction of the system when working at fixed concen-
tration of single charges [21, 82]. Introduction of a four-body interaction [50]
lifts the constraint between µ and µ2, allowing the realisation of the FSL over
a finite range of parameter space. Although this term is difficult to realise in
experiments it could mimic the effects of quantum fluctuations as discussed
further below.

The AIAO and FSL phases can be separated in the dumbbell model by the
application of a staggered potential ∆ [17,26], a scenario motivated in part by
the action of Ir4+ ions on Ho3+ ions in Ho2Ir2O7 [23] (see section 3.2.1). This
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Fig. 6 Phase diagram of the fragmented spin liquid: (0) monopole fluid, (1) monopole
crystal, (2) double monopole crystal. Surfaces show 1st and lines 2nd order transitions. The
central dotted lines show a multicritical region. The phase diagram corresponds to the
dumbbell model with ν = −µ = −µ2/4 and a staggered potential ∆. Reproduced from
Ref. [26].

staggered potential breaks the space group symmetry of the underlying dia-
mond lattice by favouring alternatively positive and negative charges on each
of the bipartite sublattices, thus enforcing the symmetry of the zinc blend
structure [Fig. 3]. The resulting rich double winged phase diagram is shown in
Fig. 6.

The plane with ∆ = 0 corresponds closely to the phase diagram of the DSI
above the small energy scale of the band of Pauling states [28,83], with the crys-
tal of double monopoles (AIAO) separated from the spin ice monopole vacuum
by a phase transition that passes from first order at low tempareature to sec-
ond order via a tri-critical point. At the transition point, at zero temperature
the double and single monopole crystal phases are degenerate but away from
it the fragmented single monopole crystal phase is suppressed [17]. Adding ∆
separates the two phases giving the double wings; planes of first order and lines
of second order transitions, separating five different phases [26]: the monopole
fluid (spin ice physics with a non saturated density of monopoles), the double
monopole crystal and the FSL phase. The ground states of the first two phases
are extensively degenerate, while the last two phases have long-range order re-
lated by time-reversal symmetry when reversing the sign of ∆ [84]. Indeed, as
∆ breaks the space group symmetry, there is no further microscopic symmetry
breaking and all transitions are symmetry sustaining. In this sense, the tran-
sition from monopole fluid to single monopole crystal is thermodynamically
equivalent to the liquid-gas transition and that from single to double monopole
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crystal provides a skeleton for liquid-liquid phase transitions observed exper-
imentally in supercooled liquids [85–88]. The transition from monopole fluid
to FSL is a close cousin to the phase transition observed in spin ice in the
presence of a [111] field in which the system leaves the kagome ice plateau
via a monopole crystallisation transition [7,47]. In that case, the external field
couples to both the Md and Mm, whereas the staggered potential ∆ couples
to Mm only [26].

This is the generic phase diagram of the S = 2 Blume-Capel model [89] and
analogous sets of phase transitions can be observed elsewhere, for example in
itinerant magnetic compounds under pressure and in an external field [90,91].
The form of the multi-criticality as the five different phases merge towards
each other is non-universal, depending on microscopic parameters, but a single
penta-critical point is not expected [26].

2.5 Excitations of a fragmented spin liquid and monopole holes

In the traditional spin ice model, the gauge charges are the 3 in - 1 out and 3 out
- 1 in tetrahedron states, corresponding to single-charged magnetic monopoles
in the dumbbell model. In the ground state of the fragmented spin liquid,
tetrahedra are alternatively 3 in - 1 out and 3 out - 1 in. Excitations out of the
FSL are thus 4 in / 4 out (also called all in / all out) and 2 in - 2 out states.
These excitations have a dual representation, either in terms of the original
emergent fields, or as gauge charges out of a new emergent field, which is
the transverse fragment of the spin ice field Md. The excitations will create
a new longitudinal field M̃m which adds vectorially to the total transverse
component, Mm.

