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Abstract. Activity recognition in smart homes is essential when we
wish to propose automatic services for the inhabitants. However, it is a
challenging problem in terms of environments’ variability, sensory-motor
systems, user habits, but also sparsity of signals and redundancy of mod-
els . Therefore, end-to-end systems fail at automatically extracting key
features, and need to access context and domain knowledge. We pro-
pose to tackle feature extraction for activity recognition in smart homes
by merging methods of Natural Language Processing (NLP) and Time
Series Classification (TSC) domains.
We evaluate the performance of our method with two datasets issued
from the Center for Advanced Studies in Adaptive Systems (CASAS).
We analyze the contributions of the use of embedding based on term
frequency encoding, to improve automatic feature extraction. Moreover
we compare the classification performance of Fully Convolutional Net-
work (FCN) from TSC, applied for the first time for activity recognition
in smart homes, to Long Short Term Memory (LSTM). The method we
propose, shows good performance in offline activity classification. Our
analysis also shows that FCNs outperforms LSTMs, and that domain
knowledge gained by event encoding and embedding improves signifi-
cantly the performance of classifiers.

Keywords: Human Activity Recognition · Smart Homes · Embedding
· Word Encoding · Fully Convolutional Network · Automatic Features

1 Introduction

Human Activity Recognition (HAR) has been the focus of research efforts due
to its key role for different ambient assisted living (AAL) domains as well as
the increasing demand for home automation and convenience services in daily
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activities. The main task of HAR is to recognize human activities from the data
collected through environmental sensors and Internet of Things (IoT) devices.
They use different sensor technologies such as cameras, wearable or low-level
smart sensors to track human activities, as described in [6].

Recent advances in IoT technologies and the reduction of the cost of sensors
are leading to the proliferation of these ambient devices and the development of
smart homes. This is why in this work we will focus more on IoT-based HAR,
as opposed to video or wearable-based HAR.

Along the development of the hardware, the HAR algorithms also need to
solve the challenges of HAR in smart homes. Indeed, the number, the type but
also the placement of sensors can significantly influence the performance of HAR
systems. A system suitable for a given home may be completely inadequate in
some other, due to different house configuration or user habits. The algorithms
thus need to be robust to the variability of environments. Besides, while video-
based HAR can leverage rich and redundant information from images and video
streams, IoT based HAR faces the challenges of sparse and incomplete infor-
mation and redundant models. In contrast to videos where objects and people
appear on several pixels and over several video frames, the IoT network only
detects changes in the environment that are within their range of detection and
in their field of view, and is oblivious to most changes in the environment, which
occur outside these ranges. When a change is captured, this detection often
translates into a signal with a single value from one sensor. This sparsity entails
the redundancy challenge: a set of signals from the same set of sensors can be
caused by different activities. Thus, algorithms for HAR in smart homes need
to address the challenges of variability, sparsity and redundancy.

To adapt to variations of environments and uses, algorithms for HAR have
turned to machine learning methods, and more specifically Deep Learning (DL)
algorithms. To deal with sparsity and redundancy, first, algorithms that can learn
long-term dependencies have been developed so as to understand the context of
sensor signals. Second, studies have also tried to introduce domain knowledge
and contextualization of sensors signals, through a good feature representation of
sensor events. But handcrafted features need a lot of pre-processing and reduce
its adaptability to various environments. Therefore HAR algorithms need to
automatically extract domain relevant representations.

In recent years, there have been significant improvements of DL techniques.
They have been successfully applied to Natural Language Processing (NLP) and
Time Series Classification (TSC). Respectively for automatic extraction of good
feature representations through word embedding techniques and classifiers.

Our contributions are the following: 1) We apply for the first time the Fully
Convolutional Networks (FCN) classifier from TSC on activity recognition in
smart homes. 2) We propose to use frequency-based encoding with word embed-
ding from NLP to improve automatic feature extraction. 3) We design an end to
end framework to automatically extract key features and classify daily activities
in smart homes by merging TSC classifier and NLP words encoding. 4) Finally,
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we show that domain knowledge gained by event encoding and embedding im-
proves significantly the performance of classifiers.

We propose in the following section to review the state-of-the-art HAR smart
home classifiers, a TSC classifier and the existing feature representation meth-
ods, in particular those used in NLP applications. In Section 3, we will propose
a framework combining a TSC algorithm and a NLP sequence features extrac-
tor method. In Section 5, we will report on the performance of our proposed
framework before concluding.

