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The transitional regime of plane channel flow is investigated away from the transitional point below which turbulence is not sustained, using direct numerical simulation in large domains.

Statistics of laminar-turbulent spatiotemporal intermittency are reported. The geometry of the pattern is first characterized, including statistics for the angles of the laminar-turbulent stripes observed in this regime, with a comparison to experiments. High-order statistics of the local and instantaneous bulk velocity, wall shear stress and turbulent kinetic energy are then provided. The distributions of the two former quantities have non trivial shapes, characterized by a large kurtosis and/or skewness.

Interestingly, we observe a strong linear correlation between their kurtosis and their skewness squared, which is usually reported at much higher Reynolds number in the fully turbulent regime.

Introduction

Laminar and turbulent flows are two different regimes encountered for a given geometry. In many flows they are in competition from the point of view of the state space. Shear flows next to solid walls however show this surprisingly robust property that both laminar and turbulent regions coexist spatially on very long time scales, when the laminar state is locally stable. This phenomenon, called 'laminar-turbulent intermittency' is well known in circular pipe flow since the days of O.

Reynolds [START_REF] Reynolds | An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels[END_REF] and has lead recently to a burst of interest, a review of which is provided in Ref. [START_REF] Tuckerman | Patterns in Wall-Bounded Shear Flows[END_REF]. Such laminar-turbulent flows have been identified and partly characterized in Taylor-Couette flow [START_REF] Coles | Transition in circular Couette flow[END_REF][START_REF] Prigent | Large-scale finite-wavelength modulation within turbulent shear flows[END_REF] and in plane Couette flow [START_REF] Prigent | Large-scale finite-wavelength modulation within turbulent shear flows[END_REF][START_REF] Barkley | Computational study of turbulent laminar patterns in Couette flow[END_REF][START_REF] Duguet | Formation of turbulent patterns near the onset of transition in plane Couette flow[END_REF]. They also have been identified in other set-ups involving curvature [START_REF] Cros | Spatiotemporal intermittency in the torsional Couette flow between a rotating and a stationary disk[END_REF][START_REF] Ishida | Transitional structures in annular Poiseuille flow depending on radius ratio[END_REF][START_REF] Kunii | Laminar-turbulent coexistence in annular Couette flow[END_REF] or stabilising effects [START_REF] Brethouwer | Turbulent-laminar coexistence in wall flows with Coriolis, buoyancy or Lorentz forces[END_REF]. The transitional regimes of plane Poiseuille flow, the flow between two fixed parallel plates driven by a fixed pressure gradient, have not received as much attention although this flow is the archetype of wall-bounded turbulent flows. Whereas this flow is frequently cited as an example of flow developing a linear instability (under the form of Tollmien-Schlichtling waves) [START_REF] Orszag | Accurate solution of the Orr-Sommerfeld stability equation[END_REF], coherent structures typical of laminar-turbulent coexistence have been frequently reported in channel flow well below the linear instability threshold and a series of experimental and cutting-edge numerical studies in the 1980s and 1990s have focused on the development of spots [START_REF] Carlson | A flow-visualization study of transition in plane Poiseuille flow[END_REF][START_REF] Alavyoon | Turbulent spots in plane Poiseuille flow-flow visualization[END_REF][START_REF] Henningson | The wave structure of turbulent spots in plane Poiseuille flow[END_REF][START_REF] Li | Wave patterns in plane Poiseuille flow created by concentrated disturbances[END_REF][START_REF] Henningson | On turbulent spots in plane Poiseuille flow[END_REF]. Sustained intermittent regimes have not been identified as such before the mid-2000s, when Tsukahara [START_REF] Tsukahara | DNS of turbulent channel flow at very low Reynolds Numbers[END_REF] reported large-scale coherent structures from numerics in larger numerical domains.