This duality gives a crucial difference between spin-ice and FSL charges.
In the former case, there is a perfect symmetry between positive and negative
single charges -tetrahedra with 3 in - 1 out and 3 out - 1 in. In the latter
case however, single gauge charges that give 2 in - 2 out or 4 in / 4 out
tetradedra have a priori different chemical potentials. And the picture gets
more complicated for higher charges [50]. Hence, while in spin ice creation of
gauge charges can only increase the contribution of the divergence-full field
Mm, in the FSL the total longitudinal contribution can either increase, as in
the case of a 4 in or 4 out defect, or decrease if the move is to a 2 in - 2
out tetrahedron. For this second class of excitation, the constraint (10) gives a
corresponding increase in the divergence-free field Md. In either case, the total
contribution from Mm or of M̃m is minimised if like charges are separated by a
maximum distance and unlike charges are drawn together, generating effective
Coulomb interactions between the gauge charges.

These ideas can be tested both for the NNSI and for the DSI. In the
nearest-neighbour spin-ice model, i.e. in absence of dipolar interactions, ex-
citations out of the Coulomb phase lose their magnetic charges as we have
discussed above, but remain gauge charges of the emergent field with an en-
tropic Coulomb potential [12]. The entropic Coulomb potential comes from the
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Fig. 7 Monte Carlo simulations confirm the entropic probability distribution (19) for a
unique pair of gauge charges to be separated by a distance R, out of the 2 in - 2 out spin-ice
ground state (4) and out of the FSL (� and •). For the sake of completeness, the two cases
where the initial pair of defects out of the FCSL were 2 in - 2 out (•) and 4in-4out (�) are
shown to give the same outcome with double-spin dynamics. The y−axis is on a logarithmic
scale, while the x−axis is on a linear scale. The error bars are smaller than the data symbols.
Adapted from Ref. [50].

ensuing configurational entropy difference between states with gauge particles
separated by different distances.

Eent = ρ
kBT

R
, (18)

where T is the temperature and R = r/a is the dimensionless distance between
gauge charges. ρ is a characteristic parameter of the Coulomb phase, propor-
tional to its stiffness [12, 92]. Eq. (18) results in a temperature-independent
probability

P (R) ∝ exp
(
Eent/kBT

)
= exp (ρ/R) . (19)

for two gauge charges to be at distance R.
The probability of Eq. (19) has been measured in Monte Carlo simulations

of the spin-ice ground-state [50,92] and of the FSL [50], confirming the presence
of the entropic potential (18) with ρspin−ice = 0.36755 and ρFSL = 0.473 (see
Fig. 7). Moving to the DSI, it was shown that with the inclusion of the magnetic
flux, the gauge charges out of the FSL transform into magnetic charges with
an effective Coulomb force between them [50].

Spin ice has often been described as a “magnetolyte” [43,92–94] with essen-
tially similar positive and negative charges emerging from a neutral solution.
For the FSL, the analogy is closer to a semiconductor [50], where we have
a valence band filled with electrons and an empty conduction band. Gapped
excitations take the form of a pair of electric charges of opposite sign: an
electron occupying the conduction band; and an electron hole occupying the
valence band. Similarly in the FSL, we have co-existence of long-range order



16 Lhotel, Jaubert, Holdsworth

filled with magnetic monopoles, and a fluctuating spin liquid empty of charges.
Excitations are also gapped and take the form of a pair of magnetic charges
of opposite sign: a monopole, locally destroying the divergence-free field Md

(as in spin ice); and a monopole hole, locally destroying the long-range order
of the divergence-full field Mm. The effective Coulomb potential also ensures
deconfinement of the charges and thus fractionalization of the excitations, as
in semiconductors.

To conclude this discussion, the nature of these excitations – monopoles and
monopole holes – is dynamically conserved via a double-spin motion, i.e. by
flipping two neighbouring spins at the same time [23, 50]. This is due to the
Z2 broken symmetry of the ordered phase making the divergence-full field
alternatively a source and a sink of fluxes on the bipartite diamond lattice.
This double-spin motion corresponds to a dimer move in the equivalent dimer
model of the divergence-free fluid, and is reminiscent of the mobility of holons
and spinons in frustrated Mott insulators on bipartite lattices [95]. The double-
spin motion is necessary to recover the effective Coulomb potential between
magnetic charges [50]. On the other hand, when a single-spin flip dynamics is
considered, the Z2 broken symmetry then appears as a staggered potential [23],
as explained in section 3.2.1.

