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Abstract: The transitional regime of plane channel flow is investigated away from the transitional1

point below which turbulence is not sustained, using direct numerical simulation in large domains.2

Statistics of laminar-turbulent spatiotemporal intermittency are reported. The geometry of the pattern3

is first characterized, including statistics for the angles of the laminar-turbulent stripes observed in4

this regime, with a comparison to experiments. High-order statistics of the local and instantaneous5

bulk velocity, wall shear stress and turbulent kinetic energy are then provided. The distributions of6

the two former quantities have non trivial shapes, characterized by a large kurtosis and/or skewness.7

Interestingly, we observe a strong linear correlation between their kurtosis and their skewness8

squared, which is usually reported at much higher Reynolds number in the fully turbulent regime.9

Keywords: Transition to turbulence, spatiotemporal intermittency, channel flow10

1. Introduction11

Laminar and turbulent flows are two different regimes encountered for a given geometry. In12

many flows they are in competition from the point of view of the state space. Shear flows next to13

solid walls however show this surprisingly robust property that both laminar and turbulent regions14

coexist spatially on very long time scales, when the laminar state is locally stable. This phenomenon,15

called ’laminar-turbulent intermittency’ is well known in circular pipe flow since the days of O.16

Reynolds [1] and has lead recently to a burst of interest, a review of which is provided in Ref. [2]. Such17

laminar-turbulent flows have been identified and partly characterized in Taylor-Couette flow [3,4]18

and in plane Couette flow [4–6]. They also have been identified in other set-ups involving curvature19

[7–9] or stabilising effects [10]. The transitional regimes of plane Poiseuille flow, the flow between20

two fixed parallel plates driven by a fixed pressure gradient, have not received as much attention21

although this flow is the archetype of wall-bounded turbulent flows. Whereas this flow is frequently22

cited as an example of flow developing a linear instability (under the form of Tollmien-Schlichtling23

waves) [11], coherent structures typical of laminar-turbulent coexistence have been frequently24

reported in channel flow well below the linear instability threshold and a series of experimental and25

cutting-edge numerical studies in the 1980s and 1990s have focused on the development of spots26

[12–16]. Sustained intermittent regimes have not been identified as such before the mid-2000s, when27

Tsukahara [17] reported large-scale coherent structures from numerics in larger numerical domains.28

Like their counterpart in Couette flows, these structures display obliqueness with respect to the mean29

flow direction and a complicated long-time dynamics. The dynamics at onset in particular have30

remained mysterious [18] and, although this is currently debated, could follow a scenario different31

from the directed percolation one proposed for Couette flow. [9,19,20]. In the last years, the so-called32

transitional regime of plane channel flow has attracted renewed attention after new experimental33

studies. Whereas the works in Refs [21–23] focused on the minimal transition amplitude for spot34
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development, other studies [24–29] focused on the sustained intermittent regimes and their statistical35

quantification.36

37

Experimentally the finite length of the channel sets a limitation to most statistical approaches.38

Numerical simulation in large domains combined with periodic boundary conditions is a39

well-established way to overcome such limitations. Surprisingly, despite a large number of numerical40

studies of transitional channel flow, investigation of spatiotemporal intermittency in large enough41

domains has not been possible before the availability of massive computational resources. Owing to42

recent numerical studies [30–32], there is currently a good consensus about a few facts concerning43

the transitional regime : laminar-turbulent bands with competing orientations emerge progressively44

as the Reynolds number is reduced below Reτ « 100, and their mean wavelength increases as the45

Reynolds number is decreased. At even lower flow rate the bands turn into isolated spots with a46

ballistic dynamics rather than forming a seemingly robust stripe pattern [33–35]. The global centerline47

Reynolds number for the disappearance of the stripes is close to 660 [18,27]. However many questions48

remain open. The most sensible theoretical issues revolve around the (still open) question of the49

universality class of the transition process (see Ref. [18]), the role of the large-scale flows [23,25,36,37]50

in the sustainment of the stripes, or the mutual way different stripes interact together.51

52

There is also a lack of quantitative data about the patterning regime itself. The present53

special issue is an opportunity to document the geometric characteristics of the stripe patterns in54

unconstrained settings. Moreover, there is an ongoing philosophical question about whether traces55

of spatiotemporal intermittency can be found in the fully turbulent regimes commonly reported at56

higher Reynolds numbers. In the present paper, using numerical simulation in large domains, we57

focus on three specific points hitherto undocumented : the angular distribution of turbulent stripes,58

the statistics of the laminar gaps between them, and high-order statistics of the local and instantaneous59

bulk velocity, wall shear stress and turbulent kinetic energy. The outline of the paper is as follows60