2 Related Works

In this section, we describe the algorithms developed for HAR, and more gen-
erally for Time Serie Classification. We then examine how TSC can be boot-
strapped by incorporating domain knowledge in feature encoding as in Natural
Language Processing.

2.1 Traditional HAR Approaches

To recognize human activities based on sensor traces, researchers used various
machine learning algorithms as reviewed in [15]. These can be divided into two
streams: the algorithms exploiting a spatiotemporal representation, with Naive
Bayes, Dynamic Bayesian Networks, Hidden Markov Models; and the algorithms
based on features classification, with Decision Tree, Support Vector Machines,
or Conditional Random Fields.

Most of these traditional HAR approaches commonly use handcrafted fea-
ture extraction methods. Automatic feature extraction is one of the challenges
addressed by DL.

2.2 Deep Learning Approaches

Recently, a variety of DL algorithms have been applied for HAR to overcome
those limitations and improve the performance of HAR. DL methods learn the
features directly from the raw data hierarchically, to uncover high-level features.
Long Short Term Memory (LSTM) can be seen as a very successful extension
of the Recurrent Neural Networks (RNN), explicitly designed to deal with long-
term dependencies. LSTMs allow automatic learning of temporal information
from the sensor data without the need of handcrafted features or kernel fu-
sion approaches, and have led to good performance in HAR in smart homes,
as reported in [17, 10]. [10] evaluated different LSTMs structures for HAR in
smart homes. They show that the LSTM approach outperforms traditional HAR
approaches in terms of classification score without using handcrafted features.
LSTMs leads to a viable solution to significantly improve the HAR task in the
smart home but suffers from training time.
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Another DL approach, focusing more on pattern detection is Convolutional
Neural Networks (CNNs). They have three advantages for HAR. They can cap-
ture local dependencies, that is, the importance of neighboring observations cor-
related with the current event. They are scale invariant in terms of step difference
or event frequencies. In addition, they are able to learn a hierarchical represen-
tation of data. Researchers used 2D [4, 13] and 1D [16] CNNs on HAR in smart
homes. The 2D CNN obtained good classification results. But this approach is
not robust enough to deal with unbalanced datasets, unlabeled events, and is
not suitable for online recognition. 1D CNNs are competitive with LSTMs on
sequence problems [16]. In general LSTMs obtain better performances due to
their capacity to use long-term dependencies. But CNNs are faster to train and
get accuracy levels close to LSTMs.

The FCN is a particular CNN, with only convolutional layers and no dense
layers. FCN has shown compelling quality and efficiency for semantic segmen-
tation of images [12]. Due to its performance on feature extraction, researchers
transferred the FCN on TSC problems [19]. [3] compared the FCN against other
TSC algorithms and obtained high classification performances. FCNs ranked
first on 18 datasets out of 97 and in the top five on the others. However, no
application of FCN for HAR in smart homes has been reported. For this reason
we propose to apply the FCN to HAR in smart homes as a high-level extractor
of features and classifier.

2.3 NLP and TSC coupling

Works such as [18, 20] have shown the importance of a good feature representa-
tion, but designing features for HAR applications is a tedious task.

DL algorithms can automatically extract features, they have widely shown
to improve feature representation with words pre-processing for text classifi-
cation in NLP. Researchers have devised many language models and different
encoding of words. They proposed encodings such as n-gram, term frequency,
term frequency-inverse document frequency, bag-of-words. Recently, they use DL
algorithms such as word2vec, GloVe ELMo and more recently Transformers, cou-
pled with the aforementioned encoding to achieve meaning word encoding [8, 9].
DL algorithms infer features from the current input and to a lesser extent from
past inputs, these encodings incorporate more general domain knowledge from
the whole corpus. Their strong capacity to generate features from raw data and
model word sequences increases the performance of DL classifiers. We propose
to transpose previously cited NLP techniques on smart homes HAR problems in
order to automatically generate key features.