3 Experimental realisations

As depicted in the previous section, an important feature of the fragmented
phases is the coexistence of a Coulomb phase and an ordered phase. This
manifests in the magnetic scattering function, which can be probed by neutron
diffraction measurements, as the superposition of Bragg peaks with anisotropic
diffuse scattering which exhibits pinch points, in the proportions predicted by
the Helmholtz decomposition. Another important signature is the existence of
a residual entropy despite the presence of a phase transition.

In the following we address the two lattices in which experimental frag-
mented phases have been reported, the two dimensional kagome lattice and
the three dimensional pyrochlore lattice.

3.1 Magnetic fragmentation in kagome systems

Systems which are good candidates to stabilize fragmented phases are kagome
ice systems. Indeed, as detailed in Section 2.2, their ground state (2 in - 1
out / 1 in - 2 out configurations) is intrinsically charged. In the presence of
nearest neighbor interactions only, these charges remain disordered down to
zero temperature. But in the presence of dipolar interactions, charge ordering
is predicted when the temperature is decreased, before entering a fully ordered
phase, where both spins and charges are ordered [36]. As mentioned previously,
the intermediate phase, called KI 2, is nothing but a fragmented phase.
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Fig. 8 (a) XMCD-PEEM image of an artificial Gd0.3Co0.7 kagome array. The orange region
corresponds to a charge ordered domain. (b) Experimental (top) and theroretical (bottom)
maps of the magnetic correlation function in the reciprocal space corresponding the picture
(a). (c) Corresponding q-cuts along the full (top) and dashed (bottom) lines, where the
positions of the pinch point (top) and the Bragg peaks (bottom) are marked by the col-
ored circles. Experimental signal (blue) is compared with theoretical calculations (orange).
Adapted from [25,97].

3.1.1 Artificial spin ice

Artificial spin ice systems, made of lithographically built arrays of nanomag-
nets interacting through dipolar interactions, are ideal to visualize in real space
the magnetic arrangement and thus the presence of charge ordering. The main
difficulty that arises experimentally is to achieve the thermodynamic ground
state of the built lattice, because the system is essentially static at room tem-
perature. Intense research has been dedicated to the development of exper-
imental protocols or novel materials to be able to manipulate the magnetic
configurations at room temperature and obtain magnetic states as close as
possible to the thermodynamic ground state [96,97].

In this context, the charge ordering state could be achieved in kagome ar-
rays of permalloy (Ni80Fe20) using an annealing protocol [98]. Charge crystal-
lites could be observed, while the magnetic configurations remain disordered.
The residual entropy obtained from the analysis does not correspond to the
fully ordered charge model, but is well below what is expected for the kagome
ice phase only. The fragmented nature of this charge ordered state was ev-
idenced by Canals et al. [25] in a Gd0.3Co0.7 array. The key is to show the
coexistence of a Coulomb phase with the charge ordering. While artificial spin
ices are often studied through the correlators in real space obtained from the
magnetic pictures, the trick here was to Fourier transform these correlations
into the magnetic scattering function in reciprocal space S(Q), in order to
visualize the pinch points, signature of the Coulomb phase and peaks, signa-
ture of the ordered phase (as previously illustrated in Figure 5). The figure
8 shows the real space picture (a), and the associated S(Q) (b). A compari-
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son with Monte-Carlo calculations could then show that the magnetic state of
the GdCo array is very close to the fragmented phase, with the emergence of
Bragg peaks above the kagome ice magnetic scattering function (See Figure
8(b) and (c)).