: Section 2 introduces the numerical methodology with the relevant definitions. The geometrical61

statistics of the stripe angles are presented in section 3.1. The statistics of a few global quantities are62

presented in subsections 3.2, 3.3 and 3.4. A discussion of the results is made in section 4 with the63

conclusions and outlooks in section 5.64

65

2. Materials and Methods66

The present section is devoted to the methodology used for the numerical simulation of67

pressure-driven plane channel flow. The flow is governed by the incompressible Navier Stokes68

equations. Channel flow is described here using the Cartesian coordinates x,y,z, respectively the69

streamwise, wall-normal and spanwise coordinates. The velocity field upx, y, z, tq is decomposed into70

the steady laminar base flow solution Upyq “ pUx, 0, 0q and a perturbation field u1px, y, z, tq. Similarly,71

the pressure field is decomposed as ppx, y, z, tq “ xG` p1px, y, z, tq. The equation governing the steady72

base flow for an incompressible fluid with constant density ρ and kinematic viscosity ν is given by73

ν
B2Ux

By2 “
1
ρ

G (1)

with G a constant. Together with the no-slip condition at the walls Equation 1 yields the analytic74

Poiseuille solution Ux91´ py{hq2. The equation governing the perturbation field involves the base75

flow and reads76

Bu1

Bt
` u1 ¨∇u1 `U ¨∇u1 ` u1 ¨∇U “ ´

1
ρ
∇p1 ` ν∇2u1 (2)



Version August 14, 2020 submitted to Entropy 3 of 16

The channel geometry is formally infinitely extended, yet in the numerical representation it is77

given by its extent Lx ˆ 2hˆ Lz as in Figure 1, with stationary walls at y “ ˘h and periodic boundary78

conditions in x and z.79

y

x

z

Lx

Lz

2h

Figure 1. Schematic of the numerical domain with the laminar base flow profile (red)

The flow is driven by the imposed pressure gradient G assumed negative. The spanwise pressure80

gradient is explicitly constrained to be null. The centerline velocity ucl of the laminar base profile81

with the same pressure gradient is chosen as the velocity scale (U) and the half gap h of the channel is82

chosen as the lengthscale used for non-dimensionalisation. Time is hence expressed in units of h{U.83

In these units the laminar velocity profile is given by U˚x py˚q “ 1´ y2
˚. From Chapter 3 onwards84

only dimensionless quantities will be used and the ˚ notation will be dropped fro there on. Primed85

quantities denote perturbations to the base flow while non-primed quantities involve the full velocity86

field, including the laminar base flow.87

88

In the following we shall consider, both locally and temporally fluctuating quantities, as well89

as their time and space averages. We denote by 〈‚〉 the space (x, z) average and s‚ - the time average.90

Space-time averages are indicated by Ď〈¨〉. More explicitly the space average operators is defined as the91

discrete average over the grid points, and the time average is the discrete average sum over the total92

number of snapshots in the steady regime.93

94

Different velocity scales characterize the flow. One such scale is the centerline velocity ucl of
the corresponding laminar flow with the same value of G. Another one is the total streamwise flow
through the channel, Ub “

Ě〈ub〉, where

ubpx, z, tq “
2
h

ż h

´h
uxdy (3)

is the so-called local bulk flow. Finally, the friction velocity is defined as Uτ “ pĎ〈τ〉{ρq 1
2 , where

τ “ pτt ` τbq {2 ą 0, with τt and τb the net shear stress on the top and the bottom wall, respectively
given by :

τt,bpx, z, tq “ ˘µ
Bux

By

ˇ

ˇ

ˇ

ˇ

t,b
(4)

where µ “ ρν is the dynamic viscosity of the fluid. The three Reynolds numbers arising from these95

velocity scales are Recl “ uclh{ν, Reb “ Ubh{ν and Reτ “ Uτh{ν. For the laminar base flow they are96

inter-related as Re2
τ “ 3Reb “ 2Recl . Imposing a pressure gradient G<0 translates into a fixed average97

shear stress Ď〈τ〉 on the walls which sets an imposed value of Reτ “ ReG
τ to stress that this is the control98

parameter.99

100

Direct numerical simulation (DNS) of Equation 2 is carried out using the open source, parallel101

solver called Channelflow[38,39] written in C++. It is based on a Fourier-Chebychev discretization102

in space and a 3rd order semi-implicit backward difference scheme for timestepping. It makes use103

of the 2{3 dealiasing rule for the nonlinear terms. An influence matrix method is used to ensure104
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the no-slip boundary condition at the walls. The numerical resolution is specified in terms of the105

spatial grid points pNx, Ny, Nzq which translates into a maximum of pNx{2 ` 1, Nz{2 ` 1q Fourier106

wavenumbers and Ny Chebychev modes. Note that the definitions of Nx and Nz take into account107

the aliasing modes. The domain sizes used in this study, expressed in units of h, are Lx “ 2Lz “ 250108

for 55 ă ReG
τ ď 100 and Lx “ 2Lz “ 500 for 39 ď ReG

τ ď 55. The local numerical resolution used is109

Nx{Lx “ Nz{p2Lzq “ 4.096 and Ny “ 65, comparable to that used in Ref. [34]. The simulation follows110

an "adiabatic descent": a first simulation is carried out at sufficiently high value of ReG
τ , known to111

display space-filling turbulence. After the stationary turbulent regime is reached, ReG
τ is lowered and112

the simulation advanced further in time. This step-by-step reduction has been performed down to113