Thus, we introduce in this article a DL methodology for HAR in smart homes
inspired by the NLP and the TSC. We propose to combine the term frequency
encoding and embedding with FCN, respectively : incorporate domain knowl-
edge of event encoding in the first level of extraction features ; and realize a
higher-level of extraction features and the activity classification. The choice of
the FCN algorithm from TSC is led by the output of the NLP embedding, which
transforms the sequence classification problem into a multivariate TSC problem.
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To our knowledge this is the first time that a study has used FCN in smart-home
activity recognition, and has combined it with embedding techniques to perform
an end-to-end system that automatically extracts key features and classifies ac-
tivities in smart homes.

3 Methodology

We merge NLP encoding and FCN classifier from TSC to deal with smart homes
HAR. This coupling allows generating automatic key features and classify activ-
ities.

The framework architecture of the proposed method is shown in Figure 1.
First raw data from sensors are encoded into a sequence of indexes (section 3.2),
then are split using a sliding window (section 3.4). The sliding windows are then
processed through an embedding to extract a first level of features, and finally
classified by the FCN (section 3.3).

Fig. 1. Framework architecture of the proposed method
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3.1 Problem Definition

The activity recognition problem is a classification problem. The goal is to at-
tribute an activity label on sensors events sequences. We model our problem as
follows. A set of sensors S = {s1, ..., s|S|} produces events ei ∈ E. An event
is the value or the state returned by a sensor when the sensors emit a signal:
ei = (si, vi, ti), where si is the sensor id, vi the value returned by the sensor and
ti the time when the sensor changes its state or value. A sequence Li is a trace
of activity. Li is a list of events Seqi = (ei, ..., en). Each Li can be associated to
an activity label ai ∈ A, by semantic segmentation.

In this paper we did not take in consideration the timestamp ti when an
event occurs. We simply ignore the parameter t for our experiments. We want to
be able to recognize an activity regardless of the time of the day. For example,
the activity ”Sleeping” appears in general during the night but this activity can
appear at any time during the day. Some people can work during the day and
sleep by night and vice versa some people can work during the night and sleep
during the day.

3.2 NLP Encoding

Our hypothesis is to process sensor events like words and activity sequences
as text sentences; these sentences describing the activities carried out by the
inhabitants.

First, each sequence of activity is extracted from the dataset as sentences in
NLP. Thanks to the label provided by the dataset, it is possible to know the
beginning and the end of each activity. As previously described, an event ei is
composed of the sensor ID si, the value vi and the timestamp ti. By concate-
nating the sensor ID si with his value vi and by ignoring the timestamp ti, for
the reasons explained previously, a sensor word is created, e.g., si = M001 and
the value vi = ON becomes M001ON . All these different text words define the
smart home vocabulary to describe activities.

Then, as in NLP, each word in the sequences are transformed into an index
to be usable by a neural network. In NLP the index starts at 1, the 0 value is
reserved for the sequence padding. Indexes are assigned based on word frequency,
e.g., if the word M001ON has the highest occurrence in the dataset, the assigned
index is the lowest one i.e 1.

Sequences are then passed through an embedding layer which transforms
index tokens (words) into auto learned features vectors. This creates a simple
word embedding that helps the network to get an internal representation of each
word in our cases each sensor event.

3.3 FCN Structure

The FCN is a particular CNN. Its structure only contains convolutional layers
e.g., no fully connected layers for the classification part. The same structure as
[19, 3] is used in this paper.
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This structure (Figure 2) is composed of three blocks described by EQ 1.
Where x is the input, W the weight matrix, b the bias and ⊗ the convolution
operator and h the hidden representation. Each block consists of a 1D convolu-
tional layer with Batch Normalization (BN) [7] and a rectified linear unit (ReLU)
activation to speed up the convergence and help improve generalizations.

y = W ⊗ x + b

z = BN(y)

h = ReLU(z)

(1)

After the three convolution blocks, features are fed into a Global Average Pooling
(GAP) layer [11]. GAP is a pooling operation designed to replace fully connected
layers in classical CNNs. The idea is to generate one feature map for each corre-
sponding category of the classification task. The resulting vector is fed directly
into the softmax layer to realize the final classification.

One advantage of GAP over the fully connected layers is that it is more native
to the convolution structure by enforcing correspondences between feature maps
and categories. Thus, the feature maps can be easily interpreted as category
confidence maps. Another advantage is that there is no parameter to optimize
in the GAP thus over fitting is avoided at this layer. Furthermore, GAP sums
out the spatial information; thus it is more robust to spatial translations of the
input.