3.1.2 Tripod kagome

Concomitantly, emergent charge ordering was also reported in a bulk kagome
system, Dy3Mg2Sb3O14 [24]. This compound has actually a pyrochlore struc-
ture, but in which the triangular planes are occupied by non magnetic Mg,
the magnetic Dy atoms thus occupying two dimensional kagome planes (See
Figure 9) [99, 100]. The environment of the Dy3+ ions is pretty similar to py-
rochlore systems. Their magnetic moments can thus be considered as Ising
spins. They are not confined in the kagome planes but have a component
out of the planes, which slightly affects the conventional kagome ice picture.
The effective interaction, resulting from exchange and dipolar interactions, is
ferromagnetic, making this compound an ideal candidate for magnetic frag-
mentation. Using neutron diffraction measurements, Paddison et al. [24] could
indeed show that, below 300 mK, diffuse scattering coexists with an all in /
all out ordering, with a reduced moment of 2.8 µB close to the expected value
for the Dy3+ ion in the fragmented kagome phase µ/3 ≈ 3.3 µB. Measure-
ments were perfomed on a powder sample, which prevents the observation of
the pinch points characteristic of the Coulomb phase. Reverse Monte-Carlo
calculations could nevertheless show that the diffuse signal does correspond
to Coulomb phase correlations. A small residual entropy was obtained from
specific heat measurements (∆ = 0.05R) and matches within error bars the
expected 0.11R value. The presence of Mg - Dy site disorder (estimated to
about 6% in the studied sample) is invoked to explain some discrepancies with

Fig. 9 View of the tripod kagome lattice (left) and of the pyrochlore lattice (right) along
the [001] and [111] directions respectively, showing the stacking of triangular and kagome
planes. In the R3Mg2Sb3O14 compounds, the kagome planes are occupied by the rare-earth
R (blue) and the triangular planes are occupied by Mg (orange).
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the model. The authors also note that the model Hamiltonian they deduce
from their experiments predicts a phase transition towards a full long-range
order, that is not observed, maybe due to the presence of disorder or to frozen
single spin-flip dynamics.

The physics of Dy and Ho systems being very similar in pyrochlore ox-
ides R2M2O7 (R = rare-earth, M = metal), it is natural to think of the Ho
member of this family as a possible candidate for the stabilization of a frag-
mented kagome ice state. In Ho3Mg2Sb3O14 powder samples, the coexistence
of partial all in / all out ordering with diffuse scattering akin to that expected
for a Coulomb phase has indeed been observed [101]. Nevertheless, the or-
dered magnetic moment is smaller than expected, (1.7 instead of 3.3 µB) and
than in the Dy compound. In addition, low energy excitations are observed in
inelastic neutron scattering measurements, contrary to the expectation for a
conventional Ising spin, showing that the system remains dynamic. The main
difference between both systems is that Dy3+ is a Kramers ion, which guar-
antees a magnetic doublet ground state, while Ho3+ is a non-Kramers ion.
In pyrochlore oxides, the symmetry of the rare-earth site guarantees that the
magnetic ground state of the rare-earth is a magnetic doublet, thus confer-
ring almost the same properties to Dy and Ho compounds. In R3Mg2Sb3O14

systems, the symmetry of the rare-earth site is lower than in the pyrochlore lat-
tice, thus lifting the degeneracy of the ground doublet for the non-Kramers ions
such as Ho. Due to the small size of the crystal field splitting, Ho3Mg2Sb3O14

was proposed to be an example of a kagome ice in a transverse field Ising
model [102] coupled to a nuclear spin bath, resulting in a quantum spin frag-
mented state modified by quantum dynamics [101,103].

The Nd compounds, which stabilize a partial all in / all out ordering [100,
104], may also be potential candidates for fragmentation.

3.2 Magnetic fragmentation in pyrochlore systems

The stabilization of a fragmented state in pyrochlore systems is more tricky.
In the case of effective ferromagnetic nearest neighbor interactions, the ground
state is the spin ice state, which is not charged [28]. A pocket of FSL could be
generated by zero-point quantum fluctuations which would liberate the con-
straint µ2 = 4µ [Eq. (7)] [17, 26]. No real material is known up to date which
satisfies these conditions. However, alternative mechanisms have appeared sta-
bilising the fragmented phase in this review.