ReG
τ “ 39. The initial condition for the simulation is a random distribution of localized seeds of the114

kind described in Ref. [40]. The time required T to reach a stationary regime gradually increases as115

ReG
τ is decreased. As an order of magnitude, for ReG

τ “ 100, T « 1500, while for ReG
τ “ 50, T « 3000.116

Statistics are computed, after excluding such transients, from time series of lengths up to 2ˆ 104 time117

units.118

119

3. Results120

The entire adiabatic descent is shown using a space-time diagram of the cross-flow energy shown
in Fig. 2a

Ec f “
1
2

ż

pu2
y ` u2

zqdy (5)

evaluated at an arbitrary value of z (here z “ Lz{2). The space variable is expressed in a frame moving121

in the streamwise direction with the mean bulk velocity UbpGq for that particular value of ReG
τ . Since122

ReG
τ is lowered over the course of time, this allows one to capture the different flow regimes preceding123

full relaminarisation. The intensity of turbulence, measured here by the value of Ec f , is seen to124

gradually increase as ReG
τ is lowered. At high ReG

τ , the so-called featureless turbulence occupies the full125

domain, as shown in Fig 2b at ReG
τ “ 100 using isocontours of τ1px, zq. As ReG

τ is lowered, turbulence126

self-organises into the recognizable pattern regime [17] shown in Fig 2c for ReG
τ “ 80. As ReG

τ is further127

reduced the turbulent zones become sparser (see Fig 2d for ReG
τ “ 60). The spatially localized turbulent128

regions emerge as narrow stripes throughout the process of decreasing ReG
τ while the gaps between129

them constantly increase in size. The emerging patterns never feature an array of strictly parallel130

stripes like in former computational approaches [19,31,41], instead they feature competing orientations131

as in pCf [4], see Figure 2b-d. In this regime the pattern travels with a streamwise convection velocity132

slightly slower than UbpGq. Within the quasi-laminar gaps, Ec f reaches very low values, at least an133

order of magnitude less than in the core of the turbulent stripes. The lower ReG
τ , the lower these values.134

Below ReG
τ “ 50 the stripe pattern eventually breaks up to form independent turbulent bands of finite135

length, all parallel to each other [34], as shown in Fig 2e for ReG
τ “ 40. The new resulting pattern as a136

whole shows negligible spanwise advection, while it propagates in x with a velocity close to Ě〈ub〉 [42].137

The independent turbulent bands show enhanced motility in both directions x and z. This motion138

relative to the frame of reference causes the tilt of the stripes seen in Fig 2a for ReG
τ ą 50 as well as the139

apparent increase of thickness.140

In pipe flow it was noted recently [43] that the emergence of spatial localisation does not imply141

the proximity to the transitional point (below which turbulence is not sustained) as long as the142

statistics about the size of the laminar gaps fail at displaying power-laws tails. The laminar gaps are143

estimated as the streamwise distance lx between local maxima of τ (values lower than 〈τ〉` σpτq,144

with σ the standard deviation, have been discarded). The cumulative distribution (CDF) of the145

laminar gap size is shown in Figure 3 in lin-log coordinates. For all values of Reτ shown, it shows an146

exponential tails and no algebraic part. Exponential distributions are a hallmark of spatiotemporal147

intermittency, unlike critical phenomena which are characterized by algebraic/power law related to148

the scale invariance property. The entire regime of channel flow for 39 ď ReG
τ ď 100 can be described149
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Figure 2. (a) Space-time diagram of Ec f px ´UbpGq t, tq for z “ Lz{2 during the adiabatic descent
protocol, in a frame travelling in the x-direction at the mean bulk velocity 〈ub〉. Vertical axis : time
with corresponding values of ReG

τ values indicated. (b)(c)(d)(e) isocontours of τ1px, zq for ReG
τ “

100, 80, 60, 40.
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as being spatiotemporally intermittent, and is hence far away from any critical point. Note that the150

critical point of pPf is estimated to approximately Recl “ 660 [18] i.e ReG
τ « 36 and falls outside the151

range of parameters investigated here.152

Figure 3. CDF of laminar gap size for ReG
τ “ 80, 60, 50, 40

3.1. Angular Statistics of turbulent bands153

The self-organization of turbulence into long band–like structures, oriented with an angle with
respect to the streamwise direction, is depicted in Figure 2. The (signed) angle is computed using two
different methodologies. As in Duguet et al. [36] in the case of pCf, the local y–integrated velocity field
is found to be parallel to the bands. The same holds for pPf, as is visible in Figure 4a and Figure 4c for
ReG

τ “ 60 and 40, respectively. Note that, unlike Couette flow, pPf features advection with a non-zero
mean bulk velocity. Hence the local velocity field is here computed by removing this mean advection
velocity. A first estimation of the local and instantaneous band angle is therefore computed following
Equation 6 :

θLpx, z, tq “ tan´1
„

ş

u1z dy´ 〈
ş

u1z dy〉
ş

u1x dy´ 〈
ş

u1x dy〉



(6)

The second estimation is obtained from Fourier analysis and computed from Equation 7, following
Ref. [44] :