One of the advantages of FCNs is the invariance in the number of parameters
across time series of different lengths. This invariance due to using a GAP layer
enables the use of a transfer learning approach where one can train a model on
a certain source dataset and fine-tune it on the target dataset [2].

Fig. 2. Fully Convolutional Network (FCN) model core
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3.4 Sliding Window

Contrary to LSTMs, CNNs must have a fixed input size and activity sequences
can have different lengths, between 1 and more than 5000 events. To tackle this
issue, a sliding window is applied over sequences. Using a sliding window also
allows anticipating an online HAR. To fill windows with fewer events than the
window size, a zero padding is used. The zero padding can impact the final
result. To avoid too much zero in the sliding windows, a fine-tuned window size
must be found.

For experiments, the Sensor Event Windows (SEW) [14] was used. The SEW
approach divides the data into equal sensor event intervals. The size of a SEW
is defined by a number of events. Therefore, the duration of the windows may
vary. Authors of [14] compared different windows types and conclude that Time
Windows (TW) provides the best accuracy and F-Measure score. They consider
SEW as the second-best window method because SEW are able to classify more
activities than TW. We assume this is because SEWs keep a fixed context size
while it is variable for TWs. A stable context size allows the neural network to
keep the same amount of information regardless of the window.

In this work, SEWs were used for two reasons. First, we want to evaluate the
method for its ability to learn automatic features from the window context. The
intuition being to train a network onto bounded activity sequences to extract
features and then use them on streaming sensor data for online recognition.
Second, this avoids too many zeros inside windows by controlling the number of
events.

4 Experimental Setup

LSTMs provide very good results on sequence problems and go beyond tradi-
tional advanced HAR methods in Smart Homes [10]. In order to evaluate the
method, LSTMs and FCNs were compared with two dataset ARUBA and MI-
LAN from the widely spread CASAS [1] benchmark datasets.

4.1 Datasets Description

Two datasets, ARUBA and MILAN (Table 1) from CASAS were selected for the
experiments. The CASAS datasets were introduced by Washington State Uni-
versity. Daily activities data collected, comes from real apartments and houses
with real inhabitants, who live in their own houses. The houses are equipped
with temperature and binary sensors, as motion or doors sensors.

A single person carried out activities in both the datasets. The MILAN
dataset was selected for the noise on the dataset produced by the pet, which
increases the difficulty of classification. They contain several months of labeled
activities and are unbalanced, i.e., some activities are less represented than oth-
ers. In addition these two datasets contain common and different activities with
approximately the same number of sensors.
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An unbalanced dataset increases the classification challenge. Indeed if some
classes are less represented the system gets fewer examples to find the discrim-
inating features. Moreover some events are unlabeled or unidentified and are
tagged under the class name ”Other”. This class appears between 45% and 50%
into these datasets. In the literature most researchers remove the class ”Other”
and balance the dataset by reducing the number of examples for each class.

This method creates a drawback, by ignoring unlabeled events it becomes
a fixed classification problem. The system cannot make the difference between
a known and an unknown class. This does not allow the system to be able to
discover new sequences of activities.

Here the original distribution was kept. The objective was to evaluate the
robustness of the method and the models.

Table 1. Details of datasets.

Aruba Milan

Habitants 1 1 + pet
Number of sensors 39 33
Number of activities 12 16
Number of days 219 82
Average sequence length 133 87.3

4.2 SEW Parameters

As previously described, sequences of activities were segmented in SEWs. Dif-
ferent SEWs sizes, 100, 75, 50, 25, with a stride of one was studied. This stride
size allows the HAR process each time a new event is triggered. The goal is to
find the best SEW size e.g., the minimal SEW size with the maximal informa-
tion that allows to discriminate activities sequences with a high F1-score and
high-balanced accuracy. The smaller the size of SEW, the faster an activity can
be recognized in the case of online HAR.

4.3 Networks Parameters

FCNs parameters are the same as [3]. All convolutions have a stride equal to
one with a zero padding to preserve the exact length of the time series after the
convolution. The first convolution contains 128 filters and a length equal to 8,
followed by a second convolution of 256 filters with a length equal to 5, which in
turn is fed to a third and final convolutional layer composed of 128 filters, with
a length equal to 3.