Like their counterpart in Couette flows, these structures display obliqueness with respect to the mean flow direction and a complicated long-time dynamics. The dynamics at onset in particular have remained mysterious [START_REF] Tao | Extended localized structures and the onset of turbulence in channel flow[END_REF] and, although this is currently debated, could follow a scenario different from the directed percolation one proposed for Couette flow. [START_REF] Kunii | Laminar-turbulent coexistence in annular Couette flow[END_REF][START_REF] Lemoult | Directed percolation phase transition to sustained turbulence in Couette flow[END_REF][START_REF] Chantry | Universal continuous transition to turbulence in a planar shear flow[END_REF]. In the last years, the so-called transitional regime of plane channel flow has attracted renewed attention after new experimental studies. Whereas the works in Refs [START_REF] Lemoult | Experimental scaling law for the subcritical transition to turbulence in plane Poiseuille flow[END_REF][START_REF] Lemoult | Turbulent spots in a channel: large-scale flow and self-sustainability[END_REF][START_REF] Lemoult | Turbulent spots in channel flow: an experimental study[END_REF] focused on the minimal transition amplitude for spot development, other studies [START_REF] Hashimoto | An experimental study on turbulent-stripe structure in transitional channel flow[END_REF][START_REF] Seki | Experimental investigation of relaminarizing and transitional channel flows[END_REF][START_REF] Sano | A universal transition to turbulence in channel flow[END_REF][START_REF] Paranjape | Onset of turbulence in plane Poiseuille flow[END_REF][START_REF] Whalley | An experimental investigation into spatiotemporal intermittencies in turbulent channel flow close to transition[END_REF][START_REF] Agrawal | Investigating channel flow using wall shear stress signals at transitional Reynolds numbers[END_REF] focused on the sustained intermittent regimes and their statistical quantification.

Experimentally the finite length of the channel sets a limitation to most statistical approaches.

Numerical simulation in large domains combined with periodic boundary conditions is a well-established way to overcome such limitations. Surprisingly, despite a large number of numerical studies of transitional channel flow, investigation of spatiotemporal intermittency in large enough domains has not been possible before the availability of massive computational resources. Owing to recent numerical studies [START_REF] Xiong | Turbulent bands in plane-Poiseuille flow at moderate Reynolds Numbers[END_REF][START_REF] Tuckerman | Turbulent-laminar patterns in plane Poiseuille flow[END_REF][START_REF] Gomé | Statistical transition to turbulence in plane channel flow[END_REF], there is currently a good consensus about a few facts concerning the transitional regime : laminar-turbulent bands with competing orientations emerge progressively as the Reynolds number is reduced below Re τ « 100, and their mean wavelength increases as the Reynolds number is decreased. At even lower flow rate the bands turn into isolated spots with a ballistic dynamics rather than forming a seemingly robust stripe pattern [START_REF] Kanazawa | Lifetime and Growing Process of Localized Turbulence in Plane Channel Flow[END_REF][START_REF] Shimizu | Bifurcations to turbulence in transitional channel flow[END_REF][START_REF] Xiao | The growth mechanism of turbulent bands in channel flow at low Reynolds numbers[END_REF]. The global centerline Reynolds number for the disappearance of the stripes is close to 660 [START_REF] Tao | Extended localized structures and the onset of turbulence in channel flow[END_REF][START_REF] Paranjape | Onset of turbulence in plane Poiseuille flow[END_REF]. However many questions remain open. The most sensible theoretical issues revolve around the (still open) question of the universality class of the transition process (see Ref. [START_REF] Tao | Extended localized structures and the onset of turbulence in channel flow[END_REF]), the role of the large-scale flows [START_REF] Lemoult | Turbulent spots in channel flow: an experimental study[END_REF][START_REF] Seki | Experimental investigation of relaminarizing and transitional channel flows[END_REF][START_REF] Duguet | Oblique laminar-turbulent interfaces in plane shear flows[END_REF][START_REF] Couliou | Large-scale flows in transitional plane Couette flow: a key ingredient of the spot growth mechanism[END_REF] in the sustainment of the stripes, or the mutual way different stripes interact together.

There is also a lack of quantitative data about the patterning regime itself. The present special issue is an opportunity to document the geometric characteristics of the stripe patterns in unconstrained settings. Moreover, there is an ongoing philosophical question about whether traces of spatiotemporal intermittency can be found in the fully turbulent regimes commonly reported at higher Reynolds numbers. In the present paper, using numerical simulation in large domains, we focus on three specific points hitherto undocumented : the angular distribution of turbulent stripes, the statistics of the laminar gaps between them, and high-order statistics of the local and instantaneous bulk velocity, wall shear stress and turbulent kinetic energy. The outline of the paper is as follows : Section 2 introduces the numerical methodology with the relevant definitions. The geometrical statistics of the stripe angles are presented in section 3.1. The statistics of a few global quantities are presented in subsections 3.2, 3.3 and 3.4. A discussion of the results is made in section 4 with the conclusions and outlooks in section 5.