θFptq “ tan´1pλz{λxq (7)

where λ “ 2π{k, with k being the leading non-zero wavenumber identified from the power spectra154

(excluding the kx “ kz “ 0 mode). The Fourier spectrum is computed for the quantity τpx, z, tq, but155

similar results have been observed for other observables such as Ec f px, z, tq and Ev “ 1{2
ş

u2
y dy. The156

angles can be read directly from the Fourier spectra in polar coordinates, see Figures 4b and 4d for the157

same values of ReG
τ “ 60 and 40, respectively. The mean angles Ě〈θL〉 and sθF are then computed by158

respectively space time-averaging and time averaging the data obtained from Equation 6 and 7.159

160

The variation of the mean (signed) angles with ReG
τ , computed using the two methods, is shown161

in Figure 5a, where the indices 1, 2 stand for the two band orientations. Both methods provide identical162

results. The variation of the (unsigned) angle of the band denoted by θ, computed as θ “ Ě|θF| is shown163

in Figure 5b. It is found that the mean angle θ of the bands remains approximately constant with164

θ “ 25˝ ˘ 2.5˝ in the range of values 60 ď ReG
τ ď 90 and increases for lower value of ReG

τ ă 60. In the165

patterning regime, i.e. for ReG
τ ě 50, the angle of the bands is found to be distributed symmetrically166

with respect to zero, as a consequence of the natural symmetry z Ð ´z of the flow. For lower ReG
τ these167

quasi-regular patterns break down into individual localised structures analogous to individual puffs168

in cylindrical pipe flow. As the pattern dissolves, one single band orientation ends up dominating169
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the dynamics as shown by Shimizu and Manneville [34] for a similar domain size. The angle θ170

further increases as the regular pattern deteriorates, with θmax « 40 at ReG
τ “ 39. Previous studies171

[18,27] have documented that the angle of the bands approach 45˝ close to the onset of transition.172

The present investigation agrees well with these studies (Figure 5b) while covering a wider range in173

Reynolds number, highlighting the difference between the puff regime for which θ « 40´ 45˝, and the174

patterning regime for which θ is almost half this value (see also Fig. 2).175

176

(a) (b)

(c) (d)
Figure 4. (a) and (c) Isocontours of τ1 with the local velocity indicated by the normalized velocity
vectors, at ReG

τ “ 60, 40, respectively; (b) and (d) Instantaneous Fourier spectrum in polar coordinates
for (a) and (b), respectively.

(a) (b)
Figure 5. (a) Variation of the mean (signed) angle of the turbulent bands with ReG

τ , computed from the
Fourier spectra (ĎθF1 , ĎθF2 ) and the mean (signed) angle of the local velocity (Ę〈θL1 〉 , Ę〈θL2 〉) (b) Variation of
the mean unsigned band angle θ along with the data from Ref. [27,30]
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(a) (b)
Figure 6. (a) and (b) Space-time averaged inter-stripe streamwise Ě〈lx〉1,2 (blue) and spanwise Ě〈lz〉1,2
(red) distances for bands of orientations 1 and 2, respectively

Figure 4c shows that across a band, the local large-scale velocity changes orientation [41]. This177

property is used to sort out the local maxima of τ (higher than 〈τ〉` σpτq) as belonging to one band178

with a particular inclination. This allows to define the respective streamwise and spanwise interstripe179

distances lx and lz between bands of the same orientation. Figure 6a,6b displays Ě〈lx〉 and Ě〈lz〉 for180

orientations 1 and 2, respectively, as a function of ReG
τ . Both increase when decreasing ReG

τ . They vary181

in parallel in the patterning regime, hence the quasi constant angle θ of the bands. When only one182

band orientation survives, one observes that the increase in θ amounts to the saturation of Ě〈lx〉1, while183

Ě〈lz〉1 keeps increasing.184

3.2. Global variables : Moody diagram185

At a global level of description, the laminar and turbulent flow are traditionally represented in
the classical Moody diagram in which the Fanning friction factor C f defined as the ratio between the
pressure drop along the channel length and the kinetic energy per unit volume based on the mean
bulk velocity Ub “

Ě〈ub〉,

C f “
|∆p|

1{2 ρU2
b

h
Lx
“

Ď〈τ〉
1{2 ρU2

b
“

2 ReG
τ

2

Re2
b

, (8)

is traditionally plotted versus Reb as shown with plain symbols in Figure 7. For the laminar flow,186

the dependence of C f vs. Reb is analytically given by C flam “ 6{Reb (blue continuous line). In the187

featureless turbulent regime, it is known empirically as the Blasius’ friction law scaling ĚReb
´1{4 (red188

continuous line). For intermediate values of Reb, C f clearly deviates from the turbulent branch, and189

remains far from the laminar value [45]. Here we notice, in agreement with [30] and [34] that C f « 0.01190

remains essentially constant in this transitional regime. What is remarkable is that this regime of191

constant C f coincides with the patterning regime observed for 50 ď ReG
τ ď 90, corresponding to192

690 ď Reb ď 1225, as if the respective amount of turbulent and laminar domains was precisely ensuring193