3.2.1 Pyrochlore iridates

Starting with a charge free spin ice ground state, another approach is to inject
magnetic charges through an external parameter. This can be done through a
staggered chemical potential as shown in Section 2.4. In materials, this stag-
gered chemical potential is equivalent to a staggered magnetic field, aligned
along the local 〈111〉 directions of the rare-earth sites. In such a scenario, the
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fragmented state can be stabilized providing the ratio between the effective
interactions and the staggered field is large enough to favor magnetic charges
(i.e. 3 in - 1 out / 3 out - 1 in configurations), but not too strong to prevent
the stabilization of a double charge crystal (all in / all out) [23], as discussed
above.

This scenario can take place in pyrochlore iridates R2Ir2O7. In these com-
pounds (for all rare-earths except Pr), the magnetic Ir4+ ions order antiferro-
magnetically at relatively high temperature (compared to the rare-earth inter-
actions), between 30 and 150 K [105]. The associated magnetic structure is all
in / all out, which creates on the rare-earth ions a staggered molecular field
H loc, precisely aligned along the local 〈111〉 directions [106,107]. The natural
candidates that emerge are the Dy and Ho compounds, which are known to
stabilize a spin ice ground state when the M site is occupied by a non-magnetic
ion [108].

It was indeed shown that Ho2Ir2O7 enters in a fragmented state below
about 1 K [23]. The key experimental features are obtained from neutron
diffraction measurements: a partial ordering of the magnetic moment with a
value equal to half of the Ho magnetic moment at low temperature, associated
to diffuse scattering which persists down to the lowest temperature (See Figure
10). No single crystals are available for this sample, but the powder averaging
of the pinch point pattern expected for a single crystal matches the q depen-
dence of the measured diffuse scattering. The temperature dependence of the
magnetic moment can be reproduced by a nearest neighbor spin ice (NNSI)
model and gives a ratio hloc/Jeff = 4.5, where Jeff is the effective nearest
neighbor interaction (resulting from the antiferromagnetic exchange and the

Fig. 10 left: Ordered all in / all out magnetic moment as a function of temperature obtained
from neutron diffraction measurements (squares and dots), normalized to the ground doublet
Ho magnetic moment. Lines are Monte-Carlo calculations in the NNSI model for different
h = hloc/Jeff values. The red line shows the best agreement obtained for h = 4.5. right:
Diffuse scattering measured at 1.5 K (top) compared to the magnetic scattering function
S(q) calculated with Monte-Carlo calculations (bottom). Adapted from [23].
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dipolar interaction). This value places this compound deep in the fragmented
phase, which, in this NNSI model, is stabilized for 2 < hloc/Jeff < 6.

It is worth noting that in this model, there is no need for long-range in-
teractions to stabilize the charge crystal, since it is favored locally by the
staggered molecular field (or chemical potential). Interestingly, these measure-
ments could highlight the novel dynamics of the magnetic excitations that
emerge from the fragmented phase compared to the canonical spin ice case, and
discussed in Section 2.5 [50]. Here, in the presence of the staggered chemical po-
tential, the magnetic excitations can be viewed as charged excitations emerging
from the divergence free phase, which propagate in a staggered potential cre-
ated by the charge ordered part of the fragmented phase. This picture can
be compared with the case of spin ice where the ground state is a vacuum of
charges on which magnetic monopoles can propagate almost freely [109]. Sig-
natures of this dynamics are observed in the Ho2Ir2O7 ac susceptibility, where
the frequency dependence can be described by an Arrhenius law with a mean
energy barrier resulting from the interaction between the charged excitations
and the underlying staggered potential [23].

More recently, it was shown that Dy2Ir2O7 also stabilizes a fragmented
phase, with almost the same characteristics as the Ho compound [84]. The
specific heat measurements performed in this compound could confirm the ex-
istence of a residual entropy, in agreement with the theoretical predictions [26].
Further analysis could point out the importance of accounting for long-range
interactions to quantitatively describe the fragmented phases of these iridates.
In particular, calculations with the dumbbell model considerably improve the
agreement with experiments, allowing with the same parameters for the repro-
duction of the temperature dependence of the magnetic moment and of the
specific heat peak, as well as the excitation energy scale.