Materials and Methods

The present section is devoted to the methodology used for the numerical simulation of pressure-driven plane channel flow. The flow is governed by the incompressible Navier Stokes equations. Channel flow is described here using the Cartesian coordinates x,y,z, respectively the streamwise, wall-normal and spanwise coordinates. The velocity field upx, y, z, tq is decomposed into the steady laminar base flow solution Upyq " pU x , 0, 0q and a perturbation field u 1 px, y, z, tq. Similarly, the pressure field is decomposed as ppx, y, z, tq " xG `p1 px, y, z, tq. The equation governing the steady base flow for an incompressible fluid with constant density ρ and kinematic viscosity ν is given by

ν B 2 U x By 2 " 1 ρ G (1) 
with G a constant. Together with the no-slip condition at the walls Equation 1 yields the analytic Poiseuille solution U x 91 ´py{hq 2 . The equation governing the perturbation field involves the base flow and reads

Bu 1 Bt `u1 ¨∇u 1 `U ¨∇u 1 `u1 ¨∇U " ´1 ρ ∇p 1 `ν∇ 2 u 1 (2) 
The channel geometry is formally infinitely extended, yet in the numerical representation it is given by its extent L x ˆ2h ˆLz as in Figure 1, with stationary walls at y " ˘h and periodic boundary conditions in x and z. The flow is driven by the imposed pressure gradient G assumed negative. The spanwise pressure gradient is explicitly constrained to be null. The centerline velocity u cl of the laminar base profile with the same pressure gradient is chosen as the velocity scale (U) and the half gap h of the channel is chosen as the lengthscale used for non-dimensionalisation. Time is hence expressed in units of h{U.

In these units the laminar velocity profile is given by U x py ˚q " 1 ´y2 ˚. From Chapter 3 onwards only dimensionless quantities will be used and the ˚notation will be dropped fro there on. Primed quantities denote perturbations to the base flow while non-primed quantities involve the full velocity field, including the laminar base flow.

In the following we shall consider, both locally and temporally fluctuating quantities, as well as their time and space averages. We denote by ' the space (x, z) average and s ' -the time average.

Space-time averages are indicated by Ď ¨ . More explicitly the space average operators is defined as the discrete average over the grid points, and the time average is the discrete average sum over the total number of snapshots in the steady regime.

Different velocity scales characterize the flow. One such scale is the centerline velocity u cl of the corresponding laminar flow with the same value of G. Another one is the total streamwise flow through the channel, U b " Ě u b , where

u b px, z, tq " 2 h ż h ´h u x dy (3) 
is the so-called local bulk flow. Finally, the friction velocity is defined as

U τ " p Ď τ {ρq 1 2
, where τ " pτ t `τb q {2 ą 0, with τ t and τ b the net shear stress on the top and the bottom wall, respectively given by :

τ t,b px, z, tq " ˘µ Bu x By ˇˇˇt ,b (4) 
where µ " ρν is the dynamic viscosity of the fluid. The three Reynolds numbers arising from these velocity scales are Re cl " u cl h{ν, Re b " U b h{ν and Re τ " U τ h{ν. For the laminar base flow they are inter-related as Re 2 τ " 3Re b " 2Re cl . Imposing a pressure gradient G<0 translates into a fixed average shear stress Ď τ on the walls which sets an imposed value of Re τ " Re G τ to stress that this is the control parameter.

Direct numerical simulation (DNS) of Equation 2 is carried out using the open source, parallel solver called Channelflow [START_REF] Gibson | A spectral Navier-Stokes simulator in C++[END_REF][START_REF] Gibson | [END_REF] written in C++. It is based on a Fourier-Chebychev discretization in space and a 3 rd order semi-implicit backward difference scheme for timestepping. It makes use of the 2{3 dealiasing rule for the nonlinear terms. An influence matrix method is used to ensure the no-slip boundary condition at the walls. The numerical resolution is specified in terms of the spatial grid points pN x , N y , N z q which translates into a maximum of pN x {2 `1, N z {2 `1q Fourier wavenumbers and N y Chebychev modes. Note that the definitions of N x and N z take into account the aliasing modes. The domain sizes used in this study, expressed in units of h, are L x " 2L z " 250 for 55 ă Re G τ ď 100 and L x " 2L z " 500 for 39 ď Re G τ ď 55. The local numerical resolution used is N x {L x " N z {p2L z q " 4.096 and N y " 65, comparable to that used in Ref. [START_REF] Shimizu | Bifurcations to turbulence in transitional channel flow[END_REF]. The simulation follows an "adiabatic descent": a first simulation is carried out at sufficiently high value of Re G τ , known to display space-filling turbulence. After the stationary turbulent regime is reached, Re G τ is lowered and the simulation advanced further in time. This step-by-step reduction has been performed down to