C f “ cst. As the pattern fractures, C f increases and approaches the laminar curve. We note that the194

observation of this property requires large computational domains to be observed, which explains195

why it had not been noticed until recently, even in experiments.196
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Figure 7. Friction coefficient C f vs. Reb, with horizontal and vertical error bars indicating the
fluctuations these quantities would inherit from that of the field ub (see text for details)

Given the complex spatiotemporal dynamics in the transitional regime, the bulk velocity ub197

is expected to strongly fluctuate both in space and time. We also report on Figure 7, how these198

fluctuations would translate on Reb and C f , if the latter were computed using the locally fluctuating199

field ub instead of its mean value Ub. These fluctuations are significant (up to 10´ 15%) and suggest to200

further explore them, which is the topic of the next section and the main focus of the present work.201

3.3. Joint probability distribution of Reτ and Reb202

Reynolds numbers such as Reτ and Reb are traditionally seen as global parameters characterizing203

the flow. They are defined on the basis of velocity scales obtained from space-time average. It204

is straightforward to extend these definitions to the local fields Rebpx, z, tq “ ubpx, z, tqh{ν and205

Reτ “ uτpx, z, tqh{ν, with uτpx, z, tq “ pτpx, z, tq{ρq1{2. Note that with this definition, Ğ〈Reτ〉 is not206

strictly equal to the imposed ReG
τ , because of the nonlinear relation between Reτ and τ.207

208

Investigation of the entire transitional regime is provided through a two-dimensional state portrait209

(Reb ´ Reτ) constructed from this local definition of the Reynolds number. The joint probability density210

distribution is constructed in this state space with the space-time data for different ReG
τ . The state space211

for ReG
τ “ 100, 80, 60, 40 is shown in Figure 8. The continuous blue and red lines again correspond212

to the scalings known analytically or empirically for the laminar and featureless turbulent flows. As213

expected the most probable values of Reb and Reτ , follow the same trend as their global counterpart :214

they match the continuous curve in the featureless turbulent regime, and progressively depart from215

it to move towards the laminar branch at the lowest ReG
τ explored here. More interesting are the216

distributions. Firstly, we observe that the relative fluctuations are significantly larger for Reτ than for217

Reb, the difference being larger for the larger ReG
τ . Secondly the distributions are not simple Gaussians.218

Even in the featureless turbulent regime, the marginal distribution of Reτ is already relatively skewed219

(Fig. 8a3).220
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pa1q
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pa3q
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pb2q

pb3q

pc1q

pc2q

pc3q

pd1q

pd2q

pd3q

Figure 8. pa1q pb1q pc1q pd1q Joint probability distribution of the quantities Reb and Reτ for
ReG

τ “ 100, 80, 60, 40 together with their marginal distribution shown in lin-log scale for
Reb in pa2q pb2q pc2q pd2q and for Reτ in pa3q pb3q pc3q pd3q with the mean value indicated by a
vertical/horizontal black line.

As ReG
τ is reduced, the overall width of the distribution decreases, but the shape of the marginal221

distributions of Reτ differs more and more from a Gaussian. More specifically, although the distribution222

remains unimodal, we note that the marginal distribution of Reτ is more and more skewed. We223

also note that the right wing of the distribution is not convex anymore. To further quantify these224

observations, a systematic analysis of the moments of these distribution is conducted in the next225

Section.226

3.4. Higher-order statistics227

The higher order statistics of Reτ , Reb and Ec f are presented in this section. For any field228

A “ Apx, z, tq, we compute the spatio-temporal average m “ Ě〈A〉, the variance σ2 “ Ğ〈pA´mq2〉 and229

the kth standardized higher order moment Ğ

〈
pA´mqk

〉
{σk (for k ě 3).230

231
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Their mean values of Reb and Reτ (Figure 9a) simply follow the trends described above for the232

most probable value of the distribution, connecting the turbulent and the laminar branch, when233

ReG
τ decreases. Away from the turbulent and laminar branches Reτ is linearly related to Reb, in234

agreement with the observation of a constant C f . The standard deviation σ (Figure 9b) for Reτ and Reb235

decrease together with ReG
τ . This decreasing trend agrees well with the experimental wall shear stress236

data reported in Ref. [29]. The standard deviation for Ec f is found to increase with decreasing ReG
τ ,237

matching the trend reported in Ref. [34].238

239

The variation of the 3rd and 4th moments m3 and m4, i.e. the Skewness (S) and Kurtosis (K),240

versus ReG
τ for the observable Reτ and Ec f is shown in Figure 9c. These moments exhibit a strongly241

increasing trend with reducing ReG
τ for both quantities. This similarity in behavior leads to K9S2 as242

shown in Figure 9e. This correlation between the third and fourth statistical moments was first noted243

in Ref. [46] for the fluctuating velocity in turbulent boundary layers at high Reynolds number. In244

the transitional regime, the same relationship has been found to hold in the experiments of Agrawal245

et al. [29] from wall shear stress data. We therefore confirm this yet-to-be-understood extension of246

a high Reynolds number scaling down to the spatiotemporal intermittent regime. Furthermore we247

observe that the same scaling also holds for the turbulent kinetic energy Ec f (Figure 9e). In contrast248

it does not apply to Reb (inset of Figure 9e). The reason is that, while the Kurtosis follows the same249

trend as for the two other observables, (Figure 9d), the skewness shows a markedly different behavior:250

it is non-monotonous, changes sign twice and exhibit a maximum in the core of the spatiotemporal251

intermittent regime.252
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(a) (b)