Fig. 11 Inelastic neutron scattering in Nd2Zr2O7 measured at 60 mK. left: Excitation
spectrum at q = (0.9, 0.9, 0.9). right: Map averaged in the intensity range 45 < E < 55 µeV,
corresponding to the peak intensity in the left figure. Adapted from [22]
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3.2.2 Nd-based pyrochlores

The first pyrochlore oxide study which refers to magnetic fragmentation con-
cerns the Nd2Zr2O7 compound. This system apparently presents all the in-
gredients for magnetic fragmentation: Nd3+ magnetic moments are Ising-like,
pointing along the local 〈111〉 directions, magnetic susceptibility exhibits a
small but positive Curie-Weiss temperature, characteristic of effective interac-
tions that are weakly ferromagnetic and a partial all in / all out ordering is
observed [110–112]. Nevertheless, the ordered magnetic moment is about one
third of the total magnetic moment and is slightly sample dependent, which
takes us away from the “conventional” fragmentation scenario. A pinch point
pattern, characteristic of the existence of a divergence free component, was
observed in neutron scattering experiments. However, this signal is at finite
energy [22] (See Figure 11), which means that the divergence free contribution
is associated with magnetic excitations and not to the ground state of the sys-
tem. This is in contrast with the fragmentation scenario described in Section
2, where the Coulomb phase associated with the divergence free component is
part of the ground state of the system, and thus is expected to give a signal
at zero energy. In addition, in Nd2Zr2O7, above this spin ice pattern, disper-
sive branches emerge which indicates some propagation of the excitations. The
related compound Nd2Hf2O7 shows similar features [113], while the stannate
compound fully orders in an all in / all out state [114].

The observations in Nd2Zr2O7 can be understood by taking into account
the specific nature of the Nd3+ ground doublet in the pyrochlore symmetry,
which is called a “dipolar-octupolar” doublet [115]. The Hamiltonian is thus
different from the Ising Hamiltonian with a magnetic coupling between the
local z components (aligned along 〈111〉 directions) only, used in classical spin
ice, and involves transverse terms. In a pseudo spin approach, these transverse
terms are associated with x and y components of the pseudo spin, which

Fig. 12 left: Pseudo spin picture for the Nd3+ ion, showing the measured z component
(red) and the transverse x (blue) and y (green) terms. The black arrow corresponds to a
moment tilted in the z̃ direction. right: All out configuration with the spins aligned along z
(left) and along z̃ (right). In the second case, only the projection of the z̃ component along
z is measured. Courtesy of S. Petit.
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transforms like a dipole and an octupole respectively, but are not probed by
conventional magnetic and neutron measurements, which essentially probe the
z component. With this approach, Hamitonian parameters could be refined
and reproduce the magnetic excitations. These parameters include a strong
coupling between the x components of the pseudo spins, and between the x
and z components. The obtained magnetic ground state is a total all in / all
out ordering, but with each pseudo spin aligned along a z̃ direction, tilted
from the z direction in the (x, z) plane [64] (See Figure 12). In this picture,
the measured ordered magnetic moment corresponds to the projection of this
z̃ moment along the z direction, and in the same way, the inelastic scattering
corresponds to the projection of the spin waves associated with this z̃ ordering
along the local z direction. This scenario thus precludes fragmentation in the
Nd2Zr2O7 ground state. It was however pointed out that fragmentation occurs
in the excitations: by linearizing the equations of motion, one can see that
the excitations can be separated between a divergence free component, which
corresponds to the flat mode shown in Figure 11, and a propagating charged
component, which corresponds to the dispersive modes observed above the flat
mode [64].

This model can successfully describe experimental observations in zero
field, but cannot describe quantitatively some properties in the presence of
a magnetic field, especially the field induced transitions in the ground state
[49,111,116]. Interestingly, the pinch point pattern persists above the all in /
all out transition [22]. The nature of this signal - elastic or not - above the
transition temperature, together with the temperature dependence of the ex-
citations, is thus of importance to understand the relation between a potential
Coulomb phase at high temperature and the all in / all out ordering stabilized
at low temperature. In a recent work [117], the authors propose that the or-
dering transition is related to the Higgs mechanism where the emergent gauge
field of a “high” temperature Coulomb phase is gapped at the transition by
the condensation of emergent monopoles. Further work is needed to confirm
this scenario.