Re G τ " 39. The initial condition for the simulation is a random distribution of localized seeds of the kind described in Ref. [START_REF] Lundbladh | Direct simulation of turbulent spots in plane Couette flow[END_REF]. The time required T to reach a stationary regime gradually increases as

Re G τ is decreased.
As an order of magnitude, for Re G τ " 100, T « 1500, while for Re G τ " 50, T « 3000.

Statistics are computed, after excluding such transients, from time series of lengths up to 2 ˆ10 4 time units.

Results

The entire adiabatic descent is shown using a space-time diagram of the cross-flow energy shown in Fig. 2a E 

c f " 1 2 ż pu 2 y `u2 z qdy (5) 
evaluated at an arbitrary value of z (here z " L z {2). The space variable is expressed in a frame moving in the streamwise direction with the mean bulk velocity U b pGq for that particular value of Re G τ . Since τ " 60). The spatially localized turbulent regions emerge as narrow stripes throughout the process of decreasing Re G τ while the gaps between them constantly increase in size. The emerging patterns never feature an array of strictly parallel stripes like in former computational approaches [START_REF] Lemoult | Directed percolation phase transition to sustained turbulence in Couette flow[END_REF][START_REF] Tuckerman | Turbulent-laminar patterns in plane Poiseuille flow[END_REF][START_REF] Paranjape | Oblique stripe solutions of channel flow[END_REF], instead they feature competing orientations as in pCf [START_REF] Prigent | Large-scale finite-wavelength modulation within turbulent shear flows[END_REF], see Figure 2b-d. In this regime the pattern travels with a streamwise convection velocity slightly slower than U b pGq. Within the quasi-laminar gaps, E c f reaches very low values, at least an order of magnitude less than in the core of the turbulent stripes. The lower Re G τ , the lower these values.

Below Re G τ " 50 the stripe pattern eventually breaks up to form independent turbulent bands of finite length, all parallel to each other [START_REF] Shimizu | Bifurcations to turbulence in transitional channel flow[END_REF], as shown in as being spatiotemporally intermittent, and is hence far away from any critical point. Note that the critical point of pPf is estimated to approximately Re cl " 660 [START_REF] Tao | Extended localized structures and the onset of turbulence in channel flow[END_REF] i.e Re G τ « 36 and falls outside the range of parameters investigated here. 

Angular Statistics of turbulent bands

The self-organization of turbulence into long band-like structures, oriented with an angle with respect to the streamwise direction, is depicted in Figure 2. The (signed) angle is computed using two different methodologies. As in Duguet et al. [START_REF] Duguet | Oblique laminar-turbulent interfaces in plane shear flows[END_REF] in the case of pCf, the local y-integrated velocity field is found to be parallel to the bands. The same holds for pPf, as is visible in Figure 4a and Figure 4c for Re G τ " 60 and 40, respectively. Note that, unlike Couette flow, pPf features advection with a non-zero mean bulk velocity. Hence the local velocity field is here computed by removing this mean advection velocity. A first estimation of the local and instantaneous band angle is therefore computed following Equation 6:

θ L px, z, tq " tan ´1 " ş u 1 z dy ´ ş u 1 z dy ş u 1 x dy ´ ş u 1 x dy  (6) 
The second estimation is obtained from Fourier analysis and computed from Equation 7, following Ref. [START_REF] Barkley | Mean flow of turbulent-laminar patterns in plane Couette flow[END_REF] :

θ F ptq " tan ´1pλ z {λ x q (7) 
where λ " 2π{k, with k being the leading non-zero wavenumber identified from the power spectra (excluding the k x " k z " 0 mode). The Fourier spectrum is computed for the quantity τpx, z, tq, but similar results have been observed for other observables such as E c f px, z, tq and E v " 1{2 ş u 2 y dy. The angles can be read directly from the Fourier spectra in polar coordinates, see Figures 4b and4d Previous studies [START_REF] Tao | Extended localized structures and the onset of turbulence in channel flow[END_REF][START_REF] Paranjape | Onset of turbulence in plane Poiseuille flow[END_REF] have documented that the angle of the bands approach 45 ˝close to the onset of transition.