(c) (d)

(e)
Figure 9. (a) Mean values (xm) of Reb and Reτ . (b) Variation of the Standard deviation (σ) of Reτ

(red), Reb (green), Ec f (blue) (indicated in the legend) vs. ReG
τ . The σpRebq and σpReτq are scaled as

indicated in the legend in order make them comparable. (c) Variation of Skewness (y-axis on left, filled
symbols) and kurtosis (right y-axis, open symbols) vs. ReG

τ for the observables Reτ (red) and Ec f (blue)
(d) Variation of Skewness (left y-axis on the left, filled symbol) and kurtosis (y-axis on right, open
symbols) vs. ReG

τ for the observable Reb (green). (e) Kurtosis vs. squared skewness for Reτ (red), Reb
(green, inset), Ec f (blue).
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4. Discussion253

The present simulations of the transitional regime of pPf confirm and extend previously254

documented knowledge, such as the constancy of C f in the patterning regime and the variation of the255

band orientations close to the transition point.256

257

The statistical analysis of the distribution of laminar gaps reveals that the distributions are258

exponentially tailed over the entire parameter range 39 ď ReG
τ ď 100, demonstrating that even the259

value ReG
τ “ 39 remains away from any sort of critical regime, which would be marked by algebraic260

distributions. This is consistent with the existing estimation of the location of the transitional critical261

point Recl « 660 [18,27], which translates to ReG
τ « 36. The entire patterning regime should thus be262

seen as bona fide spatiotemporal intermittency, with the critical behavior and transition point being263

relegated to values of ReG
τ ă 39. Exploring the statistics of the flow closer to the critical point would264

require even larger domains and longer observation times. Such an investigation is outside the scope265

of the current study.266

267

The orientation of the bands in the patterning regime for 60 ď ReG
τ ď 90 (1800 ď Recl ď 4050) is268

essentially constant, with an angle θ “ 25˝ ˘ 2.5˝. This validates the choice of θ “ 24˝ as a suitable269

value in the numerical approach of Tuckerman et al. [5,31,32], where slender computational domains270

are tilted at a chosen value of the angle. However, this angle of 24˝ no longer fits the mean orientation271

of the independent turbulent bands in the lower range ReG
τ ď 60 (Recl ď 1800), where the orientation272

of the bands increases by a factor close to two, with θ « 40˝ for ReG
τ “ 39.273

274

We confirm the observation of a constant C f in the patterning regime, which also implies275

Ğ〈Reτ〉 „Ğ〈Reb〉, as reflected in Figure 9a. This constant value of C f in the transitional regimes further276

enforces the long lasting analogy with first order phase transitions [47], for which the thermodynamic277

parameter conjugated to the order parameter remains constant while the system evolves from one278

homogeneous phase to the other, when a suitable control parameter is varied. At the mean-field level,279

a trademark of phase coexistence, is then the presence of a bimodal distribution of the order parameter280

in the coexistence regime. Capturing this bi-modality is however known as being a challenge, even in281

simulations of standard equilibrium systems : firstly not all protocols allow for observing the phase282

coexistence; secondly the order parameter must be coarse-grained on appropriate length-scales as283

compared to the correlation lengths such that non-mean field effect do not dominate [48]. More than284

often, the bi-modality of the order parameter distribution is replaced by a mere concavity and a large285

kurtosis. If the two phases have very different fluctuations, as is the case here, one also expects a286

strong skewness of the distribution. Our observations extend the analogy, already reported at the287

level of the mean observable, to their fluctuations. However a lot remain to be done in order to288

further exploit this analogy, in particular by making more precise what the relevant order and control289

parameters are. Let us stress that whether the analogy with a first order transition is valid or not, it290

does not preclude the dynamics at the spinodals from obeying a critical scenario, such as directed291

percolation close to the laminar phase spinodal [49] and a modulated instability of the turbulent flow292

close to the turbulent one [4].293

294

Finally, the statistical moments showcased here demonstrate a correlation between the skewness295

and the kurtosis of both Reτ and Ec f . Such a correlation, observed in both the transitional regime296

and higher Reynolds number turbulence but originally developed for the latter only [46], suggests a297

universal turbulent character, beyond the mere distinction transitional/featureless.298

5. Conclusions299

The transitional regime of pPf has been investigated numerically in large periodic domains. The300

transitional regime is composed of two sub-regimes each demarcated by a distinct behaviour. The301
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patterning regime is characterised, for 50 ď ReG
τ ď 90, by a constant value of C f « 0.01 and by a302

propagation downstream at approximately the mean bulk velocity ă ub ą. For lower ReG
τ all the way303

down to the critical point close to ReG
τ ď 36, independent turbulent bands define a regime analogous304

to the puff regime of cylindrical pipe flow. The patterns are shown to exhibit a near constant angle of305

inclination θ “ 25˝ ˘ 2.5˝ for 60 ď ReG
τ ď 90, which increases with reducing ReG