3.2.3 Dimensional reduction in a field

As pointed out in Section 3.1.2 and Figure 9, the pyrochlore lattice can be
viewed, along the [111] direction, as a stacking of triangular and kagome layers.
In the spin ice case, the spins in the triangular planes are parallel to the [111]
axis, and thus almost immediately align when a magnetic field is applied along
the [111] directions. The triangular planes being polarized, the ice rule on the
tetrahedron is still obeyed provided the magnetic field is not too large (smaller
than the effective interactions), so that a degeneracy persists in the kagome
plane corresponding to a KI 2 phase on each plane. A two dimensional kagome
ice state is thus stabilized. This state is easily identifiable by a magnetization
plateau at 1/3 of the saturated magnetization, and was early observed in
Dy2Ti2O7 [47, 48, 118]. This kagome ice state was shown to be robust with
respect to a misorientation of the magnetic field [48,119,120].
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This kagome ice state induced by a [111] field in spin ice was thus the first
realization of a fragmented state in an experimental system. Diffuse scattering
with pinch points, together with the partial ordering of the kagome planes were
observed in the canonical spin ices Dy2Ti2O7 and Ho2Ti2O7 long before the
fragmentation concept emerged [119, 121]. The peculiar coexistence of these
two features did not attract much attention, maybe due to the additional
ordering of the spins in the triangular planes.

In the peculiar case of the dynamic fragmentation in Nd2Zr2O7, it is amus-
ing that the same dimensional reduction operates for the excitations [49], later
confirmed in [116]. The spin ice like flat mode persists when the magnetic
field is applied but changes into a kagome ice pattern. This is because the
Helmholtz decomposition in the equations of motion can be made within the
kagome planes, resulting in the coexistence of a divergence free flat mode with
charged quasiparticles propagating in the kagome planes. Interestingly, like
in the conventional spin ice case, this dimensional reduction occurs when the
triangular spins are polarized (µ0H > 0.25 T), which is well above the field
induced transition of the ground state from the all in / all out state to the 3
in - 1 out / 3 out - 1 in state at µ0H ∼ 0.1 T.

4 Openings

The framework developed here provides a working example of emergent phe-
nomena beyond the traditional picture of spin liquids. Fragmentation offers
a platform to investigate emergent gauge fields coupled to a broken symme-
try, where the exotic properties of spin liquids take a new flavour. Since an
exciting aspect of fragmentation is its experimental observation, it should be
considered as a fundamental property of matter. In a nutshell, the take-home
message is that even if a system orders, the interesting physics might remain
hidden in the fluctuations.

Future directions of research include for example the topological properties
of the FSL, especially unconventional phase transitions beyond the Landau-
Ginzburg-Wilson paradigm that would arise when perturbing the FSL. As
a starting point, how to include the long-range order in the mapping from
the classical problem to the quantum one in D − 1 dimensions [122–124] ?
Since the divergence-free fluid supports monopole excitations, fragmentation
also provides a new tool to manipulate these quasi-particles. The dynamics
of monopoles and monopole holes coupled to a divergence-full background is
particularly promising. And as more experimental realisations of fragmenta-
tion will be discovered, further coupling mechanisms are likely to be exposed,
with a magnetic field [8,43,125], or via magneto-electric coupling [126], further
neighbour exchange [127,128], spin-lattice coupling [81] ... Also what happens
when the notion of fragmentation is extended to other gauge fields and other
quasi-particles, such as tensor gauge fields [51–53], allowing a connection to
fracton physics [129–131] ? On the experimental front, the next stage could
be to use hydrostatic and chemical pressure to explore the phase diagram of
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iridate pyrochlores and Nd-based pyrochlores, and in particular to see if, in the
latter, one can bring the divergence-free flat band to lower energies. Modifying
the nature of the magnetic ion could also enhance quantum dynamics, both
for pyrochlore and kagome materials, an open question for theorists and ex-
perimentalists alike. The notion of magnetic fragmentation is a recent concept
and many open questions remain to be answered, promising an exciting and
active future for the field.
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