The present investigation agrees well with these studies (Figure 5b) while covering a wider range in Reynolds number, highlighting the difference between the puff regime for which θ « 40 ´45 ˝, and the patterning regime for which θ is almost half this value (see also Fig. 2). Figure 4c shows that across a band, the local large-scale velocity changes orientation [START_REF] Paranjape | Oblique stripe solutions of channel flow[END_REF]. This property is used to sort out the local maxima of τ (higher than τ `σpτq) as belonging to one band with a particular inclination. This allows to define the respective streamwise and spanwise interstripe distances l x and l z between bands of the same orientation. Figure 6a,6b displays Ě l x and Ě l z for orientations 1 and 2, respectively, as a function of Re G τ . Both increase when decreasing Re G τ . They vary in parallel in the patterning regime, hence the quasi constant angle θ of the bands. When only one band orientation survives, one observes that the increase in θ amounts to the saturation of Ě l x 1 , while Ě l z 1 keeps increasing.

Global variables : Moody diagram

At a global level of description, the laminar and turbulent flow are traditionally represented in the classical Moody diagram in which the Fanning friction factor C f defined as the ratio between the pressure drop along the channel length and the kinetic energy per unit volume based on the mean bulk velocity U b " Ě u b ,

C f " |∆p| 1{2 ρU 2 b h L x " Ď τ 1{2 ρU 2 b " 2 Re G τ 2 Re 2 b , (8) 
is traditionally plotted versus Re b as shown with plain symbols in Figure 7. For the laminar flow, the dependence of C f vs. Re b is analytically given by C f lam " 6{Re b (blue continuous line). In the featureless turbulent regime, it is known empirically as the Blasius' friction law scaling Ě Re b ´1{4 (red continuous line). For intermediate values of Re b , C f clearly deviates from the turbulent branch, and remains far from the laminar value [START_REF] Dean | Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow[END_REF]. Here we notice, in agreement with [START_REF] Xiong | Turbulent bands in plane-Poiseuille flow at moderate Reynolds Numbers[END_REF] and [START_REF] Shimizu | Bifurcations to turbulence in transitional channel flow[END_REF] that C f « 0.01 remains essentially constant in this transitional regime. What is remarkable is that this regime of constant C f coincides with the patterning regime observed for 50 ď Re G τ ď 90, corresponding to 690 ď Re b ď 1225, as if the respective amount of turbulent and laminar domains was precisely ensuring C f " cst. As the pattern fractures, C f increases and approaches the laminar curve. We note that the observation of this property requires large computational domains to be observed, which explains why it had not been noticed until recently, even in experiments. Even in the featureless turbulent regime, the marginal distribution of Re τ is already relatively skewed (Fig. 8a 3 ).

pa 1 q pa 2 q pa 3 q pb 1 q pb 2 q pb 3 q pc 1 q pc 2 q pc 3 q pd 1 q pd 2 q pd 3 q Figure 8. pa 1 q pb 1 q pc 1 q pd 1 q Joint probability distribution of the quantities Re b and Re τ for Re G τ " 100, 80, 60, 40 together with their marginal distribution shown in lin-log scale for Re b in pa 2 q pb 2 q pc 2 q pd 2 q and for Re τ in pa 3 q pb 3 q pc 3 q pd 3 q with the mean value indicated by a vertical/horizontal black line.

As Re G τ is reduced, the overall width of the distribution decreases, but the shape of the marginal distributions of Re τ differs more and more from a Gaussian. More specifically, although the distribution remains unimodal, we note that the marginal distribution of Re τ is more and more skewed. We also note that the right wing of the distribution is not convex anymore. To further quantify these observations, a systematic analysis of the moments of these distribution is conducted in the next Section.

Higher-order statistics

The higher order statistics of Re τ , Re b and E c f are presented in this section. For any field

A " Apx, z, tq, we compute the spatio-temporal average m " Ě A , the variance σ 2 " Ğ pA ´mq 2 and the k th standardized higher order moment Ğ pA ´mq k {σ k (for k ě 3).