τ . Both sub-regimes can306

be classified as spatiotemporally intermittent, as evidenced by the exponential tails of the distribution307

of laminar gaps. The statistics of the local fields τ and ub reinforce the feeling that a fruitful analogy308

with first order phase transitions could be developed, but the later remains to be made more precise309

and exploited.310

Author Contributions: Conceptualization, Y.D. and O.D.; methodology, P.K., Y.D. and O.D.; data curation, P.K..;311

original draft preparation, Y.D. and P.K.; visualization, P.K.; supervision, Y.D. and O.D.312

Funding: This research received no external funding313

Acknowledgments: This study was made possible using computational resources from IDRIS (Institut du314

Développement et des Ressources en Informatique Scientifique) and the support of its staff. We would like to315

acknowledge and thank the entire team of channelflow.ch for building the code and making it open source. The316

authors would also like to thank Takahiro Tsukahara, Kazuki Takeda, Jalel Chergui, Florian Reetz, Rob Poole,317

Rishav Agrawal, Laurette S. Tuckerman, and Sebastian Gomé for valuable discussions and technical input.318

Conflicts of Interest: The authors declare no conflict of interest319

320

1. Reynolds, O. III. An experimental investigation of the circumstances which determine whether the motion321

of water shall be direct or sinuous, and of the law of resistance in parallel channels. Proceedings of the royal322