LSTMs parameters are the same as [10]. The LSTM cell is composed of 64
neurons and then followed by a softmax layer for the final classification.

As it is usually made in NLP an embedding layer was added between the
raw data and the neural network. The number of neurons was fixed to 64 as it
was defined in [10].
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4.4 Hardware and Software Setup

Experiments were made on a server, with an Intel(R) Xeon(R) CPU E5-2640
v3 2.60 GHz, with 32 CPUs, 128 Go of RAM and a NVIDIA Tesla K80 graphic
card. Keras and Tensorflow frameworks were used for the algorithm’s implemen-
tation. The source code can be found at https://github.com/dbouchabou/Fully-
Convolutional-Network-Smart-Homes.

4.5 Evaluation Method

To evaluate the proposed method, datasets were split into two parts: 70 % for
the train and 30% for the test. These two parts contain a shuffled stratified (over
class) number of SEW of each activity. e.g., if the dataset contains 100 windows
labeled ”Sleeping” after shuffling, the 100 windows are split into two parts: 70
windows for the train set, 30 windows for the test set. The random shuffle helps
the algorithm to get a better generalization and representation. The stratified
forces both subsets to contain representations of each class.

A stratified (over class) threefold cross-validation procedure is performed on
the training set. These three trains and three validation subsets are then used
to train and validate algorithms.

During the training phase on each train set, early stop and best model selec-
tion methods proposed by the Tensorflow framework was used. These methods
stop the training before overfitting and saves the best model of each train. The
early stop condition is based on the validation loss value. If the current loss
doesn’t decrease after n epochs since the last, best model selected (here n = 20)
the training is interrupted.

The three best trained models (one for each training subset) were evalu-
ated on the test set to calculate the average balanced accuracy and the average
weighted F1-score, because datasets are unbalanced.

To accelerate the training time by epoch and because the number of SEW is
big, a batch size of 1024 was used for all experiments. No differences were noticed
between the batch size evaluation during the tests, the results were similar except
in training time.

5 Experimental Results

5.1 FCNs and LSTMs Performances

Table 2 and Table 3 show the performances of two FCNs and two LSTMs on raw
sensor data for the two datasets. Vanilla LSTM, FCN and LSTM, FCN with an
embedding layer on different windows size were evaluated. The average balanced
accuracy and the average weighted F1-score was computed. FCN appears to
obtain the best weighted F1-score with and without the embedding onto both
datasets. The LSTM is close to or equal to the FCN on a large SEW, greater
than 50. Compared to the FCN the LSTM looks to need more events to realize
the classification.
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From the balanced accuracy point of view, FCNs get best values except on
the MILAN dataset when the window size is higher than 50. This decrease in
performance is due to the zero padding. Indeed the average sequence length on
the MILAN dataset is around 88 events. When the window size is close to or
over this average, the performances of the FCN decrease. Some small sequences
like ”Bed to Toilet” or ”Eve Meds” are not classified. This results in a drop in
the balanced accuracy score.

As an online HAR is expected in our future work, it is interesting to observe
the performance of the method on the small SEW size. The goal is to achieve
HAR in as little time as possible, with as few events as possible, to get the most
responsive system possible. In this case, the FCN obtained the best values with
SEWs of sizes 50 and 25. Performances decrease as the SEW size decreases, but
the FCN maintained a high score for balanced accuracy and the F1-score. Perfor-
mance drops less with FCNs than with LSTMs. It seems that FCNs can generate
more relevant automatic features than LSTMs on small sequences, therefore with
less information.

Table 2. Weighted F1 Score and Balanced Accuracy in Aruba’s dataset

Model 100 75 50 25

Weighted avg F1 Score (%)
LSTM 96.67 94.67 90.67 85.00
FCN 99.00 98.00 97.67 92.33
LSTM + Embedding 100.00 99.67 98.00 90.00
FCN + Embedding 100.00 100.00 100.00 99.00

Balanced Accuracy (%)
LSTM 81.45 76.09 71.05 83.30
FCN 88.85 87.41 87.08 80.32
LSTM + Embedding 94.55 93.61 90.20 74.81
FCN + Embedding 95.37 95.07 94.89 92.44