Their mean values of Re b and Re τ (Figure 9a) simply follow the trends described above for the most probable value of the distribution, connecting the turbulent and the laminar branch, when Re G τ decreases. Away from the turbulent and laminar branches Re τ is linearly related to Re b , in agreement with the observation of a constant C f . The standard deviation σ (Figure 9b) for Re τ and Re b decrease together with Re G τ . This decreasing trend agrees well with the experimental wall shear stress data reported in Ref. [START_REF] Agrawal | Investigating channel flow using wall shear stress signals at transitional Reynolds numbers[END_REF]. The standard deviation for E c f is found to increase with decreasing Re G τ , matching the trend reported in Ref. [START_REF] Shimizu | Bifurcations to turbulence in transitional channel flow[END_REF].

The variation of the 3 rd and 4 th moments m 3 and m 4 , i.e. the Skewness (S) and Kurtosis (K), versus Re G τ for the observable Re τ and E c f is shown in Figure 9c. These moments exhibit a strongly increasing trend with reducing Re G τ for both quantities. This similarity in behavior leads to K9S 2 as shown in Figure 9e. This correlation between the third and fourth statistical moments was first noted in Ref. [START_REF] Jovanović | Statistical analysis of the dynamic equations for higher-order moments in turbulent wall bounded flows[END_REF] for the fluctuating velocity in turbulent boundary layers at high Reynolds number. In the transitional regime, the same relationship has been found to hold in the experiments of Agrawal et al. [START_REF] Agrawal | Investigating channel flow using wall shear stress signals at transitional Reynolds numbers[END_REF] from wall shear stress data. We therefore confirm this yet-to-be-understood extension of a high Reynolds number scaling down to the spatiotemporal intermittent regime. Furthermore we observe that the same scaling also holds for the turbulent kinetic energy E c f (Figure 9e). In contrast it does not apply to Re b (inset of Figure 9e). The reason is that, while the Kurtosis follows the same trend as for the two other observables, (Figure 9d), the skewness shows a markedly different behavior:

it is non-monotonous, changes sign twice and exhibit a maximum in the core of the spatiotemporal intermittent regime. 

Discussion

The present simulations of the transitional regime of pPf confirm and extend previously documented knowledge, such as the constancy of C f in the patterning regime and the variation of the band orientations close to the transition point.

The statistical analysis of the distribution of laminar gaps reveals that the distributions are exponentially tailed over the entire parameter range 39 ď Re G τ ď 100, demonstrating that even the value Re G τ " 39 remains away from any sort of critical regime, which would be marked by algebraic distributions. This is consistent with the existing estimation of the location of the transitional critical point Re cl « 660 [START_REF] Tao | Extended localized structures and the onset of turbulence in channel flow[END_REF][START_REF] Paranjape | Onset of turbulence in plane Poiseuille flow[END_REF], which translates to Re G τ « 36. The entire patterning regime should thus be seen as bona fide spatiotemporal intermittency, with the critical behavior and transition point being relegated to values of Re G τ ă 39. Exploring the statistics of the flow closer to the critical point would require even larger domains and longer observation times. Such an investigation is outside the scope of the current study.

The orientation of the bands in the patterning regime for 60 ď Re G τ ď 90 (1800 ď Re cl ď 4050) is essentially constant, with an angle θ " 25 ˝˘2.5 ˝. This validates the choice of θ " 24 ˝as a suitable value in the numerical approach of Tuckerman et al. [START_REF] Barkley | Computational study of turbulent laminar patterns in Couette flow[END_REF][START_REF] Tuckerman | Turbulent-laminar patterns in plane Poiseuille flow[END_REF][START_REF] Gomé | Statistical transition to turbulence in plane channel flow[END_REF], where slender computational domains are tilted at a chosen value of the angle. However, this angle of 24 ˝no longer fits the mean orientation of the independent turbulent bands in the lower range Re G τ ď 60 (Re cl ď 1800), where the orientation of the bands increases by a factor close to two, with θ « 40 ˝for Re G τ " 39.