society of London 1883, 35, 84–99.323

2. Tuckerman, L.S.; Chantry, M.; Barkley, D. Patterns in Wall-Bounded Shear Flows. Annual Review of Fluid324

Mechanics 2020, 52.325

3. Coles, D. Transition in circular Couette flow. Journal of Fluid Mechanics 1965, 21, 385–425.326

4. Prigent, A.; Grégoire, G.; Chaté, H.; Dauchot, O.; van Saarloos, W. Large-scale finite-wavelength modulation327

within turbulent shear flows. Physical review letters 2002, 89, 014501.328

5. Barkley, D.; Tuckerman, L.S. Computational study of turbulent laminar patterns in Couette flow. Physical329

review letters 2005, 94, 014502.330

6. Duguet, Y.; Schlatter, P.; Henningson, D.S. Formation of turbulent patterns near the onset of transition in331

plane Couette flow. Journal of Fluid Mechanics 2010, 650, 119–129.332

7. Cros, A.; Le Gal, P. Spatiotemporal intermittency in the torsional Couette flow between a rotating and a333

stationary disk. Physics of Fluids 2002, 14, 3755–3765.334

8. Ishida, T.; Duguet, Y.; Tsukahara, T. Transitional structures in annular Poiseuille flow depending on radius335

ratio. Journal of Fluid Mechanics 2016, 794.336

9. Kunii, K.; Ishida, T.; Duguet, Y.; Tsukahara, T. Laminar-turbulent coexistence in annular Couette flow.337

Journal of Fluid Mechanics 2019, 879, 579–603.338

10. Brethouwer, G.; Duguet, Y.; Schlatter, P. Turbulent-laminar coexistence in wall flows with Coriolis,339

buoyancy or Lorentz forces. Journal of Fluid Mechanics 2012, 704, 137.340

11. Orszag, S.A. Accurate solution of the Orr–Sommerfeld stability equation. Journal of Fluid Mechanics 1971,341

50, 689–703.342

12. Carlson, D.R.; Widnall, S.E.; Peeters, M.F. A flow-visualization study of transition in plane Poiseuille flow.343

Journal of Fluid Mechanics 1982, 121, 487–505.344

13. Alavyoon, F.; Henningson, D.S.; Alfredsson, P.H. Turbulent spots in plane Poiseuille flow–flow345

visualization. The Physics of fluids 1986, 29, 1328–1331.346

14. Henningson, D.S.; Alfredsson, P.H. The wave structure of turbulent spots in plane Poiseuille flow. Journal347

of Fluid Mechanics 1987, 178, 405–421.348

15. Li, F.; Widnall, S.E. Wave patterns in plane Poiseuille flow created by concentrated disturbances. Journal of349

Fluid Mechanics 1989, 208, 639–656.350



Version August 14, 2020 submitted to Entropy 15 of 16

16. Henningson, D.S.; Kim, J. On turbulent spots in plane Poiseuille flow. Journal of Fluid Mechanics 1991,351

228, 183–205.352

17. Tsukahara, T.; Seki, Y.; Kawamura, H.; Tochio, D. DNS of turbulent channel flow at very low Reynolds353

Numbers. TSFP Digital Library Online. Begel House Inc., 2005.354

18. Tao, J.; Eckhardt, B.; Xiong, X. Extended localized structures and the onset of turbulence in channel flow.355

Physical Review Fluids 2018, 3, 011902.356

19. Lemoult, G.; Shi, L.; Avila, K.; Jalikop, S.V.; Avila, M.; Hof, B. Directed percolation phase transition to357

sustained turbulence in Couette flow. Nature Physics 2016, 12, 254–258.358

20. Chantry, M.; Tuckerman, L.S.; Barkley, D. Universal continuous transition to turbulence in a planar shear359

flow. Journal of Fluid Mechanics 2017, 824.360

21. Lemoult, G.; Aider, J.L.; Wesfreid, J.E. Experimental scaling law for the subcritical transition to turbulence361

in plane Poiseuille flow. Physical Review E 2012, 85, 025303.362

22. Lemoult, G.; Aider, J.L.; Wesfreid, J.E. Turbulent spots in a channel: large-scale flow and self-sustainability.363

Journal of Fluid Mechanics 2013, 731.364

23. Lemoult, G.; Gumowski, K.; Aider, J.L.; Wesfreid, J.E. Turbulent spots in channel flow: an experimental365

study. The European Physical Journal E 2014, 37, 25.366

24. Hashimoto, S.; Hasobe, A.; Tsukahara, T.; Kawaguchi, Y.; Kawamura, H. An experimental study on367

turbulent-stripe structure in transitional channel flow. ICHMT DIGITAL LIBRARY ONLINE. Begel House368

Inc., 2009.369

25. Seki, D.; Matsubara, M. Experimental investigation of relaminarizing and transitional channel flows.370

Physics of Fluids 2012, 24, 124102.371

26. Sano, M.; Tamai, K. A universal transition to turbulence in channel flow. Nature Physics 2016, 12, 249.372

27. Paranjape, C. Onset of turbulence in plane Poiseuille flow. PhD thesis, IST Austria, 2019.373

28. Whalley, R.; Dennis, D.; Graham, M.; Poole, R. An experimental investigation into spatiotemporal374

intermittencies in turbulent channel flow close to transition. Experiments in Fluids 2019, 60, 102.375

29. Agrawal, R.; Ng, H.C.H.; Dennis, D.J.; Poole, R.J. Investigating channel flow using wall shear stress signals376

at transitional Reynolds numbers. International Journal of Heat and Fluid Flow 2020, 82, 108525.377

30. Xiong, X.; Tao, J.; Chen, S.; Brandt, L. Turbulent bands in plane-Poiseuille flow at moderate Reynolds378

Numbers. Physics of Fluids 2015, 27, 041702.379

31. Tuckerman, L.S.; Kreilos, T.; Schrobsdorff, H.; Schneider, T.M.; Gibson, J.F. Turbulent-laminar patterns in380

plane Poiseuille flow. Physics of Fluids 2014, 26, 114103.381

32. Gomé, S.; Tuckerman, L.S.; Barkley, D. Statistical transition to turbulence in plane channel flow. arXiv382

preprint arXiv:2002.07435 2020.383

33. Kanazawa, T. Lifetime and Growing Process of Localized Turbulence in Plane Channel Flow. PhD thesis,384

Osaka University, 2018. doi:10.18910/69614.385

34. Shimizu, M.; Manneville, P. Bifurcations to turbulence in transitional channel flow. Physical Review Fluids386

2019, 4, 113903.387

35. Xiao, X.; Song, B. The growth mechanism of turbulent bands in channel flow at low Reynolds numbers.388

Journal of Fluid Mechanics 2020, 883.389

36. Duguet, Y.; Schlatter, P. Oblique laminar-turbulent interfaces in plane shear flows. Physical review letters390

2013, 110, 034502.391

37. Couliou, M.; Monchaux, R. Large-scale flows in transitional plane Couette flow: a key ingredient of the392

spot growth mechanism. Physics of Fluids 2015, 27, 034101.393

38. Gibson, J.F. Channelflow: A spectral Navier-Stokes simulator in C++. Technical report, U. New Hampshire,394

2014. Channelflow.org.395

39. Gibson, J.; Reetz, F.; Azimi, S.; Ferraro, A.; Kreilos, T.; Schrobsdorff, H.; Farano, N.; Yesil, A.F.; Schütz, S.S.;396

Culpo, M.; Schneider, T.M. Channelflow2.0. manuscript in preparation 2020.397

40. Lundbladh, A.; Johansson, A.V. Direct simulation of turbulent spots in plane Couette flow. Journal of Fluid398

Mechanics 1991, 229, 499–516.399

41. Paranjape, C.S.; Duguet, Y.; Hof, B. Oblique stripe solutions of channel flow. Journal of Fluid Mechanics400

2020, 897.401

42. Fukudome, K.; Iida, O. Large-scale flow structure in turbulent Poiseuille flows at low-Reynolds Numbers.402

Journal of Fluid Science and Technology 2012, 7, 181–195.403

https://doi.org/10.18910/69614


Version August 14, 2020 submitted to Entropy 16 of 16

43. Vasudevan, M.; Hof, B. The critical point of the transition to turbulence in pipe flow. Journal of Fluid404

Mechanics 2018, 839.405

44. Barkley, D.; Tuckerman, L.S. Mean flow of turbulent–laminar patterns in plane Couette flow. Journal of406

Fluid Mechanics 2007, 576, 109–137.407

45. Dean, R.B. Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional408

rectangular duct flow 1978.409
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