Table 3. Weighted F1 Score and Balanced Accuracy in Milan’s dataset

Model 100 75 50 25

Weighted avg F1 Score (%)
LSTM 84.00 85.67 75.33 64.00
FCN 77.33 93.67 88.33 83.67
LSTM + Embedding 98.00 97.00 93.00 73.67
FCN + Embedding 99.00 98.00 97.00 94.33

Balanced Accuracy (%)
LSTM 62.15 64.95 55.70 43.29
FCN 42.24 76.41 71.82 71.34
LSTM + Embedding 88.52 86.77 82.05 59.35
FCN + Embedding 84.23 86.64 87.83 90.86
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5.2 Training Time

Table 4 and Table 5 show the average training time and the average amount
of training epochs by SEWs size. On both datasets FCNs realized the shortest
time on every SEWs size. The embedding layer allows to reduce the number of
epochs and the total training time in the majority of cases. The training time
is divided by 2 to 6 with the FCN depending on the window size compared to
LSTM. This time saving is explained by the ease of parallelization of calculations
of convolutional networks.

Table 4. Training time performance and number of epochs training in Aruba’s dataset

Model 100 75 50 25

Average epoch number
LSTM 242 278 335 256
FCN 77 71 111 108
LSTM + Embedding 161 191 210 161
FCN + Embedding 67 62 71 98

Average training time (HH:MM:SS)
LSTM 06:28:42 06:43:08 06:29:58 03:00:26
FCN 00:58:00 00:52:15 01:20:35 00:51:27
LSTM + Embedding 04:45:56 04:45:38 04:14:35 02:02:53
FCN + Embedding 01:12:37 00:59:42 00:57:27 00:52:15

Table 5. Training time performance and number of epochs training in Milan’s dataset

Model 100 75 50 25

Average epoch number
LSTM 274 385 365 324
FCN 45 101 87 145
LSTM + Embedding 255 290 320 183
FCN + Embedding 65 51 52 55

Average training time (HH:MM:SS)
LSTM 02:03:43 02:11:07 01:44:06 01:00:10
FCN 00:09:39 00:20:17 00:15:08 00:16:50
LSTM + Embedding 01:57:52 01:49:35 01:36:56 00:35:26
FCN + Embedding 00:16:24 00:11:42 00:10:00 00:07:67

5.3 Encoding Impact

Tables 2 to 5 show that the embedding layer improves network performances.
Indeed, with the embedding layer networks gain significant performance, 10 per-
centage points on balanced accuracy in average. Sensor events are transformed
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into vectors of 64 automatically learned features that allow networks to maintain
a high score on small SEWs.

During our experiments, we noticed that the frequency encoding strategy
improved performance, unlike random or arbitrary index allocation. We think
this ordering helps networks generate discriminators on important events or rare
events.

6 Conclusion

We have proposed a new method that coupled for the first time FCNs and em-
bedding based on frequency encoding for HAR in smart homes. Our assessment
on two datasets shows that:

– The embedding based on frequency encoding significantly improves the per-
formance of LSTM and FCN in all cases. This means that the domain knowl-
edge incorporated in the embedding can improve the understanding of events
by LSTM and FCN.

– With the same encoding, FCNs obtain the same or better performance than
LSTMs, with the exception of only two configurations and are quicker to
train.

– Moreover, FCNs outperform LSTMs when the window size decreases. This
means that FCNs have a shorter delay in recognizing activities, and are more
suitable for real-time activity recognition.

The proposed framework is pure end-to-end without any heavy pre-processing
on the raw data or feature crafting, thanks to frequency-based encoding and the
embedding. This method appears to be relevant for HAR problems in smart
homes with low-level sensors.

7 Discussion and Future Directions

The results presented in this paper show that the applied DL approach based on
NLP encoding and FCN is a relevant solution to significantly improve the smart
homes HAR task.

We used a naive embedding based on frequency encoding that improved
classification results. We plan to explore more word embedding techniques [9]
such as Word2Vec or ELMo to improve the latent knowledge space and in the
process enhance classification performances. Indeed these techniques take into
account the context of words.

In addition, we are only experimenting with offline HAR. But the usage of
SEWs in our assessment showed relevant results so we want to apply this to
online HAR applications.

Moreover we plan to evaluate other windowing methods as TW or Fuzzy
Windows [5] with this method. To study which window methods produce the
fastest and most accurate online HAR in smart homes.
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