We confirm the observation of a constant C f in the patterning regime, which also implies Ğ Re τ " Ğ Re b , as reflected in Figure 9a. This constant value of C f in the transitional regimes further enforces the long lasting analogy with first order phase transitions [START_REF] Pomeau | Front motion, metastability and subcritical bifurcations in hydrodynamics[END_REF], for which the thermodynamic parameter conjugated to the order parameter remains constant while the system evolves from one homogeneous phase to the other, when a suitable control parameter is varied. At the mean-field level, a trademark of phase coexistence, is then the presence of a bimodal distribution of the order parameter in the coexistence regime. Capturing this bi-modality is however known as being a challenge, even in simulations of standard equilibrium systems : firstly not all protocols allow for observing the phase coexistence; secondly the order parameter must be coarse-grained on appropriate length-scales as compared to the correlation lengths such that non-mean field effect do not dominate [START_REF] Binder | Finite-size scaling at first-order phase transitions[END_REF]. More than often, the bi-modality of the order parameter distribution is replaced by a mere concavity and a large kurtosis. If the two phases have very different fluctuations, as is the case here, one also expects a strong skewness of the distribution. Our observations extend the analogy, already reported at the level of the mean observable, to their fluctuations. However a lot remain to be done in order to further exploit this analogy, in particular by making more precise what the relevant order and control parameters are. Let us stress that whether the analogy with a first order transition is valid or not, it does not preclude the dynamics at the spinodals from obeying a critical scenario, such as directed percolation close to the laminar phase spinodal [START_REF] Barkley | Theoretical perspective on the route to turbulence in a pipe[END_REF] and a modulated instability of the turbulent flow close to the turbulent one [START_REF] Prigent | Large-scale finite-wavelength modulation within turbulent shear flows[END_REF].

Finally, the statistical moments showcased here demonstrate a correlation between the skewness and the kurtosis of both Re τ and E c f . Such a correlation, observed in both the transitional regime and higher Reynolds number turbulence but originally developed for the latter only [START_REF] Jovanović | Statistical analysis of the dynamic equations for higher-order moments in turbulent wall bounded flows[END_REF], suggests a universal turbulent character, beyond the mere distinction transitional/featureless.

Conclusions

The transitional regime of pPf has been investigated numerically in large periodic domains. The transitional regime is composed of two sub-regimes each demarcated by a distinct behaviour. The 

Figure 1 .

 1 Figure 1. Schematic of the numerical domain with the laminar base flow profile (red)

  Re G τ is lowered over the course of time, this allows one to capture the different flow regimes preceding full relaminarisation. The intensity of turbulence, measured here by the value of E c f , is seen to gradually increase as Re G τ is lowered. At high Re G τ , the so-called featureless turbulence occupies the full domain, as shown in Fig 2b at Re G τ " 100 using isocontours of τ 1 px, zq. As Re G τ is lowered, turbulence self-organises into the recognizable pattern regime [17] shown in Fig 2c for Re G τ " 80. As Re G τ is further reduced the turbulent zones become sparser (see Fig 2d for Re G

Figure 2 .

 2 Figure 2. (a) Space-time diagram of E c f px ´Ub pGq t, tq for z " L z {2 during the adiabatic descent protocol, in a frame travelling in the x-direction at the mean bulk velocity u b . Vertical axis : time with corresponding values of Re G τ values indicated. (b)(c)(d)(e) isocontours of τ 1 px, zq for Re G τ " 100, 80, 60, 40.

Figure 3 .

 3 Figure 3. CDF of laminar gap size for Re G τ " 80, 60, 50, 40

  for the same values of Re G τ " 60 and 40, respectively. The mean angles Ě θ L and s θ F are then computed by respectively space time-averaging and time averaging the data obtained from Equation 6 and 7. The variation of the mean (signed) angles with Re G τ , computed using the two methods, is shown in Figure 5a, where the indices 1, 2 stand for the two band orientations. Both methods provide identical results. The variation of the (unsigned) angle of the band denoted by θ, computed as θ " Ě |θ F | is shown in Figure 5b. It is found that the mean angle θ of the bands remains approximately constant with θ " 25 ˝˘2.5 ˝in the range of values 60 ď Re G τ ď 90 and increases for lower value of Re G τ ă 60. In the patterning regime, i.e. for Re G τ ě 50, the angle of the bands is found to be distributed symmetrically with respect to zero, as a consequence of the natural symmetry z Ð ´z of the flow. For lower Re G τ these quasi-regular patterns break down into individual localised structures analogous to individual puffs in cylindrical pipe flow. As the pattern dissolves, one single band orientation ends up dominating the dynamics as shown by Shimizu and Manneville [34] for a similar domain size. The angle θ further increases as the regular pattern deteriorates, with θ max « 40 at Re G τ " 39.

Figure 4 .Figure 5 .Figure 6 .

 456 (a) and (c) Isocontours of τ 1 with the local velocity indicated by the normalized velocity vectors, at Re G τ " 60, 40, respectively; (b) and (d) Instantaneous Fourier spectrum in polar coordinates for (a) and (b), respectively. (a) Variation of the mean (signed) angle of the turbulent bands with Re G τ , computed from the Fourier spectra ( Ď θ F 1 , Ď θ F 2 ) and the mean (signed) angle of the local velocity ( Ę θ L 1 , Ę θ L 2 ) (b) Variation of the mean unsigned band angle θ along with the data from Ref. [27,30] (a) and (b) Space-time averaged inter-stripe streamwise Ě l x 1,2 (blue) and spanwise Ě l z 1,2 (red) distances for bands of orientations 1 and 2, respectively

Figure 7 .

 7 Figure 7. Friction coefficient C f vs. Re b , with horizontal and vertical error bars indicating the fluctuations these quantities would inherit from that of the field u b (see text for details)Given the complex spatiotemporal dynamics in the transitional regime, the bulk velocity u b is expected to strongly fluctuate both in space and time. We also report on Figure7, how these fluctuations would translate on Re b and C f , if the latter were computed using the locally fluctuating field u b instead of its mean value U b . These fluctuations are significant (up to 10 ´15%) and suggest to further explore them, which is the topic of the next section and the main focus of the present work.

3. 3 .

 3 Joint probability distribution of Re τ and Re b Reynolds numbers such as Re τ and Re b are traditionally seen as global parameters characterizing the flow. They are defined on the basis of velocity scales obtained from space-time average. It is straightforward to extend these definitions to the local fields Re b px, z, tq " u b px, z, tqh{ν and Re τ " u τ px, z, tqh{ν, with u τ px, z, tq " pτpx, z, tq{ρq 1{2 . Note that with this definition, Ğ Re τ is not strictly equal to the imposed Re G τ , because of the nonlinear relation between Re τ and τ. Investigation of the entire transitional regime is provided through a two-dimensional state portrait (Re b ´Re τ ) constructed from this local definition of the Reynolds number. The joint probability density distribution is constructed in this state space with the space-time data for different Re G τ . The state space for Re G τ " 100, 80, 60, 40 is shown in Figure 8. The continuous blue and red lines again correspond to the scalings known analytically or empirically for the laminar and featureless turbulent flows. As expected the most probable values of Re b and Re τ , follow the same trend as their global counterpart : they match the continuous curve in the featureless turbulent regime, and progressively depart from it to move towards the laminar branch at the lowest Re G τ explored here. More interesting are the distributions. Firstly, we observe that the relative fluctuations are significantly larger for Re τ than for Re b , the difference being larger for the larger Re G τ . Secondly the distributions are not simple Gaussians.
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 9 (a) Mean values (x m ) of Re b and Re τ . (b) Variation of the Standard deviation (σ) of Re τ (red), Re b (green), E c f (blue) (indicated in the legend) vs. Re G τ . The σpRe b q and σpRe τ q are scaled as indicated in the legend in order make them comparable. (c) Variation of Skewness (y-axis on left, filled symbols) and kurtosis (right y-axis, open symbols) vs. Re G τ for the observables Re τ (red) and E c f (blue) (d) Variation of Skewness (left y-axis on the left, filled symbol) and kurtosis (y-axis on right, open symbols) vs. Re G τ for the observable Re b (green). (e) Kurtosis vs. squared skewness for Re τ (red), Re b (green, inset), E c f (blue).

  patterning regime is characterised, for 50 ď Re G τ ď 90, by a constant value of C f « 0.01 and by a propagation downstream at approximately the mean bulk velocity ă u b ą. For lower Re G τ all the way down to the critical point close to Re G τ ď 36, independent turbulent bands define a regime analogous to the puff regime of cylindrical pipe flow. The patterns are shown to exhibit a near constant angle of inclination θ " 25 ˝˘2.5 ˝for 60 ď Re G τ ď 90, which increases with reducing Re G τ . Both sub-regimes can be classified as spatiotemporally intermittent, as evidenced by the exponential tails of the distribution of laminar gaps. The statistics of the local fields τ and u b reinforce the feeling that a fruitful analogy with first order phase transitions could be developed, but the later remains to be made more precise and exploited.
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